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Preliminaries

The special orthogonal group is defined to be
SO3 = {A ∈ GL3(R)|AtA = I,detA = 1}.

A matrix A represents a rotation in R3 about the origin
if and only if A ∈ SO3.

Hence SO3 is also called the rotation group in R3.
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Main Theorem

Every finite subgroup G of SO3 is one of the following:
Ck: the cyclic group
Dk: the dihedral group
T : the tetrahedral group
O: the octahedral group
I: the icosahedral group
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Descriptions

Ck: the cyclic group of rotations by multiples of 2π/k

about a line

Dk: the dihedral group of symmetries of a regular
k-gon
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T : the tetrahedral group of twelve rotations carrying
a regular tetrahedron to itself
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O: the octahedral group of order 24 of rotations of a
cube or regular octahedron
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I: the icosahedral group of order 60 of rotations of a
regular dodecahedron or regular icosahedron
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Proof of the Main Theorem

Useful Definitions:
Let G be a finite subgroup of SO3, and g ∈ G \ {1}.

Then g is a rotation about a unique line, call it `.

g fixes the two points in l ∩ S2.

Call these points the poles of g.

Define P := {p ∈ S2 : gp = p for some g ∈ G \ {1}}.
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Proof of the Main Theorem, con’t

Lemma:
P is carried to itself by the action of G on S2.

Proof:
Let p ∈ P be a pole of some g ∈ G.

Let x ∈ G be arbitrary.

It suffices to show that xp ∈ P .

Consider xgx−1 ∈ G: xgx−1(xp) = x(gp) = xp, so
xgx−1 fixes xp.

Thus xp ∈ P .
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Proof of the Main Theorem, con’t

Notation:
Let G be a finite subgroup of SO3, and n = |G|.

Fix p ∈ P , and let ` be the line through (0, p).

Let Gp be the stabilizer of p in G, which is the
group of rotations about `. Let rp = |Gp|.

Let Op be the orbit of p in G, and np = |Op|.

Then |Gp||Op| = rpnp = n = |G| ∀p ∈ P .
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Proof of the Main Theorem, con’t

Calculating the Number of Poles:
∃ rp − 1 elements of G which have p as a pole.
Each g ∈ G \ {1} has two poles.

Thus
∑

p∈P (rp − 1) = 2(n− 1).

If p and p′ are in the same orbit, then rp = rp′ .
There are np terms in the sum corresponding to a
given orbit Op, which implies that there are
np(rp − 1) poles.
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Proof of the Main Theorem, con’t

Calculating the Number of Orbits:
Number the orbits O1, O2,.., with ni = |Oi| and
ri = |Gp| ∀p ∈ Oi.

Then
∑

i ni(ri − 1) = 2n− 2.

Since niri = n, we have

2− 2
n

=
∑

i

(1− 1
ri

).

Then 2− 2
n

< 2 and 1− 1
ri
≥ 1

2
Hence ∃ at most 3 orbits.
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Proof of the Main Theorem, con’t

One Orbit:

2− 2
n

= 1− 1
r

cannot be, since

2− 2
n
≥ 1 while 1− 1

r
< 1

13



Proof of the Main Theorem, con’t

Two Orbits:

2− 2
n

= (1− 1
r1

) + (1− 1
r2

) ⇒ 2
n

=
1
r1

+
1
r2

So r1 = r2 = n.

Then ∃ only two poles, p and p′, both on a line `

and both of which are fixed by all g ∈ G.

So G = Cn is the cyclic group of rotations about `.
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Proof of the Main Theorem, con’t

Three Orbits:
2
n

=
1
r1

+
1
r2

+
1
r3

− 1

Suppose r1 ≤ r2 ≤ r3. Then r1 = 2.

(1) r1 = r2 = 2: Then 2r3 = n, and n3 = 2.
So ∃ two poles, p and p′, in O3.

∀g ∈ G, g either fixes both or interchanges them.

So G is rotations about a line ` = (p, p′) or
rotations by π about a line `′⊥`.

G will be the group of symmetries of a regular
r3-gon, that is, the dihedral group Dr3 .
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Proof of the Main Theorem, con’t

Three Orbits con’t:

(2) r1 = 2 but 2 < r2 ≤ r3:
Then there are three options for (r1, r2, r3) :

(a) (r1, r2, r3) = (2, 3, 3), n = 12, and
(n1, n2, n3) = (6, 4, 4)

(b) (r1, r2, r3) = (2, 3, 4), n = 24, and
(n1, n2, n3) = (12, 8, 6)

(c) (r1, r2, r3) = (2, 3, 5), n = 60, and
(n1, n2, n3) = (30, 20, 12)
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Proof of the Main Theorem, con’t

Three Orbits con’t:

(2) con’t
(a) n = 12:

For p ∈ O3, let q ∈ O2 be a pole nearest to p.

Then Gp = G3 operates on O2 and r3 = 3,
so Gp · q is a set of three closest neighbors of p.

i.e. the set obtained by the rotations about p.

∃ 4 equilateral triangles which form a regular
tetrahedron.

Thus G = T .

17



Proof of the Main Theorem, con’t

Three Orbits con’t:

(2) con’t
(b) n = 24:

For p ∈ O3, let q ∈ O2 be a pole nearest to p.

Then Gp = G3 operates on O2 and r3 = 4,
so Gp · q is a set of four closest neighbors of p.

i.e. the set obtained by the rotations about p.
∃ 6 squares which form a cube.

Thus G = O.
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Proof of the Main Theorem, con’t

Three Orbits con’t:

(2) con’t
(c) n = 60:

For p ∈ O3, let q ∈ O2 be a pole nearest to p.

Then Gp = G3 operates on O2 and r3 = 5,
so Gp · q is a set of five closest neighbors to p.

i.e. the set obtained by the rotations about p.
These poles are equally spaced, and so form a
regular pentagon in R3.
∃ 12 pentagons, forming a reg. dodecahedron.

Thus G = I.

19



Final Note:

In each case, n = 2n1, so n1 is the number of edges
on the polyhedron in R3.

In each of the cases, one of n2 and n3 is the number
of vertices and the other is the number of faces; it
will not matter which each is.
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