Classification of the Finite Subgroups of the Rotation Group

Sarah Bendall

University of Virginia
December 6, 2005

Preliminaries

The special orthogonal group is defined to be $S O_{3}=\left\{A \in G L_{3}(\mathbb{R}) \mid A^{t} A=I, \operatorname{det} A=1\right\}$.

A matrix A represents a rotation in \mathbb{R}^{3} about the origin if and only if $A \in S O_{3}$.

Hence SO_{3} is also called the rotation group in \mathbb{R}^{3}.

Main Theorem

Every finite subgroup G of SO_{3} is one of the following:
C_{k} : the cyclic group
D_{k} : the dihedral group
T : the tetrahedral group
O : the octahedral group
I : the icosahedral group

Descriptions

C_{k} : the cyclic group of rotations by multiples of $2 \pi / k$ about a line
D_{k} : the dihedral group of symmetries of a regular k-gon
T : the tetrahedral group of twelve rotations carrying a regular tetrahedron to itself

O : the octahedral group of order 24 of rotations of a cube or regular octahedron

I : the icosahedral group of order 60 of rotations of a regular dodecahedron or regular icosahedron

Proof of the Main Theorem

Useful Definitions:

Let G be a finite subgroup of $S O_{3}$, and $g \in G \backslash\{1\}$.
Then g is a rotation about a unique line, call it ℓ.
g fixes the two points in $l \cap S^{2}$.
Call these points the poles of g.

Define $P:=\left\{p \in S^{2}: g p=p\right.$ for some $\left.g \in G \backslash\{1\}\right\}$.

Proof of the Main Theorem, con't

Lemma:

P is carried to itself by the action of G on S^{2}.
Proof:
Let $p \in P$ be a pole of some $g \in G$.
Let $x \in G$ be arbitrary.
It suffices to show that $x p \in P$.
Consider $x g x^{-1} \in G: x g x^{-1}(x p)=x(g p)=x p$, so $x g x^{-1}$ fixes $x p$.

Thus $x p \in P$.

Proof of the Main Theorem, con't

Notation:

Let G be a finite subgroup of $S O_{3}$, and $\mathrm{N}=|G|$.

Fix $p \in P$, and let ℓ be the line through $(0, p)$.

Let G_{p} be the stabilizer of p in G, which is the group of rotations about ℓ. Let $r_{p}=\left|G_{p}\right|$.

Let O_{p} be the orbit of p in G, and $n_{p}=\left|O_{p}\right|$.

Then $\left|G_{p}\right|\left|O_{p}\right|=r_{p} n_{p}=\mathrm{N}=|G| \forall p \in P$.

Proof of the Main Theorem, con't

Calculating the Number of Poles:
$\exists r_{p}-1$ elements of G which have p as a pole.
Each $g \in G \backslash\{1\}$ has two poles.

Thus $\sum_{p \in P}\left(r_{p}-1\right)=2(\mathrm{~N}-1)$.

If p and p^{\prime} are in the same orbit, then $r_{p}=r_{p^{\prime}}$.
There are n_{p} terms in the sum corresponding to a given orbit O_{p}, which implies that there are $n_{p}\left(r_{p}-1\right)$ poles.

Proof of the Main Theorem, con't

Calculating the Number of Orbits:
Number the orbits $O_{1}, O_{2}, .$. , with $n_{i}=\left|O_{i}\right|$ and $r_{i}=\left|G_{p}\right| \forall p \in O_{i}$.

Then $\sum_{i} n_{i}\left(r_{i}-1\right)=2 \mathrm{~N}-2$.
Since $n_{i} r_{i}=\mathrm{N}$, we have
$2-\frac{2}{\mathrm{~N}}=\sum_{i}\left(1-\frac{1}{r_{i}}\right)$.
Then $2-\frac{2}{\mathrm{~N}}<2$ and $1-\frac{1}{r_{i}} \geq \frac{1}{2}$
Hence \exists at most 3 orbits.

Proof of the Main Theorem, con't

One Orbit:

$$
\begin{aligned}
& 2-\frac{2}{\mathrm{~N}}=1-\frac{1}{r} \text { cannot be, since } \\
& 2-\frac{2}{\mathrm{~N}} \geq 1 \text { while } 1-\frac{1}{r}<1
\end{aligned}
$$

Proof of the Main Theorem, con't

Two Orbits:

$$
2-\frac{2}{\mathrm{~N}}=\left(1-\frac{1}{r_{1}}\right)+\left(1-\frac{1}{r_{2}}\right) \Rightarrow \frac{2}{\mathrm{~N}}=\frac{1}{r_{1}}+\frac{1}{r_{2}}
$$

So $r_{1}=r_{2}=\mathrm{N}$.
Then \exists only two poles, p and p^{\prime}, both on a line ℓ and both of which are fixed by all $g \in G$.

So $G=C_{\mathrm{N}}$ is the cyclic group of rotations about ℓ.

Proof of the Main Theorem, con't

Three Orbits:

$$
\frac{2}{\mathrm{~N}}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}-1
$$

Suppose $r_{1} \leq r_{2} \leq r_{3}$. Then $r_{1}=2$.
(1) $r_{1}=r_{2}=2$: Then $2 r_{3}=\mathrm{N}$, and $n_{3}=2$.

So \exists two poles, p and p^{\prime}, in O_{3}.
$\forall g \in G, g$ either fixes both or interchanges them.
So G is rotations about a line $\ell=\left(p, p^{\prime}\right)$ or rotations by π about a line $\ell^{\prime} \perp \ell$.
G will be the group of symmetries of a regular r_{3}-gon, that is, the dihedral group $D_{r_{3}}$.

Proof of the Main Theorem, con't

Three Orbits con't:
(2) $r_{1}=2$ but $2<r_{2} \leq r_{3}$:

Then there are three options for $\left(r_{1}, r_{2}, r_{3}\right)$:

$$
\begin{aligned}
& \text { (a) }\left(r_{1}, r_{2}, r_{3}\right)=(2,3,3), \mathrm{N}=12 \text {, and } \\
& \left(n_{1}, n_{2}, n_{3}\right)=(6,4,4)
\end{aligned}
$$

(b) $\left(r_{1}, r_{2}, r_{3}\right)=(2,3,4), \mathrm{N}=24$, and $\left(n_{1}, n_{2}, n_{3}\right)=(12,8,6)$
(c) $\left(r_{1}, r_{2}, r_{3}\right)=(2,3,5), \mathrm{N}=60$, and $\left(n_{1}, n_{2}, n_{3}\right)=(30,20,12)$

Proof of the Main Theorem, con't

Three Orbits con't:
(2) con't
(a) $\mathrm{N}=12$:

For $p \in O_{3}$, let $q \in O_{2}$ be a pole nearest to p.
Then $G_{p}=G_{3}$ operates on O_{2} and $r_{3}=3$, so $G_{p} \cdot q$ is a set of three closest neighbors of p.
i.e. the set obtained by the rotations about p.
$\exists 4$ equilateral triangles which form a regular tetrahedron.

Thus $G=T$.

Proof of the Main Theorem, con't

Three Orbits con't:
(2) con't
(b) $\mathrm{N}=24$:

For $p \in O_{3}$, let $q \in O_{2}$ be a pole nearest to p.
Then $G_{p}=G_{3}$ operates on O_{2} and $r_{3}=4$,
so $G_{p} \cdot q$ is a set of four closest neighbors of p.
i.e. the set obtained by the rotations about p.
$\exists 6$ squares which form a cube.
Thus $G=O$.

Proof of the Main Theorem, con't

Three Orbits con't:
(2) con't
(c) $\mathrm{N}=60$:

For $p \in O_{3}$, let $q \in O_{2}$ be a pole nearest to p. Then $G_{p}=G_{3}$ operates on O_{2} and $r_{3}=5$, so $G_{p} \cdot q$ is a set of five closest neighbors to p. i.e. the set obtained by the rotations about p. These poles are equally spaced, and so form a regular pentagon in \mathbb{R}^{3}.
$\exists 12$ pentagons, forming a reg. dodecahedron. Thus $G=I$.

Final Note:

In each case, $\mathrm{N}=2 n_{1}$, so n_{1} is the number of edges on the polyhedron in \mathbb{R}^{3}.

In each of the cases, one of n_{2} and n_{3} is the number of vertices and the other is the number of faces; it will not matter which each is.

