Classification of the Finite Subgroups of the Rotation Group

Sarah Bendall

University of Virginia

December 6, 2005

Preliminaries

The **special orthogonal group** is defined to be $SO_3 = \{A \in GL_3(\mathbb{R}) | A^t A = I, \det A = 1\}.$

A matrix A represents a rotation in \mathbb{R}^3 about the origin if and only if $A \in SO_3$.

Hence SO_3 is also called the **rotation group** in \mathbb{R}^3 .

Main Theorem

Every finite subgroup G of SO_3 is one of the following:

 C_k : the cyclic group

 D_k : the dihedral group

T: the tetrahedral group

O: the octahedral group

I: the icosahedral group

Descriptions

 C_k : the **cyclic group** of rotations by multiples of $2\pi/k$ about a line

 D_k : the **dihedral group** of symmetries of a regular k-gon

T: the **tetrahedral group** of twelve rotations carrying a regular tetrahedron to itself

O: the **octahedral group** of order 24 of rotations of a cube or regular octahedron

I: the **icosahedral group** of order 60 of rotations of a regular dodecahedron or regular icosahedron

Proof of the Main Theorem

Useful Definitions:

Let G be a finite subgroup of SO_3 , and $g \in G \setminus \{1\}$.

Then g is a rotation about a unique line, call it ℓ .

g fixes the two points in $l \cap S^2$.

Call these points the **poles** of g.

Define $P := \{ p \in S^2 : gp = p \text{ for some } g \in G \setminus \{1\} \}.$

Proof of the Main Theorem, con't

Lemma:

P is carried to itself by the action of G on S^2 .

Proof:

Let $p \in P$ be a pole of some $g \in G$.

Let $x \in G$ be arbitrary.

It suffices to show that $xp \in P$.

Consider $xgx^{-1} \in G$: $xgx^{-1}(xp) = x(gp) = xp$, so xgx^{-1} fixes xp.

Thus $xp \in P$.

Proof of the Main Theorem, con't Notation:

Let G be a finite subgroup of SO_3 , and N = |G|.

Fix $p \in P$, and let ℓ be the line through (0, p).

Let G_p be the stabilizer of p in G, which is the group of rotations about ℓ . Let $r_p = |G_p|$.

Let O_p be the orbit of p in G, and $n_p = |O_p|$.

Then
$$|G_p||O_p| = r_p n_p = N = |G| \ \forall p \in P.$$

Proof of the Main Theorem, con't

Calculating the Number of Poles:

 $\exists r_p - 1 \text{ elements of } G \text{ which have } p \text{ as a pole.}$ Each $g \in G \setminus \{1\}$ has two poles.

Thus
$$\sum_{p \in P} (r_p - 1) = 2(N - 1)$$
.

If p and p' are in the same orbit, then $r_p = r_{p'}$. There are n_p terms in the sum corresponding to a given orbit O_p , which implies that there are $n_p(r_p-1)$ poles.

Proof of the Main Theorem, con't

Calculating the Number of Orbits:

Number the orbits O_1 , O_2 ,..., with $n_i = |O_i|$ and $r_i = |G_p| \ \forall p \in O_i$.

Then
$$\sum_{i} n_i(r_i - 1) = 2N - 2$$
.

Since $n_i r_i = N$, we have

$$2 - \frac{2}{N} = \sum_{i} (1 - \frac{1}{r_i}).$$

Then
$$2 - \frac{2}{N} < 2$$
 and $1 - \frac{1}{r_i} \ge \frac{1}{2}$

Hence \exists at most 3 orbits.

Proof of the Main Theorem, con't One Orbit:

$$2 - \frac{2}{N} = 1 - \frac{1}{r}$$
 cannot be, since

$$2 - \frac{2}{N} \ge 1$$
 while $1 - \frac{1}{r} < 1$

Proof of the Main Theorem, con't Two Orbits:

$$2 - \frac{2}{N} = (1 - \frac{1}{r_1}) + (1 - \frac{1}{r_2}) \Rightarrow \frac{2}{N} = \frac{1}{r_1} + \frac{1}{r_2}$$

So $r_1 = r_2 = N$.

Then \exists only two poles, p and p', both on a line ℓ and both of which are fixed by all $g \in G$.

So $G = C_N$ is the cyclic group of rotations about ℓ .

$$\frac{2}{N} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} - 1$$

Suppose $r_1 \leq r_2 \leq r_3$. Then $r_1 = 2$.

(1) $r_1 = r_2 = 2$: Then $2r_3 = N$, and $n_3 = 2$. So \exists two poles, p and p', in O_3 .

 $\forall g \in G, g \text{ either fixes both or interchanges them.}$

So G is rotations about a line $\ell = (p, p')$ or rotations by π about a line $\ell' \perp \ell$.

G will be the group of symmetries of a regular r_3 -gon, that is, the dihedral group D_{r_3} .

- (2) $r_1 = 2$ but $2 < r_2 \le r_3$: Then there are three options for (r_1, r_2, r_3) :
 - (a) $(r_1, r_2, r_3) = (2, 3, 3)$, N = 12, and $(n_1, n_2, n_3) = (6, 4, 4)$
 - (b) $(r_1, r_2, r_3) = (2, 3, 4)$, N = 24, and $(n_1, n_2, n_3) = (12, 8, 6)$
 - (c) $(r_1, r_2, r_3) = (2, 3, 5)$, N = 60, and $(n_1, n_2, n_3) = (30, 20, 12)$

- (2) con't
 - (a) N = 12:

For $p \in O_3$, let $q \in O_2$ be a pole nearest to p.

Then $G_p = G_3$ operates on O_2 and $r_3 = 3$, so $G_p \cdot q$ is a set of three closest neighbors of p.

i.e. the set obtained by the rotations about p.

 \exists 4 equilateral triangles which form a regular tetrahedron.

Thus G = T.

- (2) con't
 - (b) N = 24:

For $p \in O_3$, let $q \in O_2$ be a pole nearest to p.

Then $G_p = G_3$ operates on O_2 and $r_3 = 4$, so $G_p \cdot q$ is a set of four closest neighbors of p.

i.e. the set obtained by the rotations about p.

 \exists 6 squares which form a cube.

Thus G = O.

- (2) con't
 - (c) N = 60:

For $p \in O_3$, let $q \in O_2$ be a pole nearest to p.

Then $G_p = G_3$ operates on O_2 and $r_3 = 5$, so $G_p \cdot q$ is a set of five closest neighbors to p.

i.e. the set obtained by the rotations about p. These poles are equally spaced, and so form a regular pentagon in \mathbb{R}^3 .

 \exists 12 pentagons, forming a reg. dodecahedron.

Thus G = I.

Final Note:

In each case, $N = 2n_1$, so n_1 is the number of edges on the polyhedron in \mathbb{R}^3 .

In each of the cases, one of n_2 and n_3 is the number of vertices and the other is the number of faces; it will not matter which each is.