
1

Graph Transformation Approaches for Diverse Routing in Shared
Risk Resource Group (SRRG) failures

Pallab Datta and Arun K. Somani
Dependable Computing and Networking Laboratory
Department of Electrical & Computer Engineering

Iowa State University, Ames, IA, 50011, USA
E-mail: {pallab, arun}@iastate.edu

Abstract

Failure resilience is a desired feature of the Internet. Most traditional restoration architectures assume single-failure as-
sumption, which is not adequate in present day WDM optical networks.

Multiple link failure models, in the form of Shared-Risk Link Groups (SRLG’s) and Shared Risk Node Groups (SRNG’s)
are becoming critical in survivable optical network design. We classify both of these form of failures under a common scenario
of shared-risk resource groups (SRRG) failures. We develop graph transformation techniques for tolerating multiple failures
arising out of shared resource group (SRRG) failures.

Diverse Routing in such multi-failure scenario essentially necessitates finding out two paths between a source and a des-
tination that are SRRG disjoint. The generalized diverse routing problem has been proved to be NP-Complete. The proposed
transformation techniques however provides a polynomial time solution for certain restrictive failure sets. We study how
restorability can be achieved for dependent or shared risk link failures and multiple node failures and prove the validity of our
approach for different network scenarios. Our proposed technique is capable of improving the diverse route computation by
around 20-30% as compared to approaches proposed in literature.

I. INTRODUCTION

WDM optical networks have evolved as the primary transport medium in modern day networks. Cus-
tomers expect to see uninterrupted service, even in the event of failures such as power outages, equipment
failures, natural disasters and cable cuts. Many optical-layer protection schemes for WDM networks have
been proposed in the literature [1][2]. Protection schemes can be classified either as link protection or path
protection based on the initialization locations of the re-routing process. Link protection schemes route
a connection around a failed link. Path protection attempts to provide a backup path from the source to
the destination that maybe independent of the working path. Path-based protection has been established
to be the more capacity-efficient approach for mesh based networks as compared to link based rerouting
schemes [1][3] and is also used in this work.

For end-to-end path based restoration, for each demand the network provides two diverse paths: the ser-
vice path and the restoration path. When the service path fails, the traffic gets re-routed to the restoration
path. There are two commonly used protection schemes: shared path protection and dedicated path pro-
tection. In case of shared path protection, spare capacity is shared among different protection paths, while
in dedicated path protection, the spare capacity is dedicated to individual protection paths. Shared path
protection, although more difficult to implement, is more capacity efficient than dedicated path protection
[1].

The diverse routing problem is to find two paths between a pair of nodes in the optical layer such
that no single failure in the physical layer may cause both paths to fail. The problem of finding two
diversely routed paths in optical networks is much more difficult than the traditional edge/node disjoint

Pallab is presently working as a Technical Staff Member at Los Alamos National Lab. He can be contacted at pallab@lanl.gov
The research reported in this paper is funded in part by the National Science Foundation under grant ANI-9973102 and by Defense

Advanced Research Projects Agency and National Security Agency under grant N6001-00-1-8949.

2

path problem in graph theory [11][21] because two fibers belonging to different links maybe routed using
common conduits.

L 1
R 1

R2

L 1R1

L
2

R 3

C 1

C 2

C 1

C
3

Fig. 1. Shared-Risk Link Groups and their corresponding physical routes.

Instances where separate fiber optic links share a common failure structure is often referred to as SRLG
(Shared-Risk Link Group) [4][7]. Two examples of such shared-risk link groups are shown in Fig. 1,
which illustrates two diverse fiber links that may be placed in the same conduit at the physical layer and
are subject to a single point of failure. In this paper, we consider the diverse routing problem within a
generalized framework where SRLG’s are used to represent a set of optical links that are affected by a
single failure in the physical layer. Finding a pair of diverse paths in the optical layer translates to finding
a pair of SRLG-diverse paths.

The diverse routing problem has been conjectured to be NP-Complete in [9][10][11][21]. Recent studies
have proven the NP-completeness of the generalized SRLG diverse routing problem [9][10][15][16]. The
least coupled SRLG path problem, the minimum cost SRLG diverse routing problem and the routing
problem under both wavelength capacity and path length constraints have also been shown to be NP-
complete [9][17].

In [10][21], different heuristic approaches have been studied for diverse routing in presence of SRLG’s.
One of the common problems that arises in restoration path computation is the existence of a trap topology
[10][18]. With a trap topology, if a service path is independently routed over a trap topology, then there
may not exist a diverse restoration path, even though two diverse paths exist in the network.

In this paper, we address the problem of diverse routing in SRLG situations as well as multiple failures
arising out of nodes sharing a common risk of failure. We classify both these sub-problems under a
generalized scenario of shared risk resource group (SRRG) routing. We develop a polynomial time graph
transformation heuristic for solving a sub-set of the generalized version of the diverse routing problem in
networks with shared risk resource groups. We analyze the complexity of these routing methodologies
and also validate the correctness of these algorithms.

The remainder of the paper is organized as follows: Section II will give a brief description of shared risk
resource groups (SRRG’s). Section III describes the graph transformation techniques for diverse SRLG
routing. Section IV performs the complexity analysis of the SRLG disjoint routing methodology. Section
V discusses about diverse routing in SRNG scenarios. Section VI presents the computational complexity
for SRNG disjoint routing. We conclude the paper in Section VII.

II. SHARED RISK RESOURCE GROUPS (SRRG’S)

An important class of SRRG’s comprises of multiple links sharing a common component such as a duct,
whose failure causes failure of all links in that group. Any physical failure of one of these ducts can invoke
a logical failure of multiple links as illustrated in Figure 2(a). A single link can also be part of more than

3

1

2

3

4 5

6
2

3

R

R

R
1

1

2

3

4 5

6

1S

(a) (b)

Fig. 2. Network With (a) Shared-Risk Link Groups (SRLG’s) and (b) Shared Risk Node Groups (SRNG’s).

one SRLG. As shown in Figure 2(a) the link connecting nodes 1 and 3 is part of two SRLG’s R1 and R2.
In our research, we concentrate on co-incident SRLG’s [4], which are groups incident on a common node.

Another instance of a shared-risk resource failure (SRRG), is the failure of two nodes that are connected
by a link and we model it as shared risk node groups (SRNG’s) (Figure2(b)). In practice such a failure of
one or more nodes may be due to simultaneous attack on two adjacent routers by a malicious user, which
leads to simultaneous failure of two nodes in the network.

A. Trap Avoidance in Diverse SRLG Routing

In a diverse SRLG routing, there might be instances where an algorithm fail to find a pair of SRLG
disjoint routes for a given source and destination due to topologically induced restrictions also known as
unavoidable traps[18].Unavoidable traps are constraints imposed by the underlying topology, and cannot
be worked around by any algorithm, i.e. there does not exist any SRLG disjoint paths between a source
and destination node pair. For example if a network is not 2-edge connected then there is no algorithm
that can guarantee the presence of two SRLG disjoint routes in the topology. Avoidable traps, however
are traps that are not imposed due to the underlying topology, but are due to shortcomings of the routing
algorithm.

These traps can be easily avoided by choice of an intelligent routing algorithm. Some heuristics have
been proposed in [8][18] for elimination of avoidable traps in a topology. Several approaches for avoiding
traps in a topology has been also studied in [12][14]. The concept of trap topology has been explained
in [12] in the context of finding k-shortest paths. The work in [14] discusses the effects of dual failures
arising from Shared Risk Link Groups(SRLG’s). We study the concept of traps in an attempt to find SRRG
(both SRLG and SRNG) disjoint routes.

The graph transformation techniques suggested in our work attempts to find shortest cycles in a trans-
formed graph, instead of using Dijkstra’s shortest paths, and map these cycles on the actual topology.
Since the shortest cycle algorithm [21] is used in our graph transformation algorithm, and the shortest
cycle guarantees finding the cycle that is of minimal edge length (if the topology is 2-edge connected and
such disjoint routes exists), our approach can always successfully find SRLG disjoint routes in a given
topology.

One of the traditional approaches for computing diverse SRLG routes, is to compute the shortest path
using the Dijkstra’s algorithm from a node S to node D. For all the edges in the primary or service path,

4

Fig. 3. Trap Avoidance in Diverse SRLG Routing

remove the edges that share a common failure with these edges. The Dijkstra’s algorithm is again run on
the residual network to compute the second shortest path from S to D. When routing over a trap topology,
the pre-selected service path may not have a diverse restoration path, even though diverse paths exist in
the network. For example, Figure 3(a) shows a network topology with the shared risk link groups and
the edge weights. Computing the SRLG disjoint paths using the traditional Dijkstra’s algorithm would
lead to selection of the path 2 → 3 → 5 as the primary path, thus making selection of a restoration route
infeasible. However the graph as shown in Figure 3(c) does have shortest cycles which can be computed
using an elegant routing methodology. As can be seen, the cycles includes two shared risk diverse paths
P1: 2 → 1 → 5 and P2: 2 → 4 → 5.

B. Graph Transformation for Diverse SRRG Routing

In the following sections we present a graph transformation technique to search for two shared-risk
group disjoint paths to tolerate shared-risk resource group failures. We assume that there is only at most
one SRRG failure at any given time.

C. Notations

The following notations are used in the following sections for describing the graph transformation al-
gorithm.
• G = (V, E): Directed graph G, where V is the set of vertices and E is the set of edges. |V | = N and |E| =
L.
• TN×N : Traffic matrix between any two s-d pair.
• αe: Weight of an edge e in the directed graph G. For bi-directional links, αuv = αvu.
• χ: Total number of Shared-Risk Link groups (SRLG’s) in the network.
• Ri: The ith Shared Risk Link Group. i = 1 · · · χ.
• ψ: Total number of Shared-Risk Node groups (SRNG’s) in the network.
• Si: The ith Shared Risk Node Group. i = 1 · · · ψ

5

• di: A dummy vertex representing the ith shared risk link group or a shared risk node group.
• N (v): The neighborhood of the vertex v.

Input: Graph G = (V,E) and SRLG Groups R′
is.

Output: The transformed graph G′ = (V ′, E′).
The following Data Structures are maintained:

Arrange all SRLG’s as Ri = {(ui, vi1), (ui, vi2), · ·
·(ui, viki)}. where |Ri| = ki, i=1, · · ·χ
Graph Transformation Algorithm: Obtain the trans-
formed graph G’= (V’,E’) by following the edge and
node transformation rules.
V’ := V ∪ {di}, i =1, · · ·χ.
Edges in E1 are kept as it is in the original graph.
Connect edges in E4 with initial weight of zero.
For each edge in E2 and E3 an alternate edge is created
that includes the node on which the SRLG is incident.
∀e{ui, vij} ∈ E2 create an edge (di, uij) with α(di,uij)

= α(ui,vij) belonging to E5.
∀e{ui, vij} ∈ E3 the edge will be of the type {ui, uj}
for some i,j = 1, · · ·χ.
Create an edge (di, dj) with weights α(di,dj)

=
α(ui,uj) and α(dj ,uj)

= H. (These edges are repre-
sented as E6).
Here H ≥ max(αui,uj

), where ui ∈ N(uj).
(Make a note that ui, uj can be used in any order.)

Fig. 4. Graph Transformation Algorithm

III. SRLG DIVERSE ROUTING

We make the following assumptions. Under these assumptions the proposed transformation technique
yields a polynomial time solution.
• There can be any number of shared-risk link groups in a network.
• Each shared risk link group is smaller in size than the degree of the node on which it is incident.
• A shared risk link group is not a proper subset of any other shared risk link group.
• An edge can be shared between atmost two shared risk link groups.

Each shared-risk link group Ri can be represented as
Ri = {(ui, vi1), (ui, vi2), · · ·(ui, viki

)}.
where ui is the vertex on which an SRLG is incident. |Ri| = ki, i=1, · · ·χ
A dummy vertex di is used to represent each shared risk link group Ri in the transformed graph G’ = (V’, E’).

G’ is derived from G using the vertex transformation:
V’ := V ∪ {di}, i = 1, · · ·χ.
Hence in the transformed graph G’, the total number of vertices are given by |V ′| = N + χ, where N is

the cardinality of the set V. This is shown in Figure 5.
Let E = E1 ∪ E2 ∪ E3. The modified edges in the transformed graph G’ are given by:
E’ = E1 ∪ E4 ∪ E5 ∪ E6

where E1 = {e ∈ E | e 6∈ Ri ∀i}
E2 = {e ∈ E | e ∈ Ri, e 6∈ Rj, i 6= j}
E3 = {e ∈ E | e ∈ Ri, Rj and i 6= j}
E4 = {(ui, di) | Ri is an SRLG}

6

E4 is set of edges of type (ui, di) where ui is the node on which there is an incident SRLG.
E5 is a set of edges of type (dj, vj) replacing sets of edges in E2.
E6 is set of edges of the type (di, dj) created to represent edges that are common to more than one SRLG.
Hence |E5| = |E2| and |E6| = |E3| and E4 are the new set of extra edges in G’. The transformation

algorithm is given in Figure 4. In this graph E1 = {1-4, 1-5, 2-6, 3-4, 4-5}, E2 = {1-2, 3-2, 6-3, 6-5} and
E3 = {1-3}.

Fig. 5. Graph Transformation using Dummy Nodes for Diverse SRLG Routing.

For example for the graph shown in Figure 2(a), there are three SRLG’s R1, R2 and R3. The shared-risk
link groups incident on node 1, 3 and 6 are R1 : {(1,2) (1,3)}, R2 : {(3,1) (3,2)} and R3 : {(6,3) (6,5)}. It is
to be noted that the edge (1,3) is identical to the edge (3,1), since each link is assumed to be bi-directional.
The explanations of each step of the transformation are also given in Figure 4.

It is to be noted that, in instances where a link is common to two shared risk link groups, failure of any
link in one group doesn’t propagate to the other group. For example in Figure 2(a), failure of link 1 → 2
doesn’t imply failure of link 2 → 3.

������
������

������
������ ������

������

������
������

������
������

������
������

P1

2

3d

dd1

2 P3

P4

P

4 5

1

2

3

6

G 1

P

G

P2

G

2

3

1

4

1

2

5

3

6

(a) (b)

Fig. 6. (a) SRLG Disjoint Routes on transformed Graph G’, (b)SRLG Disjoint Routes on the Original Graph G.

In Figure 5 the dummy nodes d1, d2 and d3 are introduced to represent the three shared-risk link groups
R1, R2 and R3. As can be seen in Figure 5, there is a link between dummy nodes d1 and d2 to account for
the edges in E3. The transformed graph is shown in Figure 5. After the transformation, the edge sets are
E4 = {1-d1, 3-d2, 6-d3}, E5 = {d1-2, d2-2, d3-3, d3-5} and E6 = {d1-d2}.

7

Input: Graph G′ = (V ′, E′), and traffic matrix
TN×N .
Output: The shortest cycle for each tsd ∈ TN×N in
the transformed graph G′ = (V ′, E′).
Cycle Computation Algorithm: Obtain the cycles in
the transformed graph G’= (V’,E’) using the following
algorithm:

∀ (tsd ∈ TN×N)
{
Obtain the Edge-Disjoint Shortest Cycle on the trans-
formed graph G’.
The paths of the shortest cycle have one or more seg-
ments of the following two types:

A. PG′ : (− · ·x− y − · · ·−) or
B. P ′

G′ : (− · ·x− di − y − · · ·−) or
C. P ′′

G′ : (−· ·x−di−dj −· ·−dm−y−· ·−), where
1 ≤ m ≤ χ.
}
Fig. 7. Cycle computation in transformed graph G’

Computing Cycles: In order to find out two shared-risk group disjoint routes between any s-d pairs, we
apply the edge-disjoint shortest-cycle algorithm [21] on the transformed graph G’ to find the two group-
disjoint routes for a given s-d pair. The algorithm for the cycle computation in the transformed graph is
given in Fig 7. Note that a path can have two kind of segments A or B as shown in the algorithm in Figure
7. The two group-disjoint paths between nodes 1 → 6 in the transformed graph G’ can be possibly the two
paths of either of the cycles shown in Table I.

TABLE I
DIFFERENT POSSIBLE CYCLES IN THE TRANSFORMED GRAPH G’

Cycle No. Primary Lightpath Backup Lightpath
C1 1-d1-2-6 1-4-3-d3-6
C2 1-d1-2-6 1-4-5-d3-6
C3 1-d1-2-6 1-5-d3-6
C4 1-d1-d2-2-6 1-4-5-d3-6
C5 1-d1-d2-2-6 1-4-3-d3-6
C6 1-d1-d2-2-6 1-5-d3-6

Some of these cycles are shown in Figure 6(a). It will be shown that the two paths comprising the
shortest-cycle on the transformed graph G’ always provides us SRLG disjoint routes in the original graph
G.

Reverse Mapping of Paths: Once we obtain the shortest-cycle on the transformed graph G’, we need to
map the two routes on the original graph G. The details of the reverse mapping of the edges are presented
in Figure 8. The paths can be comprised of different types of segments as shown in Case A, Case B and
Case C in Figure 8. In Case A, the path is transformed back as in the original path. In Case B, the path
segment is transformed back by dropping the dummy vertex di. In Case C, the reverse transformation
follows by selecting vertices to represent pairwise dummy vertices.

As an example, if we choose the cycle C3 in Figure 6(a) to be the shortest-cycle (assuming equal weights
of all links in the original graph G) between nodes 1→6, then the two routes, obtained from the cycle are
P1: 1-2-6 and P2: 1-5-6 as shown in Figure 6(b).

8

Input: Cycles in the transformed Graph G′ =
(V ′, E′). The paths of the cycle are in the form PG′ ,
P ′

G′ and P ′′
G′ .

Output: Mapping the paths of the cycle in G’ to the
paths in the original graph G.
Reverse Transformation of cycles: Transformation

of the paths to the original graph G.
Case A. Return the original path of the form:

PG: (s− · · −x− y − · · · − d).
Case B. Replace segment of type −· ·x−di−y · · ·−

to obtain the path:
P ′

G: (s− · · −x− y − · · · − d)
Case C. Replace segment of type − · ·x− di − dj −
· − dm − y − · · − by the path:

P ′′
G: (s−· ·−x−a− b−· ·−c−y−· · ·−d)

where xa∈ E(G), xa ∈ Ri ∩ Rj .
Similarly the other dummy vertices are taken in pairs,
and transformed to obtain the path P ′′

G.

Fig. 8. SRLG Disjoint Routing in original graph

A. Validity of Proposed Algorithms

In this subsection we present certain theorem’s which validate the correctness of our proposed transfor-
mations for finding out SRLG disjoint routes.

Theorem III.1: If there exists a cycle in the graph G, then the transformation guarantees that the cycle
will be found.

Proof: A link in a graph can either belong to one SRLG, or it can be in one of the scenarios as
depicted in Figure 9. Recall that a link can belong to atmost two SRLG’s. If each link in the graph, is
in a single SRLG, then the transformation guarantees that the two disjoint paths between the source and
destination will use any one of the two links u − di − v or u − di − w, and hence are SRLG-disjoint. If
any link belongs to more than one SRLG, than as depicted by Figure 9(a), the transformation would yield
a graph G’ as given in Figure 10. The weights on the links indicate the weights obtained after the graph
transformation. Two possible cases exist:

Case I: If the paths of the cycle includes the common edge 1-2 (equivalently edge d1 − d2 in G’), as
shown in Figure 10, then it cannot include any of the other two edges 1-3 or 2-3.

Case II: If the path happens to pass through one of the non-common edges 1-3 as shown in Figure
11, then the cycle cannot use the common edge 1-2. It is to be noted that for an s-d pair it will not use
the second non-common edge 2-3, because of the higher weight on djv or diu if another path exists to
complete the cycle. This ensures group disjointness between the paths comprising the cycle. Note that
each di has an odd degree of ki + 1 and hence can only allow only two edges to be used in a cycle and
hence both the common and the not common edge cannot be used at the same time.

Fig. 9. Different shared link scenarios

9

Fig. 10. Path scenarios in cycle computation in G’

Fig. 11. Path in a cycle, including a non-common edge

In case of a network shown in Figure 9(b), the paths can be either in the format shown in Figure 12(a)
& (b). Again, two possible cases may exist:

Case I: If the path of the cycle is as shown in Figure 12(a), then the cycle cannot consist of the edges
1-3 and 2-4 which is desired for ensuring group-disjoint paths.

Case II: If the path of the cycle is as shown in Figure 12(b), then the cycle can comprise of the edges
1-3 and 2-4, but cannot have the common edge 1-2, which again ensures that the paths are group disjoint
and a cycle is completed.

Now, let us consider a network with SRLG’s as shown in Figure 13. The transformed graph can be in
any of the two cases as shown in Figure 13 (a) & (b).

Case I: If the edges 1− d1 − d2 − 2 are selected as one of the paths of the cycle, then the edges 1-3 and
2-3 cannot be part of the cycle, thus ensuring group disjointness. If the path is as shown in Figure 13(a),
then the edges 1-2 and 3-2 cannot be part of the cycle.

Fig. 12. Path possibilities in a cycle for network instance Figure 9(b)

10

Fig. 13. SRLG scenario depicting a cycle of sharing links

Fig. 14. Cascading SRLG’s

Case II: If the path is as shown in Figure 13(b), then the edge 1-3 cannot belong to the cycle. Hence a
cycle can be always computed, if one such exists in the topology.

Furthermore, we can have a network topology where the SRLG’s are lined up in a cascaded manner
as shown in Figure 14. The transformed network is shown in the same figure. As can be seen in the
worst-case, the path would traverse through all the dummy nodes. The following two cases exist:

Case I: If the edges 2− d1 − 1 is selected as one of the paths of the cycle, then the edge 2-3 cannot be
part of the same cycle, thus ensuring group disjointness.

Case II: If the path is of the type u−di−dj−·−·−dm, where 1 ≤ m ≤ χ, then the path in the original
graph can be obtained by reverse transforming the dummy vertices pairwise to edges in G, as shown in
Figure 8. Again this guarantees that a cycle can be found. This completes the proof of Theorem III.1.

Theorem III.2: If there exists an edge-disjoint shortest cycle in the transformed graph G’, then using
the above transformation, the paths P1 and P2 comprising the cycle can be always mapped to two SRLG
disjoint routes in the original graph G.

11

Proof: If P1 and P2 comprises the two paths of the edge-disjoint shortest cycle in the transformed
graph G’, then each dummy vertex di can appear atmost once in either of the paths P1 or P2.

Thus the paths P1 and P2 consists of segments which maybe either in the form of P: (− · · − u − di −
v − · · ·−) or P’: (− · · − u− di − dj − · · −dm − v − · · ·−), where 1 ≤ m ≤ χ. In case 1 (also shown in
Figure 11), there is an exact mapping of the edges u − di − v in the transformed graph G’ to the edge uv
in the original graph G. This can be obtained by just dropping the dummy vertex from the path obtained
in the transformed graph G’ to obtain the path in the original graph. In case 2 (as shown in Figure 14),
the edges di − dj − · · · − dm in the transformed graph, is mapped back to the edges in the original graph
by taking the dummy vertices pairwise, and transforming it to the edges uv, such that uv∈ E(G), uv ∈ Ri

∩ Rj and udi, djv ∈ E’(G’). Since the primary and backup lightpaths do not have any overlapping di’s,
thus the routes mapped back on the original graph are always SRLG disjoint. This completes the proof of
Theorem III.2.

B. Complexity Analysis of SRLG Routing

We evaluate the overall complexity of the SRLG disjoint routing algorithm using our technique. The
computational complexity can be broken up into three parts, one the complexity involved in the transfor-
mation of the graph, second the complexity of finding out edge-disjoint shortest cycles in the transformed
graph, and finally the complexity of mapping the paths obtained on the transformed graph to the paths in
the original graph.

The complexity involved in determining whether an edge belongs to more than one shared-risk link
group, is computationally of the order of O(L). One way to solve this is to scan the shared risk groups in
order and a data structure be maintained against each link to determine the number of groups it belongs to.
Depending on the outcome of this decision, the edges are transformed following the algorithm presented
above. Thus the overall complexity of the graph transformation is O(L).

The transformation of the graph from G → G’ adds χ number of nodes. Two paths that are shared-
risk group disjoint are computed using the shortest-cycle algorithm on the transformed graph as described
in [21]. The computational complexity of the shortest-cycle algorithm is given by O(L2). We have two
distinct cases, one in which the SRLG’s are such that there is no edge which belongs to more than one
group and another scenario where an edge can possibly belong to two shared risk groups. In both the
cases, the additional number of edges introduced in the transformed graph G’ is χ. Hence the complexity
of finding two SRLG disjoint paths would be O(L2).

Once the edge-disjoint shortest cycle is computed in the transformed graph, the paths comprising the
cycle, is mapped back on the original graph G. This has a computational complexity of O(L) since a path
can have a maximum of (L + χ) edges in a transformed graph G’ and determining the next hop vertex
would involve a search among all neighboring edges. Combining the three above complexities, the overall
complexity of the diverse SRLG routing is given by the dominant term, which is the complexity involved
in finding the edge-disjoint shortest cycle on the transformed graph. Thus the overall complexity is given
by O(L2).

IV. SRNG (SHARED RISK NODE GROUP) DIVERSE ROUTING

In this section we consider shared-risk node groups. We develop a transformation technique for finding
out two routes in scenarios where more than one node shares a common risk of failure. We identify such
scenarios where more than one node shares a common risk of failure as shared risk node groups (SRNG’s).
We assume that each node can be part of at most one SRNG and we also assume that the size of each SRNG
is limited to two adjacent nodes sharing an edge between them.

Each shared-risk node group Si can be represented as

12

Si = {(ui, vi) | ui ∈ N(vi)}.
where |Si| = 2, i=1, · · ·ψ
A dummy vertex di is used to represent each shared-risk node group in the transformed graph G’ = (V’, E’).

G’ is derived from G by following the vertex transformation:
V’ := V \ {ui, vi} ∪ {di}, i = 1, · · ·ψ.
Hence in the transformed graph G’, the total number of vertices are given by the cardinality of the set

V’, |V ′| = N − ψ, where N is the cardinality of the set V. The edges in the transformed graph G’ are
represented as:

E’ = E \ {E1 ∪ E2 ∪ E3} ∪ E4

where E1 = {uivi} , i = 1, · · ·ψ. |E1| = ψ.
E2 = {uix} , ui ∈ Si, x ∈ N(ui), x 6∈ Si, i = 1, · · ·ψ
E3 = {vix} , vi ∈ Si, x ∈ N(vi), x 6∈ Si, i = 1, · · ·ψ
E4 are new edges from di to N(ui) ∪ N(vi), i = 1, · · ·ψ.
The graph transformation algorithm is presented in Figure 15. All the edges belonging to the sets E1,

E2 and E3 are deleted and new edges are introduced between the neighborhood of ui and vi and di.

Input: Graph G = (V,E) and SRNG Groups Si’s.
Output: The transformed graph G′ = (V ′, E′).
Graph transformation algorithm:
Si = {(ui, vi) | ui ∈ N(vi)}.
where |Si| = 2, i=1, · · ·ψ

Obtain the transformed graph G’=(V’,E’) by the fol-
lowing transformations:

V’ := V \ {ui, vi} ∪ {di}, i = 1, · · ·ψ.
Delete all E1, E2 and E3 edges.
Introduce new edges E4. The new edges for all

the shared node risk groups i = 1, · · ·ψ assume the
weights:

αdix =

 αuix if x ∈ N(ui) \ N(vi)
αvix if x ∈ N(vi) \ N(ui)
min(αuix, αvix) if x ∈ N(vi),N(ui)

Fig. 15. Graph transformation algorithm

We demonstrate the use of this algorithm in Figure 16(a). The this figure, the links 2→3, 1→3, 1→4,
6→3 and 5→4 are replaced by modified edges with adjusted edge weights as shown in the graph transfor-
mation algorithm.

Computing Cycles: Two routes for a given s-d pair in the original graph G, that are node group disjoint
are obtained by finding the node-disjoint shortest-cycle [21] in G’ as shown in Figure 16(b) and Figure
17. Infact finding out a node disjoint shortest cycle on the transformed graph ensures that the two paths
comprising the cycle, can guarantee fault-tolerance against failure of any single node on the path and also
from node groups present in the topology. For example the two node disjoint paths between nodes 1 → 6
can be the two paths comprising either of the following cycles in G’: C′

1: {1-2-6, 1-5-6} or C′
2: {1-2-6,

1-d1-6} or C′
3: {1-2-6, 1-d1-5-6} and C′

4: {1-2-d1-6, 1-5-6} as shown in Figure 16(b).
Reverse Mapping of Paths After the node-disjoint shortest cycles are found, the paths corresponding

to the cycles are mapped back to obtain the two node-group disjoint routes on the original graph G. The
fact that the routes in G’ are node-disjoint guarantees node group disjoint routes in the original graph G.

13

d 1

1

2

6

5

P

P

2

1

3

P4

d 1

P

6

5

1

2

31

1 4

32

C

C2 : P − P
C3 : P − P

1 : P − P
Possible Cycles:

(a) (b)

Fig. 16. (a) Transformed Graph Indicating Shared Risk Node Groups,(b) SRNG Disjoint Routes in the transformed Graph G’.

The details of the reverse mapping of the edges are presented in Figure 18. The paths can be comprised
of different types of segments as shown in Case A, Case B and Case C in Figure 18. In Case A, the path
is returned identical to the input path. In Case B, the path segment is transformed back by selecting a
vertex w which minimizes αxw + αwy. In Case C, as illustrated in Figure 19. The reverse transformation
of edges follows by selecting vertices that minimizes the total cost of the segment between x and y.

Input: Graph G’ = (V’,E’) and traffic matrix TN×N .
Output: The shortest cycle for each tsd ∈ TN×N in
the transformed graph G′ = (V ′, E′).
Cycle computation algorithm: Obtain the cycles in
the transformed graph G’ using the following algo-
rithm
∀ (tsd∈ TN×N)
{
Obtain the Node-Disjoint Shortest Cycle on the trans-

formed graph G′ for any traffic tsd ∈ TN×N using
the node-disjoint shortest cycle algorithm presented in
[21]. The paths of the shortest cycle have one or more
segments of the following types:

A. PG′ : (− · · − x− y − · · ·−)
B. P ′

G′ : (− · ·-x-di-y-· · ·−) or
C. P ′′

G′ : (− · · x-di-dj-··-dm-y-· · −), where 1 ≤ m ≤
ψ.
}

Fig. 17. Cycle computation algorithm

If the cycle C′
3 is chosen, then the paths on the original graph would be 1-2-6 and 1-4-5-6 (and not 1-3-6

because, there is no link between 3→5). However if the cycle C′
4 is chosen, then the two routes are 1-2-3-6

and 1-5-6. This is shown in Figure 20.
Theorem IV.1: In a graph with SRNG’s, if there exists a node-disjoint shortest cycle in the transformed

graph G’, then using the above reverse mapping, the paths P1 and P2 composing the cycle always maps to
two SRNG disjoint routes in the original graph G.

Proof: Each dummy node representing a shared risk node group can appear atmost once in any one
of the two routes P1 or P2 of a cycle, and these routes are node-disjoint. The transformation of these routes
on the original graph G hence guarantees that they are SRNG disjoint.

14

Input: Cycles in the transformed graph G’ = (V’,E’)
Output: Mapping the paths of the cycle in G’ to the
paths in the original graph G.
Reverse transformation of cycles: Transformation of
cycles computed in G’ to original paths in G.

Case A. PG: The path is returned identical to the
input path and is of the format: (− · · − x− y − · · −).

Case B. P ′
G: At vertices x & y select vertex w s.t.

w ∈ Si, N(x),N(y). For more than one choice of w,
select w s.t. it minimizes αxw + αwy . The segment
transformed back in the original graph, hence becomes
(− · · − x− w − y − · · −).

If no unique w exists, determine if ui ∈ N(x), ui 6∈
N(y), ui ∈ Si. The segment transformed back in the
original graph, hence becomes (− · · − x− ui − vi −
y − · · −). Else the segment transforms to (− · · − x−
vi − ui − y − · · −).

Case C. Let e’, e” denote the critical edges connect-
ing the vertices in the node-groups Si and Sj respec-
tively. Let e denote the bridge link between Si and Sj .

P ′′
G: The reverse mapping of the segment x-

di-dj- leads to a selection of vertices w, w’ such that
w ∈ N(x), Si, and w’ ∈ N(w), Sj , and corresponding
edges which satisfy that one of αxw + αe or αxw + αe′

+ αe or αxw + αe + αe′′ or αxw + αe′ + αe + αe′′

is minimized, depending on choice of vertices. This is
done for all successive pair of di − dj vertices.

Fig. 18. Reverse mapping of paths algorithm

A. Complexity Analysis of SRNG Routing

This section evaluates the overall complexity of SRNG disjoint routing. The computational complexity
can be broken up into three parts, the complexity involved in the graph transformation, second the com-
plexity of finding out node-disjoint cycles in the transformed graph and finally mapping the paths obtained
on the transformed graph to paths in the original graph.

The total number of shared risk node groups in the network is given by ψ and each group has two
nodes. Thus the complexity involved in determining whether an edge has an end-vertex which belongs
to an SRNG and transforming it involves an exhaustive search, which is computationally of the order of
O(L·ψ). Depending on the outcome of this decision, the edges are transformed following the algorithms
explained above. Thus the complexity of the graph transformation is O(L·ψ).

The transformation of the original graph G into the final graph G’ reduces ψ number of nodes in the
original graph. Two paths that are shared-risk group disjoint are computed using the node-disjoint shortest-
cycle algorithm on the transformed graph [21]. The computational complexity of the shortest-cycle algo-
rithm is given by O(L2). Following the graph transformation all the edges between the nodes of each node
group gets deleted, hence leading to a deletion of total ψ number of edges. Let us denote the set of vertices
which has an edge to both the nodes of an SRNG as the vertex set Vs. Let the cardinality of this set be
denoted by |Vs|. Transition from G → G’ leads to a further deletion of |Vs| edges. Hence the complexity
of finding two SRNG disjoint paths is O(L2).

Once the node-disjoint shortest cycles are computed on the transformed graph, the paths comprising
the cycle, are mapped back to the original graph G. In cases where nodes belong to only one shared risk
node group, we scan through each edge in the path and at the vertices x & y, we scan through its entire

15

1

2
5 8

963

4
7

N 1
N 2

d
d

i
j

Fig. 19. Example showing links between two dummy nodes and the reverse transformation.

5

C

C 1

4

2

3

62

1

Fig. 20. Shared Risk Node Group Disjoint Routes on the Original Graph G.

neighborhood and select the appropriate vertices as described in Section 6. Hence the complexity involved
in this procedure is O(L), since the maximum hop length of a path can be restricted to E’ edges and we
need to scan through all the neighbors and compare the path lengths.

Combining the three above complexities, the overall complexity of the diverse SRNG routing is given
by the dominant term, which is the complexity involved in finding the node-disjoint shortest cycle on the
transformed graph. Thus the overall complexity is given by O(L2).

V. MINIMIZING CAPACITY IN DYNAMIC ROUTING

When a connection is routed on an optical network, one of the primary objectives is to not only route it
over diverse paths, but also minimize the overall spare capacity utilized in routing the incoming request.
One of the traditional approaches involves sharing of backup bandwidth between multiple connections,

16

that do not share risk of failure at the same instance of time.
The network is modeled as having E links, F fibers per link, and W wavelengths per fiber. Hence the

network can be represented by a 3-tuple (e, f, w), where 1 ≤ e ≤ E, 1 ≤ f ≤ F, and 1 ≤ w ≤ W. The
multiplexing of backup bandwidth on a particular fiber-wavelength combination is done by maintaining a
Backup Request List (BRL) on each fiber-wavelength at every link. The Backup request List is a link-list
of all the requests whose backup paths are multiplexed on a particular fiber-wavelength at a link.

The primary path of the requests are routed using the first-fit fiber & wavelength assignment. To ensure
multiplexing of backup bandwidth, a Backup Request List (BRL) is maintained on each wavelength on
each fiber at every link. Hence the BRL on a link is denoted by {ei, fj , (w1, w2, · · · ·, wW) }, where
ei denotes the link or edge id, fj denotes the fiber id and each of wi denotes the BRL on that fiber and
wavelength. When an incoming request Ri arrives, the SRRG disjoint paths are computed using the graph
transformation technique.

A check is made on its backup path on each fiber and wavelength to see if there is any conflict with
the existing requests in the BRL. After the check a vector Backup Availability Matrix Bf1

l1
: {m1,m2 ·

· · mW} is computed on each fiber and wavelength on the links of the backup path of the request. The
Backup Availability Matrix is filled up with 0 if there are no free backup possible at that fiber-wavelength
combination or if that wavelength on that fiber is used up by a primary connection. It is filled up with a 1
if the incoming request has no conflict with any of the requests on the BRL. Hence the information stored
on the Backup Availability Matrix helps us in determining whether the incoming request can share backup
bandwidth on any fiber-wavelength combination.

A vector called Routing-Info Matrix is computed by combining the Backup Availability Matrix vector
on all links along the path of the backup request. The Routing-Info Matrix is computed by the operation
RIfi

= Bfi
l1

⊗
Bfi

l2
·· ⊗

Bf1

lk
, 1 ≤ i ≤ F and k is the number of hops in the path. The operator

⊗
simply

denotes a binary OR operation. Once the Routing-Info Matrix is computed, the requests are assigned
channels (wavelengths) by scanning through the Routing-Info Matrix and using the first-fit wavelength
assignment algorithm. The above channel establishment procedure ensures minimum fiber usage and
multiplexing of backup bandwidth while routing an incoming connection in the network [19][20]. This
methodology can be applied in general for any heterogeneous wavelength routed network.

VI. PERFORMANCE RESULTS

Three network topologies, a 14 node, 23 link NSFNET, 11 node, 22 link NJLATA and 15 node, and
24 link modified COST239 network as shown in Fig. 21 were used to assess the performance of our
algorithm for tolerating SRRG failures. Each of these topologies consists of links with 1 fiber per link
and 20 wavelengths per fiber. Each link also consists of 2 unidirectional links that are assumed to be
part of the same shared risk link group, meaning that if the link in one direction fails, the link in the
opposite direction also fails because they would presumably physically routed together. No nodes offer
any wavelength switching capabilities, thus the wavelength continuity constraint is obeyed.

The MICRON- Methodology for information Collection and Routing in Optical Networks [19] frame-
work for information collection and routing is used as the methodology for channel allocation for any
incoming request.

The arrival of the requests at a node follow a Poisson process with rate λ, and are equally likely to
be destined to any other node. The holding time of the requests follow an exponential distribution with
unit mean. The capacity requirements of each request is a unit wavelength. In Fig. 23(a), we depict the
blocking probability for all the three topologies using the proposed graph transformation technique and
the shortest-path diverse routing technique presented in [5][21].

The results indicate that the graph transformation techniques achieves better blocking performance as

17

(a) (b) (c)

Fig. 21. (a) 14 node, 23 link NSFNET; (b) 11 node, 22 link NJLATA; (c) 15 node, 24 link modified COST239 network

Fig. 22. Average Path length vs. Link Load (in Erlang’s)

compared to the techniques studied in [21]. The trend is similar in all topologies, however the maximum
benefits are achieved in NJLATA. This is probably because it has a high average nodal degree of 4.0 as
compared to 3.28 in NSFNET and 3.2 in case of EURO-net. High nodal degree helps in the computation
of diverse routes for an incoming connection.

Fig. 23(b) demonstrates the blocking performance for all the three studied topologies using our algo-
rithm and the techniques studied in [5][21] in the presence of shared-risk node groups (SRNG’s). The
blocking values computed are significantly higher for shared-risk node groups as compared to those for
shared-risk link groups. The graph transformation techniques are able to provide diverse routes for around
20-30% more incoming requests, as compared to the approaches proposed in [21] which are unable to
provide any diverse routes for the studied shared-risk node groups.

Fig. 22 demonstrates the average path length in the presence of shared-risk link groups and shared-
risk node groups using both the graph transformation technique as well as the shortest-node pair disjoint
routing technique. We observe that with increasing link load, and increasing blocking probability, the

18

Fig. 23. Blocking Probability vs. Link Load (in Erlang’s) for SRLG’s

Fig. 24. Blocking Probability vs. Link Load (in Erlang’s) for SRNG’s

average path length decreases for all topologies.

The effective network utilization in the presence of shared-risk link groups (SRLG’s) and shared-risk
node groups (SRNG’s) are represented in Fig. 25. As can be observed in these figures, the effective
utilization of the network increases with increasing load. This is because, as the network load increases,
there are more number of connections that are serviced by the network. As can be observed, the effective
utilization varies between 18% -32% for both the graph transformation technique as well as the shortest-
path heuristic in case of shared-risk link groups. It varies between 5% -14% for shared-risk node groups
across different topologies using the graph transformation technique. The effective utilization is zero for
shared node risk groups, using the shortest-path heuristic.

19

Fig. 25. Effective utilization vs. Link load for Shared-Risk Link Groups (SRLG’s)

VII. CONCLUSION

In this paper we proposed graph transformation techniques to solve the diverse routing problem in
networks with shared risk resource groups. We proposed a methodology for tolerating dependent or shared
risk link failures and coordinated node failures in a network, by creating different graph transformations,
routing on the transformed graph and transforming the routes on the modified graph to the original graph.
One of the elegant features of the proposed strategy is that it can identify a cycle if one such exists in the
topology in the presence of SRLG or SRNG groups.

The proposed transformation algorithm needs addition of a small number of edges and vertices to the
original graph, and computation of link-disjoint or node-disjoint shortest cycles in the transformed graph.
It provides a polynomial time solution for shared resource groups incident on a common node or between
two adjacent nodes, which is an interesting result since the generalized diverse routing problem in presence
of risk-groups has been proved to be NP-Complete.

We validate the correctness of our approach, and show that the transformation technique always guaran-
tees to yield shared risk group disjoint routes, if such a route exists in the graph. Our proposed technique
is capable of improving the diverse route computation by around 20-30% as compared to traditional ap-
proaches proposed in [5]. This approach for diverse routing under multiple failure scenarios is elegant and
can be applied to large networks with huge traffic demands. As part of our future work, we plan to extend
this graph transformation technique for accommodating groups of link failures that are not incident on a
common node.

REFERENCES

[1] S. Ramamurthy and B. Mukherjee, “Survivable WDM Mesh Networks, Part 1: Protection,” IEEE INFOCOM 2, pp.744 -751, 1999.
[2] O. Gerstel and R. Ramaswami, “Optical layer survivability-an implementation perspective,” IEEE Journal on Selected Areas in Commu-

nications, vol. 18, no.10, pp. 1885–1889, Oct 2000.
[3] R. Doverspike and B. Wilson, “Comparison of capacity efficiency of DCS network restoration routing techniques,” Journal of Network

and System Management, vol. 2, no.2, pp. 95 -123, 1994.
[4] J. Doucette and W. D. Grover, “Capacity design studies of span-restorable mesh transport networks with shared-risk link group (SRLG)

effects,” SPIE Optical Networking and Communications Conference (Opticomm 2002), Boston, MA, July-Aug 2002.

20

Fig. 26. Effective utilization vs. Link load for Shared-Risk Node Groups (SRNG’s)

[5] G .Z. Li, B. Doverspike and C. Kalmanek, “Fiber span failure protection in mesh optical networks”, SPIE Optical Networking and
Communications Conference (Opticomm), volume 4599, pages 130-142, 2001.

[6] Reinhard Diestel, ”Graph Theory,” Springer-Verlag, New York Graduate Texts in Mathematics, second edition, February 2000.
[7] D. Papadimitriou et.al, “Interference of shared risk link groups,” Internet Draft, OIF Contribution OIF 2001-066, July 2001.
[8] E. Bouillet, J. -F. Labourdette, G. Ellinas, R. Ramamurthy, S. Chaudhuri, ”Stochastic approaches to compute shared mesh restored

lightpaths in optical network architectures,” Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies,
IEEE Proceedings, volume 2 , pages 801 - 807, June 2002.

[9] J. Q. Hu, “Diverse routing in mesh optical networks,” IEEE Transactions of Networking, To appear.
[10] G. Li, B. Doverspike and C. Kalmanek, “Fiber span failure protection in mesh optical networks,” SPIE Optical Networking and Com-

munications Conference (Opticomm 2001), 2001.
[11] K. Lee and K. Siu,“An algorithmic framework for protection switching WDM networks,” Proceeding of NFOEC’01, pp.402-410,

Baltimore, MD, July 2001.
[12] D.A. Dunn, W.D. Grover, M.H. MacGregor, ”A comparison of k-shortest paths and maximum flow methods for network facility restora-

tion,” IEEE Journal on Selected Areas in Communications, vol. 12, no. 1, pp. 88-99, Jan 1994.
[13] K. Kar, M.S. Kodialam, T.V. Lakshman, “Routing restorable bandwidth guaranteed connections using maximum 2-route flows,”

IEEE/ACM Transactions of Networking, 11(5), pp.772-781, 2003.
[14] W.D. Gover, “Mesh-based Survivable Networks: Options and Strategies for Optical, MPLS, SONET and ATM Networking,” Prentice

Hall PTR, Upper Saddle River, New Jersey, 2003.
[15] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: a new approach to the design of WDM-based networks,” IEEE Journal

of Selected Areas in Communication, May 2002.
[16] G. Ellinas et al., “Routing and restoration architectures in mesh optical networks,” Optical Networks Magazine, Jan 2003.
[17] M. Garey and D. Johnson, “Computers and Intractability: A Guide to the theory of NP-completeness,” , 1979.
[18] D. Xu, Y. Xiong and C. Qiao, “Protection with multi-segments (PROMISE) in Networks with Shared Risk Link Groups (SRLG’s),”

IEEE/ACM Transactions on Networking, vol.11, no.2, pp.248-258, April-2003.
[19] R. Srinivasan, ”MICRON: A framework for connection establishment in optical networks,” in Proceedings of OPTICOMM, pp. 139-150,

Dallas, October 2003.
[20] P. Datta, M. Sridharan and A. K. Somani, “A Simulated Annealing Approach for Topology Planning and Evolution of Mesh-Restorable

Optical Networks,” 7th IFIP Conference on Optical Networks Design and Modeling, vol.1, pp.23 -40, Budapest, Hungary 2003.
[21] R. Bhandari, “Survivable Networks: Algorithms for Diverse Routing,” Kluwer Academic Publishers, 1999.
[22] J. Suurballe and R. Tarjan, “A quick method for finding shortest pair of disjoint paths,” Networks, vol.14, pp.325-336, 1984.

