Synthetic Enchantment with Mitomycinoids

Jeremy May, Dan Caspi, Neil Garg,
Jenny Roizen and G. Sekar

Mitomycin C

Synthetic Challenges:

- Complex stereochemistry
- Avoiding aromatization to pyrrole, indole, or hydroquinone
- Sensitive aziridine and quinone
- Hemiaminal ether linkage at $\mathbf{C}(9 a)$

Monday, August 16th, 2004

History of the Mitomycins

- Originally isolated and characterized by Japanese and American pharmaceutical companies as a consequence of antibiotic screens.
- Mitomycins A and B were isolated in 1956, followed by Mitomycin C in 1958.
- Mapping the structures engaged the interests of chemists and crystallographers for $\mathbf{2 0}$ years.
- Early on it was discovered that mitomycins are potent antibiotics (gram positive and gram negative bacteria, and mycobateria) and cytotoxic agents.
- Mitomycin C (Mutamycin®) is the most potent of the family, and is also a widely prescribed antitumor agent marketed by Bristol-Myers Squibb Oncology.
- Elucidation of the detailed biological mechanism was very challenging, and the original proposal in 1963 by lyer and Szybalski has been experimentally verified with few changes.
- Mitomycin C is also among the first bioreductively activated drugs, and it is selective for hypoxic (O_{2}-deficient cells).
"The synthesis of a mitomycin is the chemical equivalent of walking on egg shells"
-S. Danishefsky

Biosynthesis and mechanisms of action:
Boger, D. L. Chem. Rev. 2002, 102, 2477.
Herbert, R. B. Nat. Prod. Rep. 2003, 20, 494.

Synthetic studies:
Danishefsky, S. J. Synlett 1995, 475.
Kono, M. Synlett 1992, 778.

The Mitomycinoid Family

Key Structural Types

Isomitomycin A

Biosynthesis of Mitomycin

- Studies in the 1970's and 1980's revealed that 3-amino-5-hydroxy-benzoic acid (AHBA), D-glucosamine, carbamoyl phosphate and S-adenosyl methionine are involved in the convergent assembly of these natural products.
- The basic building blocks have been known for some time, but the specific order of assembly has remained undefined.
- Mutant strains of S. lavendulae allow for the isolation of biosynthetic intermediates (complete set of genes for mitomycin biosynthesis has been identified and characterized).

carbamoyl phosphate
(from L-citrulline or L-arginine)
1

Sherman, D. H. J. Am. Chem. Soc. 2001, 123, 6712.
Sherman, D. H. Chem. Biol. 1999, 6, 251
Sherman, D. H. J. Bacteriol. 1999, 181, 2199.

Reductive Activation of Mitomycin C

- \mathbf{N}^{2} and \mathbf{N}^{7} atoms of guanines in the minor groove of DNA are primary alkylation sites.
- Alkylation always proceeds in the order shown.
- α-attack is also observed with the unnatural enantiomer of MC, potentially accounting for the lower cytotoxicity (50\%).
- Completely unreactive with DNA at pH 7-8, but in the presence of reductants, cross-linking occurs in $<1 \mathbf{m i n}$.

Franck's meta Photo-Fries Rearrangement Approach

Rebek's Stepwise Approach

One-step Bicycloannulation Approach

2-imidoyl indole 60\%

Cyclization Through Titanacyclopropane

Miller's Transannular Cyclization

S. J. Miller J. Org. Chem. 2003, 68, 2728

Total Synthesis of FR66979 and FR900482
S. F. Martin J. Am. Chem. Soc. 2000, 122, 10781
R. M. Williams Angew. Chem. Int. Ed. 2002, 41, 4883
M. A. Ciufolini Angew. Chem. Int. Ed. 2002, 41, 4888

Synthetic efforts before 1977
Y. Kishi J. Am. Chem. Soc. 1977, 99, 4835 (references cited therein)

Tandem Ring Formation
From a Claisen rearrangement:

31\% yield from Claisen precurso to selenide elimination product.

Indole formation a continual problem.

Peterson Olefination

Amazingly, this intermediate could not be equilibrated to Mitomycin H or K.

The FR Series of Mitomycinoids

Hetero Diels-Alder Reactions

Kishi's Route to Deiminomitomycin A: Michael Addition / Trans-annular Cyclization

Kishi's Route to Mitomycin A: Michael Addition / Trans-annular Cyclization

$\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAc}$ or Me

$R=M e$

$$
\xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt} \\ 90 \%}]{\mathrm{TrBF}_{4}}
$$

The Fukuyama Approach

Fukuyama Total Synthesis Efforts:

JACS 1987, 109, 7881-7882; 1st generation synthesis JACS 1987, 111, 8303-8304; 2nd generation synthesis

The Mitomycin Rearrangement

Access to Both Mitomycins A \& C

Fukuyama's Route to Isomitomycin A: Assembling the Carbon Framework

Fukuyama's Route to Isomitomycin A: Late-Stage Manipulations

The Total Synthesis of Isomitomycin A, Isomitomycin C,

 Mitomycin A, and Mitomycin C

- highly strained iminium ion formed under carefully controlled acidic conditions

Mytomycin Synthetic Challenges and Solutions - Summary

Problems
Solutions to date
New Solutions?

- quinone reactivity
-aromatization
-Michael acceptor
-Michael acceptor
- C(9a) reactivity
-loss of OMe
- reactive aziridine
- stereocontrol
-no asymmetric synthesis
to date

