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Abstract
The growth in complexity of modern systems makes it in-
creasingly difficult to extract high-performance. The soft-
ware stacks for such systems typically consist of multiple
layers and include managed runtime environments (MREs).
In this paper, we investigate techniques to improve cooper-
ation between these layers and the hardware to increase the
efficacy of automatic memory management in MREs.

General-purpose MREs commonly implement parallel
and/or concurrent garbage collection and employ com-
paction to eliminate heap fragmentation. Moreover, most
systems trigger collection based on the amount of heap a
program uses. Our analysis shows that in many cases this
strategy leads to ineffective collections that are unable to re-
claim sufficient space to justify the incurred cost. To avoid
such collections, we exploit the observation that dead objects
tend to cluster together and form large, never-referenced,re-
gions in the address space that correlate well with virtual
pages that have not recently been referenced by the appli-
cation. We leverage this correlation to design a new, simple
and light-weight, yield predictor that estimates the amount
of reclaimable space in the heap using hardware page ref-
erence bits. Our predictor allows MREs to avoid low-yield
collections and thereby improve resource management.

We integrate this predictor into three state-of-the-art par-
allel compactors, implemented in the HotSpot JVM, that
represent distinct canonical heap layouts. Our empirical
evaluation, based on standard Java benchmarks and open-
source applications, indicates that inexpensive and accurate
yield prediction can improve performance significantly.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Memory Management (Garbage
Collection)
General Terms Languages, Management, Performance
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1. Introduction
To support the vast diversity of deskside and server work-
loads, modern system software stacks have grown both in
depth and complexity. Two key layers of extant software
stacks are a general purpose operating system (OS), e.g.,
Linux, and managed runtime environments (MREs), e.g.,
Java and C# virtual machines. Although independent and
isolated, these software layers provide similar services for
programs that include memory management, access to pro-
tected resources, and resource scheduling.

In this work, we investigate how to better coordinate
the activities of memory management between the hard-
ware, OS, and MREs to improve the performance of ap-
plications that employ them. Automatic memory manage-
ment (garbage collection) is commonly implemented by
MREs. While increasing programmer productivity and ap-
plication reliability through memory safety, automatic mem-
ory management can also negatively impact both applica-
tion throughput (through additional MRE processing) and
interactivity (by imposing pauses). Minimizing the cost of
garbage collection to match or exceed that of explicit mem-
ory management has been the subject of active research for
several decades [19, 21, 33, 34, 22, 32, 6, 37, 15].

Key advances in automatic memory management that
have led to significant improvements in program perfor-
mance include support for parallelism and concurrency, gen-
erational collection, and compaction [21, 17, 22, 6, 7, 32,
10, 25]. Parallel and concurrent systems exploit increasing
numbers of processing cores to improve application scala-
bility, throughput, and to reduce pause times. Generational
systems outperform other garbage collection (GC) schemes
in the common case by managing young objects indepen-
dently from old objects. Compaction enables very fast linear
(bump-pointer) object allocation and can significantly im-
prove memory hierarchy performance by eliminating heap
fragmentation.

Moreover, recent GC systems introduce ways to better
coordinate the activities of the MRE GC and OS virtual
memory support [32, 22, 13, 27, 37, 15, 38, 36, 14]. These
systems exploit the OS virtual memory subsystem and CPU
memory management unit, and optimize for access locality



to minimize TLB and cache misses, to reduce the overhead
of garbage collection.

In this work, we build upon and extend this prior work
to improve MRE-OS-hardware interaction in a way that fa-
cilitatesGC avoidance. In particular, we design and imple-
ment a simple prediction scheme that identifies, with very
low overhead, the amount of free space a particular GC in-
vocation is likely to yield from dead objects. GC systems can
employ this yield prediction to avoid ineffective collections
that are unable to reclaim sufficient space to justify the in-
curred cost, by trading off a small space overhead (equal to
the small yield that would have been collected by the skipped
GC). Most extant systems trigger GC unconditionally when
a program exceeds some threshold on its heap use, without
regard for GC yield. Systems that trigger GC proactively,
rely on complex monitoring and analysis of program behav-
ior [35].

The Yield Predictor (YP)provides a simple solution to
distinguishing productive GCs by estimating GC yield using
hardware page reference bits that the OS uses to implement
virtual page replacement. Key to its efficacy, YP exploits
the statistical properties of modern programs that dead ob-
jects tend to cluster together in large groups (larger than the
4KB virtual page size), and that pages that have not been re-
cently referenced by the application are likely to be dead.
We validate these properties with empirical data and de-
scribe how YP makes use of them to estimate GC yield. We
implement YP for three state-of-the-art parallel compactors
within the production-quality, open-source, HotSpot virtual
machine from Sun Microsystems.

In summary, we contribute:

• A demonstration that MREs can significantly benefit
from existing architectural support for memory manage-
ment when GC is given access to page tables and can
leverage the standard hardware (HW) mechanism used
for marking pages referenced by a process.

• The design and implementation of YP, a generic GC
yield predictor that employs virtual page reference bits to
determine the amount of dead space present in the heap
with low overhead and high accuracy.

• Techniques for improved MRE/OS/HW coordination in
the context of memory management showing that well-
arranged cross-layer interaction benefits system perfor-
mance, and identification of a new use for the existing
hardware facility (i.e., page reference bits) and empirical
validation of its effectiveness.

• A more resource-efficient GC mechanism that gives the
memory manager more control over the space/time trade-
off and allows for well-informed GC scheduling deci-
sions at run-time.

• An investigation of the applicability of YP to three
canonical heap layouts used by state-of-the-art paral-
lel/concurrent compactors: sliding, copying, and remap-

ping. Our analysis reveals that YP is equally effective
regardless of the object relocation strategy.

• A comprehensive experimental evaluation of YP based
on standard community benchmarks and open-source ap-
plications. We show that YP consistently provides high
prediction accuracy and that avoidance of unproductive
GCs can substantially improve (44–59%) the perfor-
mance of both server- and client-side benchmarks.

In the following sections, we provide background on the
problem domain, detail the design, implementation, and
evaluation of YP, and discuss related work.

2. Background
State-of-the-art MRE memory management systems trigger
garbage collection (GC) unconditionally upon complete (or
partial, in the case of concurrent GC) exhaustion of the space
designated for object allocation. The key limitation of this
approach is that every collection is performed irrespective
of whether it is worth paying for. Our investigation ofGC
productivity, i.e., the total size of dead objects that a collec-
tion cycle reclaims, shows that many GCs are unproductive
and are able to reclaim only a small fraction of the heap. We
empirically evaluate this phenomenon further in Section 5.3.
We observe from our experiments that a number of different
(deskside and server) Java applications have an average GC
yield below 5% of the heap space.

If we are to skip unproductive GCs, we must have a
fast and accurate mechanism for estimating the total size
of dead objects in the heap. Marking, which identifies live
data via traversing the reachable object graph starting from
the roots, is the most commonly-used mechanism to do this
and can precisely compute the amount of dead space. How-
ever, marking takes significant time and, according to our
measurements, comprises between 50% (for the Compres-
sor) and 90% (for the Mapping Collector) of total GC time,
depending on the compaction algorithm. Thus, partial reduc-
tion of collection cost by skipping only the phases that fol-
low marking is not satisfactory due to its lower potential for
performance improvement.

The goal of our work is to design and implement effec-
tive and practical yield prediction that is lightweight. Our
approach to enabling such prediction relies on improved co-
ordination between the activities of OS and hardware virtual
memory support and MRE memory management.

2.1 Virtual Memory

General-purpose OSes support virtual memory to isolate ad-
dress spaces of distinct processes and provide a convenient
uniform linear addressing. Appel and Li [1] describe a num-
ber of ways that user-level programs can take advantage of
virtual memory operations, including user-level signal han-
dlers, multiple page mapping, and page protection. A similar
study that includes performance evaluation as well as recom-



mendations for exposing dirty-bit information to MREs can
be found in [16].

Most virtual memory implementations divide the virtual
address space of a process intopages, each typically 4KB in
size. The mapping between virtual pages and physical page
frames is stored in an OS-maintainedpage table.

Under memory pressure, the kernel usesswap spaceto
evict pages that are unlikely to be accessed in the future.
To implement swapping, pages tables reserve two bits per
page, indicating whether a specific page isdirty and has been
recently referenced. These bits are set by hardware upon
memory store/read.

2.2 Parallel Compaction

A general introduction into GC can be found in [21, 33, 34].
Modern compactors are parallel and increasingly take ad-
vantage of virtual memory operations. Below, we overview
the state-of-the-art parallel/concurrent compactors that we
focus on herein. The first phase in the GC cycle for each of
these (and most) GCs ismarking, which identifies live ob-
jects through parallel/concurrent tracing from a program’s
root references. The remaining phase(s) are specific to each
compactor.

The Compressor The Compressor (CP) [22] is a paral-
lel/concurrent, two-phase GC that performs compaction by
evacuation of live objects from one virtual space to the
other. CP manipulates page mapping to avoid space over-
head of a copying collection. CP evacuates objects page by
page, (un)mapping pages on-the-fly, and updates pointers us-
ing relocation information stored in auxiliary data structures
(marking bitmap/block offset array). CP achieves full com-
paction (no fragmentation) and preserves object order. Con-
current CP uses page protection to implement a read/write
barrier based on SEGV faults and double mapping to enable
incremental compaction.

The HotSpot Compactor The HotSpot collector (HS) [17,
32] is parallel, comprises two phases, and performs sliding
order-preserving compaction within a single space. HS per-
mits some amount of fragmentation in the heap as long as the
amount of wasted space is sufficiently small (configurable
parameter). In each compaction, HS computes the density
prefix, which is not moved. The remaining objects are re-
located. HS implements a block-based compaction and uses
the liveness bitmap and per-block statistics to update point-
ers. GC threads fill regions with objects as they become
empty or compacted.

The Mapping Collector The Mapping Collector (MC) [32]
is a parallel/concurrent, nearly-one-phase non-moving com-
pactor that exploits clustering of dead objects in the heap to
reclaim free space on a per-page basis. MC first identifies
dead regions and then unmaps them, thus avoiding object
copying and pointer adjustment altogether and simplifying
GC design. Since small and unaligned clusters cannot be

fully unmapped, MC imposes a space overhead. Although
variable, this overhead tends to be small in practice and it
can be bounded via a fallback to conventional compaction
(such as that provided by HS or CP).

3. The Yield Predictor (YP)
Prior work shows that for modern Java applications, objects
with similar life spans tend to be spatially clustered in the
heap and that dead objects often form clusters larger than the
4KB virtual page size [32, 34]. The design of YP leverages
these statistical properties and the observation that pages of
dead objects (dead pages) are never accessed by the program
and, as a result, eventually become not-recently-referenced
(NRR) from the OS kernel perspective. YP exploits this
relationship between NRR and dead pages to estimate the
total number of dead pages in the heap. When the number
of dead pages is small, an impending garbage collection is
likely to be ineffective, i.e., unable to reclaim sufficientspace
to justify the cost of performing GC. We employ YP to avoid
such collections in state-of-the-art compaction systems.We
trade a small space overhead for significant performance
gains that result from skipping low-yield GCs. We analyze
these trade-offs in Section 5.

3.1 YP Design

YP takes two parameters:skip thresholdandyoung-old ra-
tio. We investigate YP’s sensitivity to both in Section 5. The
skip threshold determines the free proportion of the heap that
is necessary to trigger regular collection (e.g., for the skip
threshold ofx we skip all GCs that we predict to reclaim
not more thanx% of heap space). The young-old ratio iden-
tifies pages that are recently-referenced (RR). YP considers
a time window between two consecutive GCs and divides it
into two contiguous parts: young and old, according to the
young-old ratio. Pages with a last-access timestamp in the
young partition are considered to be live.

There are two sources of potential inaccuracy in YP’s
yield prediction process. The first is a page that we identify
as NRR, that is not actually dead but is instead, not accessed
recently. The second is a page that is dead that we have not
yet identified as NRR. Although all dead pages are guaran-
teed to be found eventually, there may be a delay before YP
correctly classifies a page as dead.

Since YP considers only the total number of dead pages
in the heap, as opposed to determining the status (live/dead)
for each individual page, the dead space estimation errors
that these two phenomena introduce do not add up, but in-
stead, cancel each other out. Thus, the goal of YP param-
eter tuning is to make sure that the two misclassifications
(dead-as-live and live-as-dead) occur at similar frequency.
Therefore to optimize accuracy we need to choose the best
old-young ratio. For large ratios live-as-dead misclassifica-
tion dominates. For small ratios dead-as-live misclassifica-
tion dominates. For the right choice of the young-old ratio



the two misclassifications are similarly frequent and YP ac-
curacy reaches its optimum.

YP periodically consults the OS kernel to obtain a list of
recently-referenced (RR) pages within the heap. A dedicated
polling thread in the MRE wakes up at regular time intervals
and retrieves the addresses of RR pages. For each page in the
heap, YP records the time when a page was last believed to
be RR, using atimestamp array stored in the MRE.

Each time the polling thread tests the reference bits, it
clears them atomically. To avoid interference with the ker-
nel swapping mechanism that also relies on RR bits, we in-
troduce two new bits per page:mre-clearedandos-cleared.
This extension is software-only. YP shares hardware RR bits
with an OS, but whenever YP (or an OS) clears a hardware
RR bit, we set the mre-cleared (or the os-cleared) bit in soft-
ware so that no information is ever lost. We multiplex hard-
ware bits and use software bits to indicate if a HW bit was
cleared. To read an RR bit of a page, YP (or an OS) com-
putes alogical-or of the hardware RR bit and the os-cleared
bit (or the mre-cleared bit). When MRE (or an OS) clears the
RR bit, it also must clear the os-cleared (or mre-cleared) bit.

Key to our approach is accurate RR page tracking. First,
we must distinguish between an application access to a page
and a GC access to a page, and only consider the former as
an RR trigger (since GC may reference pages not reachable
by the program). To enable this, before every minor/major
collection, YP takes a snapshot of the current RR page bits,
and after each GC clears the reference bits that are set as
a side-effect of the collection. Moreover, we disable the
polling thread during GC.

In addition, YP measures the time spent in GC and ad-
vances the values in thetimestamp array accordingly after
each collection. This is necessary to eliminate the impact
of the stop-the-world GC pauses on timestamps. During GC
pauses, mutators are inactive and live pages are not used,
which can make them appear to be NRR. Advancing times-
tamps eliminates this problem.

YP maintains a boolean array (mispredicted dead),
for all pages in the heap. Each entry indicates whether a
live page has been misclassified as dead. Such pages are
never considered dead again. The intuition behind this is
that many applications allocate permanent data structures
that subsequently are rarely used which can lead to YP false
positives.

Since compactors typically move objects (MC is the
exception), after each collection for such compactors, YP
recomputes themispredicted dead array to reflect the
relocation that has occurred in the heap. For each live
target page, we consider the (live) source pages contain-
ing objects being moved to the target page. If any source
page has ever been misclassified as dead (including dur-
ing the current GC cycle) then the target page is marked as
mispredicted dead. We perform this propagation since
the target page is also likely to be misclassified.

YP makes predictions of the potential GC yield while mu-
tators are suspended (i.e., at a safepoint). Prediction is short
and simple and therefore does not need to execute concur-
rently. Parallelization is not necessary either as prediction
cost is proportional to the number of pages in the heap. The
polling thread executes concurrently and asynchronously to
mutators. It does not employ locking or synchronization and
imposes negligible overhead, especially when executed on a
separate CPU/core.

3.2 Yield Prediction

Table 1 shows the pseudocode for the steps that YP exe-
cutes during each full GC. YP first stops the polling thread.
Next, it obtains RR pages and updates the page times-
tamps (lines 1–4). The predictor then iterates over the heap
pages to determine which pages are dead (lines 5–14); YP
skips any pages previously found to result in false positives
(mispredicted dead[page] is true). For other pages, we
consider their age, i.e., how long since they were accessed,
and compare that against a percentage of the distance (in
time) between the current and previous full GC. This per-
centage is a YP parameter (the young-old ratio).

If the predicted amount of free space is larger than the
skip threshold, the system falls back to regular compaction
(i.e., does not skip GC). Following compaction, YP attempts
to shrink the heap back to the size it was prior to GC-
skipping (if any) to reduce space overhead (line 21). Finally,
we re-compute themispredicted dead array (lines 23–
35), using the auxiliary arraypropagated dead. We tra-
verse the live heap pages computing a target location for
each such page. If the source page has ever been mispre-
dicted dead or has been predicted dead in the current GC
cycle (note that this page is live), the target page becomes
mispredicted dead.

If the predictor expects low yield, it skips the compaction
and grows the heap (lines 16–18). The expansion corre-
sponds to the predicted free space, but is never smaller than
the minimum value (min expansion, 128KB in our imple-
mentation). This minimum is necessary to ensure mutator
progress, i.e., to ensure that the mutator is able to allocate
the data that triggered the GC originally. In the GC epilogue
(lines 38–42), we clear the reference bits and advance the
timestamps by the GC pause time.

We never skip the first collection as it is typically highly
productive. Instead, we use this collection to bootstrap the
predictor and initialize its data structures.

When skipping an unproductive collection, we extend the
heap by the estimated total size of dead objects (which them-
selves are not reclaimed as without marking one cannot iden-
tify them). This creates space overhead. This overhead is
small in practice because we skip only low-yield collections
and shrink the heap when possible on subsequent full collec-
tions.

Note that GC skipping is substantially different than heap
over-provisioning. Executing an application with a larger



1: rr list = get rr pages(heapstart, heapend)
2: for pagein rr list do
3: timestamp[page] = currenttime
4: end for
5: deadcnt = 0
6: limit = OLD YOUNG RATIO · (current time− last full gc)
7: setall entries(predicteddead,false)
8: for pagein [heapstart, heapend]do
9: age = currenttime− timestamp[page]

10: if age>= limit and not mispredicteddead[page]then
11: predicteddead[page] =true
12: deadcnt += pagesize
13: end if
14: end for
15: if deadcnt≤ SKIP THRESHOLD· heapsizethen
16: deadcnt = max(deadcnt, min expansion)
17: expandheap(deadcnt)
18: total expansion += deadcnt
19: else
20: fall back to regulargc
21: try to shrink heap(totalexpansion)

22: updateif heapshrunk(totalexpansion)
23: setall entries(propagateddead,false)
24: for pagein [heapstart, heapend]do
25: if haslive objects(page)then
26: if mispredicteddead[page]or predicteddead[page]then
27: target = relocationtarget(page)
28: propagateddead[target] =true
29: if crossesnext page(page, target)then
30: propagateddead[successor(target)] =true
31: end if
32: end if
33: end if
34: end for
35: mispredicteddead = propagateddead
36: updateif relocated(heapstart, heapend)
37: end if
38: clearrr pages(heapstart, heapend)
39: for pagein [heapstart, heapend]do
40: timestamp[page] += gctime
41: end for
42: lastfull gc = currenttime

Table 1. Pseudocode for yield prediction executed by YP during each full collection. SKIPTHRESHOLD and
YOUNG OLD RATIO are the two YP parameters.

heap does not prevent unproductive GCs, although it does
reduce the total number of collections. YP ensures with high
probability that the system triggers GC only when it is worth
doing so. Thus, YP enables better resource management and
gives the memory manager greater control over space/time
trade-offs. For example, when an expensive GC algorithm is
used, an MRE might be more conservative when deciding to
trigger a collection. In addition, the user need not determine
the right heap size a priori.

Note that on 64-bit platforms, the space costs are the same
as on 32-bit platforms – the arrays that we use have one entry
per page and pertain only to the area used and mapped by the
old generation.

With concurrent GC, YP has similar or even more po-
tential for improving performance. Each cycle of concurrent
GC, despite imposing shorter pause times, costs more than
the corresponding cycle of the stop-the-world GC.

4. Implementation
We integrate YP into three state-of-the-art parallel com-
pactors in order to investigate its generality and applicabil-
ity to different collectors. These compactors represent three
canonical heap layouts that underlie all modern GC algo-
rithms (including concurrent ones). We use exactly the same
prediction algorithm with each compactor.

We implement YP in HotSpot [24], an open-source
(GPL), production quality JVM (from Sun Microsystems)
written in C++ (source code version 7-ea-b10, released
3/2007). HotSpot uses a generational [30] heap layout com-
prising the permanent, old, and young generation. The
permanent generation contains run-time meta-data for the
loaded classes. The young generation is further subdivided

into edenand two equally-sized survivor spaces (calledfrom
and to). Objects are initially allocated in the eden. Within
the young generation a copying collector [11] evacuates live
objects from the eden-space and from-space to the to-space
and promotes objects that survive several minor collections
to the old generation. Major collection (compaction) takes
place upon space exhaustion in the old generation.

4.1 Kernel Extensions

We have implemented YP using Linux kernel 2.6.17 con-
figured with high memory disabled and SMP enabled. YP
consists of a kernel module which, upon loading, creates a
new entry in theproc filesystem using theproc mkdir and
create proc info entry functions. The entry, is located
at /proc/ref/bitsand is writable but not readable. A polling
thread in an MRE repeatedly sleeps for 10ms, opens the
/proc/ref/bitsfile, writes three words to it (in order to obtain
a list of RR pages within a given address range), and closes
the file. These words are: start and end addresses of the mem-
ory range plus a pointer to an array for the results. The ker-
nel invokes the callback registered by the module, copies the
three words from the user space, inspects page table entries
corresponding to the specified address range and copies the
results into the MRE-provided array (in userland). The first
array entry contains the number of the returned pointers to
RR pages.

We obtain the page table entries (PTEs) for subsequent
pages using the macros:pgd offset,pud offset,pmd off-

set, andpte offset map. We clear the reference bits in
PTEs atomically after testing with the help ofptep test and-

clear young. The polling thread holds a spin lock for the
page table of the current process during the entire operation.



To avoid interference with kernel swapping, we make use
of the two unused bits in page flags (bits 21 and 22) which
we define asPG kernel clearedandPG mre cleared. Each
physical page managed by the kernel has a page frame de-
scriptor (struct page) associated with it, which contains an
unsigned long flagsfield. The flags determine if a page is ref-
erenced, dirty, locked, etc. Note that these software flags are
distinct from hardware page flags present in PTEs. The ker-
nel module sets thePG mre clearedbit whenever clearing
the RR bit in a PTE. The kernel sets thePG kernel cleared
bit whenever it clears the RR bit in a PTE. The latter re-
quires minor modification to the kernel (the code fragments
that get/set PTE RR bits).

4.2 Alternative Approaches

We have investigated two other approaches to implementing
YP: mlock-based and kswapd-based. The mlock-based de-
sign employs page pinning for the old generation (via the
POSIXmlock system call). Pinning eliminates interference
of page access bit clearing (done by an MRE) with kernel
swapping mechanism. This approach is simple but requires
heap pages to be locked in physical memory.

In the kswapd-based design, instead of an MRE periodi-
cally clearing page access bits, we reuse an existing kernel
thread (kswapd daemon) and decrease its sleeping interval.
Kswapd clears page access bits whenever it wakes up. We
increase the frequency of kswapd wake-up to match the bit
clearing frequency needed by YP. MREs have read-only ac-
cess to RR bits and the kernel swapping mechanism ben-
efits from higher sampling frequency of RR pages (better
accuracy). However, this approach assumes the existence of
kswapd and its certain behavior (periodic wakeup and RR
bits clearing) which makes it less portable (e.g., it works in
Linux 2.4 but not in 2.6).

5. Evaluation
We empirically evaluate YP using three state-of-the-art par-
allel compactors (cf. Section 2.2): the Mapping Collector
(MC), the Compressor (CP), and the HotSpot compactor
(HS). We first overview our experimental methodology and
benchmark suite. In the subsequent subsections, we present
results from our experiments that measure YP prediction ac-
curacy and cost as well as the impact of YP on the applica-
tion throughput, GC pause times, and memory footprint. In
addition, we systematically evaluate YP sensitivity to differ-
ent values of its two parameters:skip thresholdandyoung-
old ratio.

5.1 Methodology

Our experimental platform is a dedicated dual-core Intel
Core 2 Duo (Conroe B2) machine clocked at 2.66GHz with
the unified 4M 16-way L2 cache and 32K 8-way L1 cache,
2GB main memory, running Debian GNU/Linux 3.0 con-
figured with the 2.6.17 kernel. The virtual page size is 4KB.

We use HotSpot version 7-ea-b10 deployed within OpenJDK
1.6.0 and compiled with GCC 3.2.3, in the optimized client-
compiler (C1) mode.

We employ YP for old-generation collection, i.e., full-
heap, major GCs, only. Minor collections use a parallel
copying collector in the young generation. For each bench-
mark, we investigate four heap sizes within a range that
captures significant to medium GC activity, wherever possi-
ble. Each of our experiments uses a fixed-size heap, which
consists of the young, old, and permanent generation. The
young generation is 25% of the old generation. The perma-
nent generation is 12MB (HotSpot default). We disable all
explicit GC invocations and adaptive generation resizing.
We employ 2 parallel GC threads as we use a dual-core ma-
chine. Survivor spaces occupy 33% of the young generation
(the remainder is used by the eden). When reporting heap
size, we sum up the size of all three generations.

We repeat each measurement 5 times and report the av-
erage as well as standard deviation where appropriate. We
evaluate YP in detail for the skip threshold set to 5% and
the young-old ratio set to 1%. In addition, we investigate its
sensitivity to other skip thresholds (0%, 3%, and 10%) and
young-old ratios (2–90%).

Our evaluation is based on 16 Java programs which in-
clude standard Java benchmarks and open-source Java ap-
plications [12]. We use the subset of the DaCapo [9] and
SPEC JVM’98 [29] benchmark suites. In addition, we em-
ploy SPEC PseudoJBB’00 [29] and VolanoMark [31]. We
selected these benchmarks to capture a wide range of appli-
cation behaviors while focusing on programs with signifi-
cant GC activity. Table 2 reports performance data for these
benchmarks obtained using HS: heap size ranges, execu-
tion times, and general GC statistics. We investigate server-
side multi-threaded workloads using VolanoMark, Pseudo-
JBB’00, and Hsqldb. The remaining benchmarks are desk-
side utilities.

We run the default variants of the DaCapo benchmarks
and use the input size of at least 100 for JVM’98. We exe-
cute VolanoMark with 42 chat rooms for 100 iterations and
PseudoJBB with 5 warehouses for10

5 iterations.

5.2 Dead Object Clustering

The prediction capabilities of YP depend on dead object
clustering, a widely-known phenomenon, previously re-
ported in [32, 34]. We have gathered basic clustering statis-
tics across the benchmarks, such as average, minimum, and
maximum cluster size as well as the percentage of dead
space fully covered by 4KB pages. The results are summa-
rized in Table 3. For each benchmark we report the average
values obtained across all GCs that occurred for the heap
size ranges that we use. We have observed that most clusters
are smaller than 4KB, however average cluster size is above
200KB. We have found that at least 50% of the dead space
is fully covered by 4KB pages. Such clustering generally



Benchmark Heap Size Execution GC GC GC Reclaimable Program
Program Range [MB] Time [s] Time [s] Count Cost [%] Space [%] Description

G
P

L
beautyj 61 – 64 18.2 13.0 60 71.4 2.0 Source code beautifier

findbugs 82 – 97 13.0 2.7 5 21.1 31.0 Java bug detector
jaranalyzer 14 – 17 4.5 0.1 3 3.0 23.2 Dependency manager

javaguard 16 – 22 7.0 3.7 69 53.8 0.5 Bytecode obfuscator
jdepend 30 – 33 20.5 6.7 77 32.7 0.3 Dependency analyzer

D
aC

ap
o chart 45 – 48 6.2 0.4 3 5.8 53.7 Line graph plotter

fop 14 – 20 4.3 1.9 31 43.6 4.9 XSL-FO parser/formatter
hsqldb 92 – 95 12.2 7.2 11 58.7 0.9 In-memory database

pmd 40 – 46 6.2 1.2 7 18.6 51.1 Source code analyzer
xalan 44 – 68 6.0 1.1 21 18.0 68.7 XML to HTML transformer

JV
M

compress 41 – 47 2.6 0.0 3 1.8 49.3 LZW packer
javac 33 – 42 2.9 0.2 3 8.0 60.9 Java compiler
mtrt 19 – 22 8.6 4.9 97 57.3 0.7 Multi-threaded ray-tracer

raytrace 14 – 17 2.7 1.7 58 63.0 0.1 3D scene renderer
volano 31 – 34 46.6 16.2 233 34.8 0.3 Multi-user chat server
psjbb 119 – 125 25.4 12.5 70 49.3 3.3 Three-tier database system

Table 2. Benchmark baseline statistics obtained using HS with YP disabled. Col. 2 is the heap size range (we use 4 heap sizes
across this range for each benchmark; heap size includes allgenerations). Cols. 3–6 show execution time, total GC time,total
number of GCs, and the percentage of execution time that is consumed by GC (all for minimum heap sizes). Col. 7 shows the
average GC yield across heap sizes as a percentage of the old generation size. The final column provides a brief description of
the benchmark functionality. Highlighted entries are multi-threaded server programs.

Bench- Average size [byte] Minimum size [byte] Maximum size [byte] 4KB page coverage [%]
mark CP HS MC CP HS MC CP HS MC CP HS MC

beautyj 2.0K 2.2K 468.9 24.9 243.3 16.0 137.0K 119.6K 403.1K 44.1 43.2 81.3
findbugs 4.4K 4.4K 4.9K 16.0 16.0 16.0 1.5M 1.7M 2.0M 92.5 93.3 93.7

jaranalyzer 1.6K 1.7K 1.8K 16.0 16.0 16.0 8.8K 28.8K 13.0K 16.7 22.1 31.4
javaguard 430.1 557.9 384.1 28.1 26.4 16.0 7.7K 9.0K 44.0K 16.0 16.1 51.6
jdepend 1.7K 32.5K 245.3 1.3K 2.0K 16.0 7.9K 311.3K 66.7K 18.2 24.4 27.3

chart 77.6K 72.6K 45.7K 15.3 14.7 16.0 2.9M 3.6M 6.5M 99.4 99.4 99.4
fop 1.4K 1.8K 603.0 91.9 88.2 16.0 56.2K 92.5K 147.8K 26.0 29.0 58.3

hsqldb 5.0K 119.5 109.1 16.2 15.8 16.0 1.4M 27.7K 193.5K 22.5 22.6 75.7
pmd 126.6K 187.4K 17.3K 14.8 10.3 11.0 4.5M 6.6M 5.1M 99.3 99.5 98.7
xalan 46.8K 46.4K 127.9K 15.7 15.9 14.5 3.4M 4.0M 14.3M 99.5 99.4 99.8

compress 5.9M 2.9M 5.1M 19.2 25.0 16.0 10.5M 9.2M 13.2M 100.0 100.0 100.0
javac 13.2K 12.9K 8.6K 16.0 16.0 16.0 2.8M 3.1M 4.9M 94.3 95.7 94.7
mtrt 1.9K 2.3K 206.0 120.5 506.5 16.0 186.8K 69.7K 92.9K 11.6 6.8 31.1

raytrace 114.9 579.8 90.8 26.8 544.5 16.0 986.2 808.2 9.5K 0.4 0.4 13.2
volano 486.8 482.7 157.3 48.5 102.7 16.0 8.0K 7.3K 44.1K 12.4 12.6 35.5
psjbb 3.1K 3.0K 997.0 95.5 89.0 16.0 204.5K 329.1K 1.3M 41.0 46.2 59.5

average 397.4K 208.4K 341.0K 116.6 238.8 15.6 1.7M 1.8M 3.0M 49.6 50.7 65.7

Table 3. Dead space clustering statistics. For each benchmark, we report average dead cluster size (Cols. 2–4), minimum dead
cluster size (Cols. 5–7), maximum dead cluster size (Cols. 8–10), and the percentage of dead space fully covered by 4KB pages
(Cols. 11–13). All these are average values across GCs and heap sizes obtained with YP disabled. K is 1024 bytes, M is 1024K.

holds for both client- and server-side Java applications and
is stable across inputs and heap sizes.

5.3 GC Yield

Column 7 in Table 2 shows the average GC yield for each
benchmark. This value is the percentage of reclaimable
space in the old generation on average across heap sizes
and indicates how effective the GC is on average at reclaim-
ing dead space. Across these programs, 9 have unproductive
GCs (yield below 5%). In the remaining 7 benchmarks, the
GCs are mostly productive (yield above 23%). We have also
observed that the first full collection for all programs is typ-

ically productive even if a particular benchmark has a low
GC yield on average.

5.4 Prediction Accuracy and Cost

We evaluate the prediction error of YP relative to the to-
tal heap size as well as relative to the old generation size.
Specifically, if the exact amount of reclaimable space isx
bytes and the predictor estimates that asy bytes, we com-
pute the prediction error as|x− y|/size, wheresize is heap
or generation size. We measure relative error (as opposed to
absolute error) because GC yield itself is typically expressed
and used in practice as a percentage.



Baseline Old Generation Size Heap Size Maximum Predi-
Skip Threshold 0% 5% 0% 5% ction Cost [%]

Benchmark CP HS MC CP HS MC CP HS MC CP HS MC CP HS MC

beautyj 1.6 1.0 1.0 7.1 7.3 6.2 1.0 0.6 0.6 4.4 4.6 3.9 0.0 6.0 5.2
findbugs 7.1 5.4 5.8 6.7 5.5 5.9 4.6 3.2 3.9 4.3 3.3 4.0 3.8 2.8 4.4

jaranalyzer 9.1 8.8 11.5 9.3 8.5 11.5 1.8 1.8 3.0 1.9 1.7 3.0 1.2 1.6 1.8
javaguard 1.8 2.2 2.1 7.4 7.8 8.3 0.5 0.6 0.6 1.9 2.0 2.2 2.0 2.8 1.7
jdepend 0.6 0.3 0.3 6.6 6.6 6.7 0.3 0.2 0.2 3.2 3.2 3.3 0.9 1.3 1.3

chart 8.6 8.1 7.8 9.3 8.2 7.7 4.7 4.0 4.3 5.2 4.1 4.3 2.8 2.3 2.0
fop 1.7 1.4 1.2 7.2 7.1 7.4 0.4 0.4 0.3 1.7 1.8 1.9 2.4 1.5 1.8

hsqldb 0.4 0.4 0.4 8.7 5.8 7.0 0.3 0.3 0.3 5.8 3.9 4.7 9.5 9.5 4.2
pmd 5.1 12.4 7.8 5.6 11.8 7.0 2.8 6.7 4.5 3.0 6.4 4.1 9.1 6.5 5.2
xalan 2.7 5.7 3.0 2.7 5.5 3.3 1.5 3.3 1.8 1.6 3.2 2.0 3.2 4.0 6.3

compress 4.8 7.4 4.2 4.4 7.5 4.3 2.6 4.0 2.2 2.4 4.1 2.3 2.7 1.3 1.9
javac 4.1 7.0 4.6 3.9 7.0 5.5 2.1 3.5 2.6 2.0 3.5 3.1 3.6 3.5 5.3
mtrt 0.2 0.2 0.3 7.3 8.8 7.9 0.1 0.1 0.1 2.2 2.7 2.4 2.1 -0.4 3.8

raytrace 0.1 0.1 0.3 7.1 15.8 7.6 0.0 0.0 0.1 1.5 3.2 1.6 1.2 1.5 2.2
volano 0.6 0.3 0.8 4.8 7.5 9.3 0.3 0.1 0.4 2.3 3.5 4.5 3.6 3.3 3.7
psjbb 2.8 2.8 4.0 6.3 5.9 7.3 1.9 1.9 2.8 4.3 4.1 5.2 8.4 7.9 8.1

average 3.2 4.0 3.4 6.5 7.9 7.1 1.6 1.9 1.7 3.0 3.5 3.3 3.5 3.5 3.7

Table 4. Prediction error and cost. In Cols. 2–13 we report average yield prediction error, across the heap sizes, relative to the
old generation size (Cols. 2–7) and heap size (Cols. 8–13). We present the results for two values of the GC skip threshold:0%
and 5% and three compactors: CP (Compressor), HS (HotSpot),and MC (Mapping Collector), each run with YP enabled and
the young-old ratio set to 1%. The final 3 columns show the YP time overhead (maximum across the heap sizes).

We summarize the accuracy results in Table 4, which con-
tains data averaged across the heap sizes. For each bench-
mark, we report prediction error for the 0% and 5% skip
threshold, relative to the old generation size and heap size.
The young-old ratio is 1%. The results for the 0% thresh-
old (when no GC is skipped) lend insight into prediction
accuracy unaffected by avoided GCs which is important in
benchmarks whose GCs are mostly productive.

Across benchmarks and compactors, average error is be-
low 4% (for the 0% threshold) and below 8% (for the 5%
threshold) relative to the old generation size. This corre-
sponds to 2% and 4% relative to the heap size. We inves-
tigate accuracy for other thresholds in Section 5.6. Accuracy
is worse for the 5% threshold because GC skipping increases
fragmentation in the heap.

Figure 1 shows detailed accuracy plots, across heap sizes,
for selected benchmarks and the 5% threshold. We report av-
erage prediction error (data points) and standard deviation
(error bars) from 5 measurements relative to the old gener-
ation size. The graphs show that accuracy also varies across
the heap sizes.

To implement yield prediction, we employ a polling
thread in the MRE that periodically samples the hardware
page protection bits through an OS kernel module. During
each GC, the MRE also executes the YP algorithm (cf. Sec-
tion 3). Both of these operations can impose a performance
penalty. The final three columns in Table 4 compare the ex-
ecution times with and without prediction for CP, HS, and
MC, to evaluate this overhead. With prediction on, we set the
skip threshold to 0%. Thus, we do not skip any collections,
and we isolate the performance penalty incurred by YP. That
is, for each GC, we do complete prediction and collection

work in addition to the polling thread running concurrently.
We report the maximum overhead as the percent increase
in total execution time, across the heap sizes for CP, HS,
and MC. This overhead is below 4% on average. Server-side
benchmarks (e.g., hsqldb and psjbb) have the highest over-
head as they fully utilize both CPU cores and the polling
thread needs to preempt the application threads.

5.5 Impact on Applications

In this subsection, we focus on the eight benchmarks with
low GC yields, i.e., those below 5% in Column 7 in Ta-
ble 2. In the remaining programs, most collections cannot be
skipped (as they are productive) and YP affects performance
only marginally (maximum overhead is 3% on average for
these programs). We set the GC skip threshold to 5% and
the young-old ratio to 1%.

We first evaluate the impact that YP has on overall execu-
tion time by comparing the benchmark performance when
prediction (and GC skipping) is enabled and disabled. In
Table 5 (Cols. 2–4), we show the application throughput
improvement for minimum heap sizes for each compactor.
On average, across benchmarks, we observe significant im-
provements in execution time: e.g., reductions of 59% for
CP, 47% for HS, and 44% for MC, on average.

Cols. 5–7 in Table 5 show the percentage of GCs elimi-
nated (the skip rate) on average for each program across heap
sizes. The skip rate varies between 64% and 87%, and has an
average of 75% for HS and MC, and an average of 77% for
CP; YP is able to avoid most GCs in these programs.

Since YP eliminates unproductive GCs, it thereby in-
creases minimum mutator utilization [5] and program per-
formance. By doing so, YP also reduces the number of



 2
 4
 6
 8

 10
 12
 14
 16
 18

 61  61.5  62  62.5  63  63.5  64

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

beautyj

CP
HS
MC

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 14  15  16  17  18  19  20

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

fop

CP
HS
MC

-5
 0
 5

 10
 15
 20
 25
 30
 35

 92  92.5  93  93.5  94  94.5  95

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

hsqldb

CP
HS
MC

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 16  17  18  19  20  21  22

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

javaguard

CP
HS
MC

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 30  30.5  31  31.5  32  32.5  33

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

jdepend

CP
HS
MC

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 19  19.5  20  20.5  21  21.5  22

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

mtrt

CP
HS
MC

 2

 4

 6

 8

 10

 12

 14

 119  120  121  122  123  124  125

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

psjbb

CP
HS
MC

-5

 0

 5

 10

 15

 20

 25

 30

 31  31.5  32  32.5  33  33.5  34

P
re

di
ct

io
n 

E
rr

or
 [%

]

Heap Size [MB]

volano

CP
HS
MC

Figure 1. Prediction error relative to the old generation size acrossheap sizes for all compactors and 8 benchmarks (those with
the most unproductive GCs). We report average and standard deviation (error bars) from 5 runs. Yield prediction is turned on,
the GC skip threshold is 5%, and the young-old ratio is 1%.

Execution Time GC Skip Maximum Pause Space Overhead [%]
Benchmark Reduction [%] Rate [%] Time Reduction [%] Vs. Old Generation Vs. Heap

CP HS MC CP HS MC CP HS MC CP HS MC CP HS MC

beautyj 84.8 79.3 74.1 82.9 81.0 81.0 -3.1 1.1 1.3 12.7 11.6 6.1 7.7 7.4 3.9
javaguard 47.5 42.0 31.7 66.7 69.1 69.7 -4.5 -3.2 0.0 23.4 22.0 20.5 5.8 5.5 5.4
jdepend 50.6 41.6 35.6 77.3 76.8 80.0 -1.2 -5.3 6.9 11.1 12.7 11.2 5.4 6.2 5.6

fop 43.9 37.7 30.5 65.9 68.6 67.4 -5.4 0.0 8.4 17.3 24.4 17.5 4.1 6.3 4.2
hsqldb 58.4 13.9 45.1 82.2 82.6 83.3 4.5 -2.1 0.1 5.1 9.9 4.9 3.4 6.7 3.3
mtrt 86.4 83.8 82.3 73.6 72.4 72.1 -20.1 2.8 3.3 20.9 20.5 19.9 6.3 6.1 6.0

volano 37.6 33.9 21.5 87.0 82.4 85.2 15.0 -0.7 27.8 9.2 8.6 8.9 4.4 4.1 4.4
psjbb 59.0 42.3 34.3 77.1 64.7 64.0 6.2 -3.6 -0.9 6.1 6.2 3.6 4.1 4.3 2.6

average 58.5 46.8 44.4 76.6 74.7 75.3 -1.1 -1.4 5.9 13.2 14.5 11.6 5.1 5.8 4.4

Table 5. Statistics for all compactors obtained for yield prediction turned on, the GC skip threshold of 5%, the young-old ratio
of 1%, and for minimum heap sizes. Cols. 2–4 show execution time reduction due to YP. Next, in Cols. 5–7 we report the
percentage of skipped (unproductive) GCs. Reduction in maximum GC pause times is shown in Cols. 8–10. The last 6 columns
present space overhead imposed by GC skipping in YP, relative to the old generation size and heap size.

pauses an application experiences and increases the intervals
between pauses. In the Cols. 8–10 in Table 5, we report the
impact that YP has on maximum pause times. YP tends to
increase pause times since when multiple GC are skipped,
the heap size becomes larger, and the collection that is fi-
nally performed imposes a longer pause (while being more
productive). Occasionally, however, YP skips an expensive
compaction with the net effect of reducing the maximum
pause time. On average, in CP and HS, YP increases maxi-
mum pauses by 1%, and in MC, it reduces them by 6%.

The trade-off that YP makes to achieve these performance
gains is in predictor overhead (reported previously as below
4%) and in heap space. Cols. 11–16 in Table 5 show the
space overhead that YP imposes for each compactor as a
percentage of the old generation size and heap size. Each
skipped collection creates a temporary space overhead in the

heap that is reduced or eliminated by the next conventional
GC. This overhead results from skipping potentially multiple
consecutive GCs. Relative to the old generation size the
overhead is below 15%. The overhead does not exceed 6%
relative to the total heap size.

We next present application throughput without (Fig-
ure 2) and with (Figure 3) YP and GC skipping. Each figure
shows per-benchmark plots, each with 3 performance curves
that correspond to CP, HS, and MC, respectively. We report
average execution time (data points) and standard deviation
(error bars) computed from 5 runs for each heap size. From
the differences between the graphs in these two figures, we
observe that YP consistently outperforms conventional GC
for all three compactors across heap sizes.

Note that YP outperforms a system employing heap over-
provisioning to run GC less often. Giving more space to HS,
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Figure 2. Benchmark execution times across heap sizes for all compactors. We report average and standard deviation (error
bars) from 5 runs. Yield prediction is turned off.
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Figure 3. Benchmark execution times across heap sizes for all compactors. We report average and standard deviation (error
bars) from 5 runs. Yield prediction is turned on, the GC skip threshold is 5% and the young-old ratio is 1%.

MC, and CP (as much as YP space overhead) does not lead
to better execution times than YP obtains.

5.6 Other Parameter Values

We have also evaluated YP for the GC skip threshold of 3%
and 10% to understand better how this parameter impacts
application performance. Table 6 summarizes the results and
compares them with the ones obtained for 5%. Overall, as
the threshold increases, the prediction accuracy decreases,
the space overhead increases, the skip rate increases, and
we observe better performance gains. Thus, skip threshold
selection is a space/time trade-off.

We have also investigated different values of the young-
old ratio, a YP parameter which determines what proportion
of the window between two subsequent GCs is considered

young. The detailed YP evaluation we have presented thus
far is for the 1% dead-young ratio. We have found this value
to result in optimal prediction accuracy (we have checked
1%, 2%, 5%, 10%, 20%, 50%, and 90%). Figure 4 shows
the impact of the young-old ratio on prediction error, space
overhead, maximum pause time reduction, and execution
time. Accuracy monotonically decreases when the young-
old ratio increases (prediction error increases from 7% to
14%). This is because in a steady-state execution phase,
programs allocate mostly short-lived objects. The remaining
metrics are not overly sensitive to the young-old ratio. This
is mostly because the prediction error never exceeds 16%
for the ratios that we checked. Nonetheless, execution time
reduction is worse for higher values of the young-old ratio.



Skip Threshold 3% 5% 10% Average
Compactor CP HS MC CP HS MC CP HS MC CP HS MC

Prediction Error (Vs. Old Generation) 5.4 6.2 5.7 6.5 7.9 7.1 8.1 10.3 8.8 6.7 8.1 7.2
Prediction Error (Vs. Heap) 2.5 2.8 2.7 3.0 3.5 3.3 3.9 4.8 4.1 3.1 3.7 3.4

Space Overhead (Vs. Old Generation) 12.9 14.1 10.8 13.2 14.5 11.6 15.9 16.1 14.3 14.0 14.9 12.2
Space Overhead (Vs. Heap) 5.0 5.6 4.0 5.1 5.8 4.4 6.3 6.6 5.8 5.5 6.0 4.7

Collection Skip Rate 70.6 71.8 70.1 76.6 74.7 75.3 83.2 80.5 80.6 76.8 75.7 75.3
Execution Time Reduction 55.7 41.8 42.0 58.5 46.8 44.4 62.3 53.5 47.2 58.8 47.4 44.5

Maximum Pause Time Reduction -3.0 -0.7 4.2 -1.1 -1.4 5.9 0.7 0.3 10.6 -1.1 -0.6 6.9

Table 6. YP statistics for different GC skip thresholds (3%, 5%, and 10%) for each compactor (CP, HS, and MC). We report
average values across benchmarks and heap sizes. Young-oldratio is 1%. All values are percentages.

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 0  10  20  30  40  50  60  70  80  90

P
re

di
ct

io
n 

E
rr

or
 [%

]

Young-Old Ratio [%]

CP
HS
MC

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 0  10 20 30 40 50 60 70 80 90

S
pa

ce
 O

ve
rh

ea
d 

[%
]

Young-Old Ratio [%]

CP
HS
MC

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  10  20  30  40  50  60  70  80  90

M
ax

. P
au

se
 R

ed
uc

tio
n 

[%
]

Young-Old Ratio [%]

CP
HS
MC

 42
 44
 46
 48
 50
 52
 54
 56
 58
 60

 0  10  20  30  40  50  60  70  80  90

E
xe

c.
T

im
e 

R
ed

uc
tio

n 
[%

]

Young-Old Ratio [%]

CP
HS
MC

Figure 4. Impact of the young-old ratio on prediction error, space overhead, maximum pause time reduction, and execution
time reduction. The values of the young-old ratio we use are:1%,2%,5%,10%,20%,50%, and 90%. For each compactor (CP,
HS, and MC) we report average values obtained across the three skip thresholds (3%, 5%, and 10%).

6. Related Work
Static and dynamic prediction in the context of automatic
memory management includes object lifetime prediction [2,
18, 8, 20, 26, 39, 28, 23] as well as heap size prediction [37,
13, 3, 36, 38]. In contrast, YP focuses on yield prediction.
No prior work to our knowledge exploits page reference bits
to predict GC yield accurately.

Like YP, MicroPhase [35] strives to improve the GC trig-
gering mechanism to maximize the GC yield. MicroPhase
recognizes phase boundaries and proactively invokes GC
during phase transitions when many objects are expected to
die. The system cooperates with the OS kernel to implement
efficient profiling. In contrast, YP uses reference bits to pre-
dict GC yield and is therefore simpler while extracting the
phase behavior implicitly.

Garbage collection hints (GCH) [4] is a profile-directed
method for guiding garbage collection. GCH uses off-line
profiling to identify favorable collection points in the pro-
gram code where GC dynamically chooses between nursery
and full-heap collections based on an analytical garbage col-
lector cost-benefit model. In contrast, YP does not use off-
line profiling and leverages hardware to make yield predic-
tion.

The systems below are related to YP because they often
actively interact with hardware and operating systems. How-
ever, they either do not leverage the mechanism of RR bits
or do not implement yield prediction.

The Pauseless GC [6] is a parallel/concurrent compactor
that avoids pauses through hardware read barriers, fast user-

mode trap handlers, an additional intermediate TLB privi-
lege level, and fast cooperative preemption via interrupts.
The compactor consists of three phases, called mark, re-
locate, and remap. The mark phase periodically refreshes
the liveness bitmap and computes page occupancy statistics
used to determine which pages are most empty. The relocate
phase finds pages that contain few live objects, evacuates
live data from those pages, and frees the underlying physical
memory. Pages with no live data are unmapped. Evacuated
virtual pages containing live objects are protected to trigger
traps upon access. Mutators using stale pointers raise traps
which update pointers to refer to new object locations. The
remap phase traverses the object graph executing a read bar-
rier against each pointer to ensure the completeness of lazy
pointer forwarding.

Numerous collectors leverage virtual memory operations.
The Compressor (Section 2.2) employs both page mapping
and protection. The Mapping Collector (Section 2.2) remaps
free space in the address space. MarkCopy [27] reduces the
memory footprint of a copying collector through on-the-fly
(un)mapping of the copied pages.

Some collectors [13, 37, 15, 38, 36, 14] cooperate with
the OS virtual memory manager to reduce the collector-
induced paging. The Bookmarking Collector [15] records
summary information about outgoing pointers from evicted
pages to avoid accessing non-resident pages during com-
paction. CRAMM [37] and IV heap sizing [13] use VM
paging behavior to predict and set dynamically the most-
suitable, application-specific, heap size that adapts to chang-



ing memory pressure and avoid paging. The system de-
scribed in [38] dynamically finds the optimal heap size by
exploiting phase behavior to balance the GC frequency and
collection cost as well as minimize the impact of page faults
on performance. Many concurrent collectors also exploit vir-
tual memory support [10, 22, 6, 25], which facilitates muta-
tor conflict detection and exploitation of cache locality [22].

7. Conclusions
We contribute YP, a GC yield predictor that uses virtual
page reference bits to accurately estimate the amount of re-
claimable space in the heap. We incorporate YP into three
state-of-the-art parallel compactors to verify its applicabil-
ity to canonical heap layouts used by extant collectors. YP
is simple and does not require changing the GC algorithm
(only its triggering mechanism). YP enables better dynamic
control over the space/time trade-off in MREs. We empiri-
cally evaluate YP using 3 compactors and 16 programs and
find that YP consistently provides good accuracy while im-
posing low time overhead. In applications with many un-
productive GCs, YP significantly improves performance (by
44–59% on average) by skipping most GCs and incurring
modest space overhead.
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