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▼ Virtual screening (VS) methods contribute
to the drug discovery process in various ways
[1,2]. Traditionally, computer-based filtering
tools have been used to scrutinize individual
molecules or whole compound libraries (such
as a corporate-compound library), with the
aim to eliminate undesired structures (nega-
tive selection). The well-known Lipinski’s
‘rule of 5’ can be regarded as an early virtual
screening method where all structures are
flagged if they violate one or more of the
rules. More complex drug-likeness estimators
have been developed recently at various 
levels of sophistication; for example, sets of 
empirical rules and advanced computer-based
decision support systems [3,4]. They can be
used for both positive and negative selection,
and are increasingly complemented by algo-
rithms that predict physicochemical proper-
ties, ability to penetrate the blood–brain-
barrier, toxicity flags, synthetic feasibility and
cytochrome P450 liability, among others.
Such systems are commonly referred to as
‘general filters’, that is, they can be applied for
all drug discovery projects and only require
the molecular structure of the candidate 
compound as input. These VS modules have
already proved their usefulness, especially in
compound library shaping and database 
filtering.

The required level of specificity of VS tools
and their context-dependence grows with the
knowledge available for a particular drug 

target and the underlying ligand–receptor
interaction pattern or pharmacophore. If a
3D receptor structure is available, molecular
docking and scoring methods can be applied
to perform more target-related, fine-grained
compound sieving. In the classical VS cas-
cade, a large virtual library containing up 
to 1012 molecular structures is sequentially 
filtered and reduced to a small collection 
of 100–1000 candidates [5]. The advent of
parallel and combinatorial synthesis has
augmented the conventional VS scenario. In
the following sections, we focus on some
significant advances that have been made in
the field of combinatorial molecular design
tools and automated combinatorial docking
procedures.

Combinatorial drug design is an
optimization task
Rational drug design can be viewed as an
optimization in the presence of noise in a highly
complex search space with, potentially, many
local optima. Robust optimization strategies
are required for successful navigation in a
chemical space. Three basic questions must be
answered to enable a VS cycle of iterative
structure generation and testing:
(1) The construction problem: how can 

we systematically assemble synthetically
feasible novel structures?

(2) The docking problem: how does a virtual
ligand interact with the receptor?

(3) The scoring problem: how can the quality
of a designed structure be estimated?

During the optimization process, molecules
are generated that match a given pharma-
cophore, that is, the spatial arrangement of
relevant receptor–ligand interaction points.
Typical examples of structure-based design
software packages include LUDI [6] (Accelrys,
San Diego, CA, USA; http://www.accelrys.com)
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and BUILDER [7] (Computer Graphics
Laboratory, University of California,
San Francisco, CA, USA; http://www.
cgl.ucsf.edu). These algorithms iden-
tify potential ligand–receptor interac-
tion points in the receptor binding
pocket and construct novel molecular
entities by combinatorial or sequential
assembly of atoms and molecular frag-
ments. Several new design algorithms
have been developed that rely on 
different scoring systems (Table 1).

If a high-resolution model of the re-
ceptor binding pocket is unavailable,
which is still true for the large group of
G-protein-coupled receptors (GPCRs)
comprising approximately 60% of the
current drug targets, then docking and/
or scoring is reduced to a similarity
searching problem. In this situation,
various metrics can be used to rank 
virtual structures by similarity to an 
already known active molecule, for 
example, a patented structure or a com-
pound described in the literature [8].
Similarity searching and docking and/or
scoring complement each other and we
have found it useful to follow both
concepts in parallel whenever possible.

Combinatorial docking has facili-
tated the construction of synthetically
tractable molecules (a problem encoun-
tered by many traditional de novo design
approaches), and has strengthened the
idea of fragment-based design [9]. While
atom-based techniques build up a molecule atom by atom,
fragment-based methods use sets of pre-defined molecular
building blocks that are connected by a virtual synthesis
scheme. New virtual structures can easily be constructed
from combinatorial building blocks, in an ideal situation,
directly from synthons. There are two principal fragment-
based design approaches: (1) sequential growth and (2)
fragment-placing and linking (Fig. 1). The latter inherently
reflects the idea of having an anchor fragment (‘scaffold’)
and connecting side-chains to it via a set of linker units
that are defined by the synthetic approach. Several successful
docking experiments appear to support this idea (Table 2).

Despite their appeal and ease of implementation, frag-
ment-based techniques have some limitations. Most im-
portantly, they tend to produce relatively coarse-grained
designs because fine-tuning of structures can be hampered

by a limited fragment set, especially during the final
optimization cycles. A chemically meaningful selection of
fragments for the design process is therefore crucial for suc-
cess. It can be beneficial to use different sets in the design
of, for example, GPCR modulators or kinase inhibitors. An
elegant concept of virtual building-block generation is
to perform retro-synthetic fragmentation of ‘reference
libraries’, such as a set of GPCR modulators [10,11]. The
fragments obtained can then be used to assemble new
molecules. It is hoped that such designs will have a greater
chance of being GPCR modulator-like than structures that
were built from a generic building-block collection.

Structure-based molecular docking
Molecular docking methods take small-molecule structures
from a database of existing compounds (or compounds
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Table 1. Examples of de novo design algorithms

Method Concept Refs

BUILDER Recombination of docked molecules, combinatorial search [7]

CAVEAT Database search for fragment fitting [31]

CONCERTS Fragment-based, stochastic search [32]

DLD Atom-based, structure sampling by simulated annealing [33]

GENSTAR Atom-based; grows molecules in situ based on an enzyme [34]
contact model

GROUPBUILD Fragment-based, sequential growth, combinatorial search [35]

GROW Peptide design, sequential growth [36]

GROWMOL Fragment-based, sequential growth, stochastic search [37]

HOOK Linker search for fragments placed by MCSS [38]

LEGEND Atom-based, stochastic search [39]

LUDI Fragment-based, combinatorial search [6]

MCDNLG Atom-based, stochastic search [40]

MCSS Fragment-based, stochastic sampling [41]

MOLMAKER Graph-theoretical 3D design [42]

NEWLEAD Fragment-based, builds on 3D pharmacophore-models [43]

PRO-LIGAND Fragment-based search [44]

PRO-SELECT Fragment-based, scaffold-linker approach [45]

SKELGEN Small-fragment based, Monte-Carlo search [46]

SME Peptide design, whole-molecule optimization [47]

SMOG Fragment-based, sequential growth, stochastic search [48]

SPLICE Recombination of ligands retrieved by a 3D database search [49]

SPROUT Fragment-based, sequential growth, combinatorial search [50]

TOPAS Fragment-based, evolutionary search [11]



that could be made), and dock them into the protein bind-
ing site. All of the major tools currently available treat the
ligand as flexible and, with very few exceptions [12–14],
the protein is still treated as rigid.

Several docking programs that use different conceptual
strategies have been proposed. A collection of prominent
docking algorithms has been compiled by van Leeuwen
(http://www.bio.vu.nl/nvtb/Docking.html) that can be
used for further reference. The most widely used docking
tools include FlexX [15] [Tripos, St Louis, MO, USA; and
Fraunhofer-Institute for Algorithms and Scientific Computing,
St Augustin, Germany (http://cartan.gmd.de/flexx/)], DOCK
[16] (University of California, San Francisco, CA, USA;
http://www.cmpharm.ucsf.edu/kuntz/dock.html) and GOLD
[17] (Cambridge Crystallographic Data Centre, Cambridge,
UK; http://www.ccdc.cam.ac.uk/prods/gold/)

FlexX can be used for protein–ligand docking following a
deterministic, incremental construction algorithm. A site-
point representation of the binding pocket is used in the
docking process, where the ligand is flexible and the protein
is treated as rigid. An interaction geometry database is used to
describe intermolecular interaction patterns, and a torsion
angle database serves as the basis for conformer generation.
The basic idea of a FlexX search is to generate a table of all
possible interaction sites, and then search the table for
matching interaction points by using triangles of query
points generated from ligand atoms. A ligand conformation
(or ‘pose’) is stored and scored when a query triangle is 

successfully matched onto a triangle-of-receptor interaction
site (Fig. 2a).

GOLD (Genetic Optimization for Ligand Docking) is a
program used to predict how flexible molecules bind to
proteins by using a non-deterministic sampling method.
The specific features of the program are: (1) a parallel 
genetic algorithm (GA) for protein–ligand docking, which
performs a stochastic search for preferred orientation and
conformation of the ligand; (2) full-ligand and partial-
protein flexibility; and (3) special energy functions that are
derived, in part, from the analysis of conformation and
non-bonded contacts observed in crystal structures of
small molecules. In contrast to the majority of docking al-
gorithms operating directly on real-value variables, GOLD
employs a bit-string (‘chromosome’) representation of con-
formations and possible hydrogen-bonding interactions
between the ligand and the receptor. The GA provides a
search paradigm that enables the identification of good
(though not necessarily optimal) solutions. Typically,
several docking runs are required to identify most high-
affinity binding modes. One advantage of this evolutionary
sampling technique is its ability to find solutions in a
highly complex search space, as given by flexible-ligand
and protein-surface atoms.

The DOCK algorithm, which was conceived by I.D.
Kuntz and colleagues (University of California, San Francisco,
CA, USA) almost two decades ago, has been widely used
ever since and is being continuously developed. DOCK 

automatically generates many possible
orientations and conformations of 
a putative ligand within a receptor
pocket either by an exhaustive search
or by fragment docking. The shape of
the receptor pocket is described by
spheres, and the centers of the spheres
are regarded as potential locations for
ligand atoms (Fig. 2b). At least four 
ligand atoms must match individual
sphere centers to count as a valid 
ligand match. Typically, tens of thou-
sands of orientations are generated for
each ligand candidate. Receptor–ligand
complexes can be scored by accounting
for steric fit, chemical complementa-
tion or pharmacophore similarity.

A common docking strategy is to dis-
sect the ligand into rigid sub-structure
fragments and then start by placing the
first fragment (base-fragment) in multi-
ple positions and orientations into the
binding site. The site points are used to
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Figure 1. Two strategies for structure-based molecule assembly from fragments. The solid
line represents a ligand-binding pocket on the surface of a protein. (a) Sequential growth
technique and (b) fragment-placing and linking. Adapted from Ref. [58].
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guide the placement of the fragment and to ensure that its
position enables the formation of hydrogen bonds and
lipophilic contacts. The original ligand is then reassembled
within the binding site by step-wise re-attachment of the 

remaining fragments until the complete molecule is built
(Fig. 1). This concept can also be used to generate new mol-
ecular structures by probing many different fragments in a
combinatorial fashion.
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Table 2. Examples of bioactive molecules which were identified, optimized or designed using virtual screening
methodsa

Molecular structure Activity Method Refs

Ca2+ antagonist (T-channel blocker) Pharmacophore similarity searching [51]

K+ channel (kv 1.5) blocker Fragment based evolutionary [11]
de novo design

FKBP ligand Docking and scoring [52]

Farnesyltransferase inhibitor Docking and scoring [53]

Glyceraldehyde-3-phosphate  Combinatorial docking [54]
dehydrogenase (GAPDH) inhibitor

Thrombin inhibitor Combinatorial docking, de novo design [55]

Aldose reductase (AR) inhibitors 3D database searching [56]

HIV-1 RNA transactivation response  Rigid-body docking, database searching [57]
element (TAR) inhibitor

aAdditional examples can be found in Ref. [58].
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Docking algorithms usually generate multiple docked
conformations. They rely strongly on the availability of a
robust and accurate scoring function that can be used to
identify the correct binding mode and prioritize a large set
of docked structures. Given the recent progress in hard-
ware, it could now be feasible to dock an entire compound
library of up to 1 million structures into a protein binding
site in one central processing unit (CPU) day on a com-
puter cluster with about 100 CPUs.

Scoring functions
Scoring functions are used to estimate the binding affinity
of novel structures or an individual molecular fragment in
a given position inside the receptor pocket [18–20].
Although fast combinatorial docking procedures have
proved applicable to de novo design, one of the major prob-
lems remaining to be solved is the accurate prediction of
binding energies. This problem has been approached in
many different ways; for example, by force-field based
methods, techniques based on the Poisson–Boltzmann
equation, potentials of mean force, free energy pertur-
bation and simple linear approximations. In this context,
it is common to differentiate between empirical and
knowledge-based scoring functions. The term ‘empirical

scoring function’ emphasizes that these
quality functions approximate the
binding affinity as a sum of weighted
interactions. Most empirical scoring
functions are calibrated with a set of
experimental binding affinities obtained
from known protein–ligand complexes.
Such functions usually consider indi-
vidual contributions from hydrogen
bonds, ionic interactions, hydrophobic
interactions and binding entropy.
Inconsistent calibration data can cause
problems in empirical scoring.

Knowledge-based scoring functions
have their foundation in the inverse
formulation of Boltzmann law. This
technique can be used to derive sets 
of atom-pair potentials (energy func-
tions) by favoring preferred contacts
and penalizing repulsive interactions.
The various approaches differ in the
sets of protein–ligand complexes used
to obtain these potentials, the form of
the energy function, the definition of
protein and ligand atom types, reference
states, distance cutoffs, and several
other parameters.

Scoring functions provide a very active and rapidly
advancing research field. Recent progress has been made
by using different scoring functions simultaneously (‘con-
sensus scoring’), by the development of receptor-family
specific scoring functions, and by the combination of
multi-point pharmacophore searching with docking scores
reflecting the constraints of the receptor binding site
[21–23]. Both historical and more-recent concepts and
achievements can be found in the literature [24–26].

A case study: design of novel DNA gyrase inhibitors
De novo design of inhibitors of the bacterial enzyme DNA
gyrase is one example of a successful application of struc-
ture-based virtual screening concepts [27]. DNA gyrase is a
well-established antibacterial target. It is an essential
prokaryotic type II topoisomerase with no mammalian
counterpart. DNA gyrase catalyzes the ATP-dependent
introduction of negative supercoils into bacterial DNA as
well as the decatenation and unknotting of DNA. A drug
discovery project was started at Roche (Basel, Switzerland)
to overcome the limitations of known DNA gyrase inhibitors.

Searching for novel inhibitors of DNA gyrase by HTS of
the Roche Compound Inventory (RCI) yielded no suitable
lead structures. Therefore, a rational VS approach was used
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Figure 2. Schematic illustration of (a) the FlexX algorithm and (b) the DOCK algorithm.
FlexX matches triangles of interaction sites onto complementary ligand atoms. The
program DOCK fills the binding site with spheres, and sphere centers are then matched
to the ligand atoms to determine plausible ligand–receptor complexes. The surface of the
receptor pocket is drawn as a solid line. The dotted line represents potential lipophilic
interaction points, and the fan-like structures indicate potential hydrogen-bonding sites.
Adapted from Ref. [58]
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to generate lead structures. The idea was to use as a starting
point the detailed 3D structural information of the ATP
binding site located on gyrase subunit B. At the beginning
of the project, x-ray structures were available showing 
the DNA gyrase subunit B complexed with the substrate 
analog ADPNP, novobiocin and cyclothialidine. In the
inner part of the receptor pocket, these ligands share a
common binding motif: each of them donates a hydrogen
bond to an aspartic acid side chain (Asp73) and accepts a
hydrogen bond from a conserved water molecule. It was
thought that a novel inhibitor would require an ability to
form these essential two hydrogen bonds. In addition, the
molecule should contain a lipophilic part to pick up some
lipophilic interactions with the enzyme.

A computational search of the Available Chemicals
Directory (ACD; Molecular Design, San Leandro, CA, USA)
and the RCI using the programs LUDI and CATALYST
(Accelrys) was carried out to identify molecules with a low
molecular weight that met the criteria described previ-
ously. Relying on the results of the in silico screening, only
600 compounds were tested initially. In the next step, close
analogs of the first hits were assayed. Overall, 3000 com-
pounds were tested in the biased screen, providing 150
hits that clustered into 14 different chemical classes. Seven
of these classes were subsequently validated as true, novel
DNA gyrase inhibitors that act by binding to the ATP 
binding site located on the B subunit. Their activity was in 
the range of 5–64 µg ml−1, that is, two to three orders-
of-magnitude higher than the activity of novobiocin or 
cyclothialidine.

Subsequent structure-based optimization of the hits led
to compounds with potencies equal or up to 10 times bet-
ter than novobiocin. Figure 3 (MNEC < 0.03 µg ml−1) is 
an example of a novel potent inhibitor of DNA gyrase B 
resulting from structure-based VS.

Conclusion and outlook
VS methods support the decision-making process in drug
discovery by the evaluation of large virtual libraries and in
silico compound filtering. Automated docking procedures
have been successfully applied to database screening, de novo
design and the analysis of binding modes of individual mol-
ecules. The most crucial aspect is still the calibration and use
of appropriate scoring functions. Different scoring functions
work better for different protein–ligand complexes. Two re-
cent publications discuss this problem and begin to provide
some insight into the differences [26,28]. It is worth noting
that all docking programs and scoring functions have a ten-
dency to generate a significant number of false positives.
New developments indicate that progress can be made by
combining pharmacophore filtering and docking methods,

as well as by using several scoring functions in parallel
[28,29] [Good, A.C. et al., Putting the horse before the cart:
analysis and optimization of structure-based virtual screen-
ing protocols. 220th National Meeting of the American
Chemical Society, 20–24 August 2000, Washington, DC, USA].
The problem of ‘frequent hitters’ or ‘promiscuous binders’ is
a recurring problem in both HTS and VS campaigns. Such
compounds show up as hits in many different VS results,
docking results, and biological assays covering a wide range
of targets. This happens for two main reasons: (1) the activ-
ity of the compound is not specific for the target; or (2) the
compound perturbs the assay or detection method. In both
cases, such molecules are usually poor starting points for
lead optimization programs, which leads to loss of time 
and money, without any benefit. Occasionally, medicinal
chemists are able to identify frequent hitters by obvious
undesired structural features or properties. Rationalizing
these characteristics and automating the frequent-hitter
identification process can increase efficiency and thus assist
in the selection of promising hit or lead candidates [30].
Library design by VS and automated combinatorial docking
already plays a significant role in current drug discovery
projects, and we expect that they will become an indis-
pensable part of future medicinal chemistry.
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