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Abstract— When heterogeneous congestion control protocols
that react to different pricing signals share the same network,
the resulting equilibrium may no longer be interpreted as a
solution to the standard utility maximization problem. We prove
the existence of equilibrium under mild assumptions. Then we
show that multi-protocol networks whose equilibria are locally
non-unique or infinite in number can only form a set of measure
zero. Multiple locally unique equilibria can arise in two ways.
First, unlike in the single-protocol case, the set of bottleneck links
can be non-unique with heterogeneous protocols even when the
routing matrix has full row rank. The equilibria associated with
different sets of bottleneck links are necessarily distinct. Second,
even when there is a unique set of bottleneck links, network
equilibrium can still be non-unique, but is always finite and odd
in number. They cannot all be locally stable unless it is globally
unique. Finally, we provide various sufficient conditions for global
uniqueness. Numerical examples are used throughout the paper
to illustrate these results.

Index Terms— Congestion control, Heterogeneous protocols,
Multiprotocol networks, Equilibrium analysis

I. INTRODUCTION

A. Motivation

Congestion control protocols have been modelled as dis-
tributed algorithms for utility maximization, e.g., [9], [13],
[20], [28], [10], [12]. With the exception of a few limited
analysis on very simple topologies [19], [11], [12], existing
literature generally assumes that all sources are homogeneous
in that, even though they may control their rates using different
algorithms, they all adapt to the same type of congestion
signals, e.g., all react to loss probabilities, as in TCP Reno,
or all to queueing delay, as in TCP Vegas or FAST [8]. When
sources with heterogeneous protocols that react to different
congestion signals share the same network, the current duality
framework is no longer applicable. With more congestion
control protocols being proposed and ideas of using congestion
signals other than packet losses, including explicit feedbacks,
being developed in the networking community, we need a
mathematically rigorous framework to understand the behavior
of large-scale networks with heterogeneous protocols. The
purpose of this paper is to propose such a framework.

Our emphasis is on general networks with multiple sources
and links that use a large class of algorithms to adapt their
rates and congestion prices. Often, interesting and counter-
intuitive behaviors arise only in a network setting where
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sources interact through shared links in intricate and surprising
ways, e.g., [26]. Such behaviors are absent in single-link
models and are usually hard to discover or explain without a
fundamental understanding of the underlying structure. Given
the scale and heterogeneity of the Internet, it is conceivable
that such behaviors are more common than we realize, but
remain difficult to measure due to the complexity of the
infrastructure and our inability to monitor it closely. A math-
ematical framework thus becomes indispensable in exploring
structures, clarifying ideas, and suggesting directions. Some
of the theoretical predictions in this paper have already been
demonstrated experimentally in [25].

B. Summary

A congestion control protocol generally takes the form������ ��� �	�

��
 ������� ����� ��������� ��� � ���"!# (1)
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������� ����' � � � �(� �������)!# (2)

Here, * �,+�� denotes the set of links used by source + , and ��� �)-.�
models a queue management algorithm that updates the price��� � ��� at link / , often implicitly, based on its current value and
the sum of source rates � � � ��� that traverse link / . The prices
may represent loss probabilities, queueing delays, or quantities
explicitly calculated by the links and fed back to the sources.
The function $ � ��- � models a TCP algorithm that adjusts the
transmission rate � � ����� of source + based on its current value
and the sum of “effective prices” ' � � � �(� ������� in its path. The
effective prices ' � � � � � � ����� are functions of the link prices � � � ��� ,
and the functions ' � � in general can vary depending on the
links and sources.

When all algorithms use the same pricing signal, i.e.,' � � � ' � are the same for all sources + , the equilibrium
properties of (1)–(2) turn out to be very simple. Indeed, under
mild conditions on ��� �)-.� and $ �%�)-.� , the equilibrium of (1)–
(2) exists and is unique [12]. This is proved by identifying
the equilibrium of (1)–(2) with the unique solution of the
utility maximization problem defined in [9] and its Lagrange
dual problem [13]. Here, the equilibrium prices � � play the
role of Lagrange multipliers, one at each link. This utility
maximization problem thus provides a simple and complete
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characterization of the equilibrium of a single-protocol net-
work.

When heterogeneous algorithms that use different pricing
signals share the same network, i.e., ' � � are different for
different sources + , the situation is much more complicated.
For instance, when TCP Reno and TCP Vegas or FAST share
the same network, neither loss probability nor queueing delay
can serve as the Lagrange multiplier at the link, and (1)–(2)
can no longer be interpreted as solving the standard utility
maximization problem. Basic questions, such as the existence
and uniqueness of equilibrium, its local and global stability,
need to be re-examined.

In the multi-protocol case, we prove that equilibrium still
exists, under mild conditions, despite the lack of an underlying
concave optimization problem (Section III). In contrast to the
single-protocol case, even when the routing matrix has full
row rank, there can be uncountably many equilibria (Example
1 in Section IV) and the set of bottleneck links can be non-
unique (Example 2 in Section IV). However, we prove that
almost all networks have finitely many equilibria and they
are necessarily locally unique (Section IV). Non-uniqueness
can arise in two ways. First, the equilibria associated with
different sets of bottleneck links are always distinct. Second,
the number of equilibria associated with each set of bottleneck
links can be more than one, though always odd (Section
IV). Moreover, these equilibria cannot all be locally stable
unless the equilibrium is globally unique (Section V). Finally,
we provide three additional sufficient conditions for global
uniqueness of network equilibrium (Section V). The first
condition generalizes the full-rank condition on � for global
uniqueness from single-protocol networks to multi-protocol
networks. The second condition guarantees global uniqueness
when the price mapping functions ' � � � ' �

are linear and
link-independent. The last condition implies global uniqueness
of a class of linear networks. Throughout the paper, we
provide numerical examples to illustrate equilibrium properties
or how a theorem can be applied. In [25], we demonstrate
experimentally the phenomenon of multiple equilibria using
TCP Reno and TCP Vegas/FAST in ns-2 simulator/Dummynet
testbed.

Our formulation is close to the general equilibrium theory
[17] in economics from which we borrow some ideas and
techniques. See [4], [6], [7], [22], [23], [27], [3], [5], [16], [1]
for related works. The main mathematical tools used in this
paper are the Nash theorem in game theory [21], [2], which is
an application of Kakutani’s generalized fixed point theorem,
and results from differential topology, especially the Poincare-
Hopf Index Theorem [18]. They are used to prove existence
and study uniqueness of network equilibrium, respectively.

II. MODEL

A. Notation

A network consists of a set of * links, indexed by / �� ��������� * , with finite capacities � � . We often abuse notation
and use * to denote both the number of links and the set* ��� � �������&� *	� of links. Each link has a price � � as its
congestion measure. There are 
 different protocols indexed

by superscript + , and � �
sources using protocol + , indexed

by � +%�
�)� where + � � ������� � 
 and � � � ��������� � �
. The total

number of sources is ��� ��� � � �
.

The *���� �
routing matrix � �

for type + sources is defined
by � � ��� � �

if source � +%���"� uses link / , and 0 otherwise. The
overall routing matrix is denoted by� ��� ������� - - - ���! 
All type + sources react to “effective prices” � � � at links / in
their paths. The effective price � � � is determined by the link
price � � through a price mapping function� � � � ' � � � ��� �
which can depend on both the link and the protocol type. By
specifying function ' � � , we can let the link feed back different
congestion signals to sources using different protocols, for
example, Reno with packet losses and Vegas with queueing
delay. Let ' � � � � � � ' � � � � � �&� / � � ������� * � and ' � � � �� ' � � � � �&� + � � ������� 
 � .

The aggregate prices for source �,+%�
�)� is defined as" �� � 

� � ��#� � � � � 


� � � ��� ' � � � � � � (3)

Let " � � � " �� ��� � � ������� � � � � and " � � " � � + � � ������� 
 �
be vectors of aggregate prices. Then " � �%$ � �'&�( ' � � � � and" � � ( ' � � � where

(
denotes matrix transpose.

Let � �
be a vector with the rate � � � of source � +%���"� as its� th entry, and � be the vector of � �
� � � � � � � ( � � � � � ( ������� � � � � � (  (

Source � +%���"� has a utility function ) �� � � � � � that is strictly con-
cave increasing in its rate � � � . Let ) � � ) �� ��� � � ��������� � � � + �� ��������� 
 � .

In general, if *,+ is defined, then * denotes the (column)
vector * � � *,+ �.-0/ � . Other notations will be introduced later
when they are encountered. We call � � � ' � � � ) � a network.

B. Network equilibrium

A network is in equilibrium, or the link prices � and source
rates � are in equilibrium, when each source �,+����)� maximizes
its net benefit (utility minus bandwidth cost), and the demand
and supply of bandwidth at each link are balanced. Formally,
a network equilibrium is defined as follows.

Given any prices � , we assume in this paper that the source
rates � � � are uniquely determined by

� � �	1 " ���2 � 3 1 ) ��4265#7 � 1 " ���298;:
where 1 ) �� 2 5 is the derivative of ) �� , and 1 ) �� 2 5�7 � is its

inverse which exists since ) �� is strictly concave. Here < *>= : �?A@,B9� * ��C � . This implies that the source rates � � � uniquely solve?A@,BD�EGF ) �� � * �IH * " ��
As we will see, under the assumptions in this paper,1 ) �� 2 5#7 � 1 " �� 2KJ C for all the prices � that we consider, and
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hence we can ignore the projection < - = : and assume without
loss of generality that

� � � 1 " ���2 � 1 ) �� 2 5#7 � 1 " ��'2 (4)

As usual, we use � � $ " � & � 1 � � �	1 " ���2 �
� � � ��������� � � 2 and� � " � � $ � � $ " �'& � + � � ������� � 
 & to denote the vector-valued
functions composed of � � � . Since " � � ( ' � � � , we often abuse
notation and write � � � � � �&� � � � � �&� � � � � .

Define the aggregate source rates � � � � � � ��� � � ��� / �� ��������� * � at links / as:� � � � � � � � � � � � �&� � � � � � � � � � � (5)

In equilibrium, the aggregate rate at each link is no more
than the link capacity, and they are equal if the link price is
strictly positive. Formally, we call � an equilibrium price, a
network equilibrium, or just an equilibrium if it satisfies (from
(3)–(5)) � � � � � � H � � � C � � � � ��� � � ��� C (6)

where
�

is a diagonal matrix defined as
� � � diag � � � � . The

goal of this paper is to study the existence and uniqueness
properties of network equilibrium specified by (3)–(6). Let �
be the equilibrium set:� � ���	��
 �

:
� � � � � � �IH � � � C � � � � ��� � � (7)

For future use, we now define an active constraint set and
the Jacobian for links that are actively constrained. Fix an
equilibrium price ��
�� � . Let the active constraint set �* ��* � � 
 ��� * (with respect to � 
 ) be the set of links / at which� 
� J C . Consider the reduced system that consists only of links
in �* , and denote all variables in the reduced system by �� , �� , �� ,
etc. Then, since � � � � � � � � for every / � �* , we have �� � �� � � �� .
Let the Jacobian for the reduced system be �J � �� � ��� �� � �� ��� � �� .
Then �J � �� � � 


� �� � � � � � �� �� �" � 1 �� � 2 ( � �' � � �� �� �� (8)

where � � �� �" � � diag

�	�� � �') ��� � � � � � ��� 7 � !# (9)� �' �� �� � diag

� � �' � �� �� � � (10)

and all the partial derivatives are evaluated at the generic point�� .

C. Current theory: 
 � �
In this subsection, we briefly review the current theory

for the case where there is only one protocol, i.e., 
 � �
,

and explain why it cannot be directly applied to the case of
heterogeneous protocols.

When all sources react to the same price, then the equi-
librium described by (3)–(6) is the unique solution of the
following utility maximization problem defined in [9]:?A@,B� EGF 


� ) � � � � � (11)

subject to � � � � (12)

where we have omitted the superscript + � �
. The strict

concavity of ) � guarantees the existence and uniqueness of
the optimal solution of (11)–(12). The basic idea to relate
the utility maximization problem (11)–(12) to the equilibrium
equations (3)–(6) is to examine the dual of the utility max-
imization problem, and interpret the effective price ' � � �(� �
as a Lagrange multiplier associated with each link capacity
constraint (see, e.g., [13], [20], [12]). As long as ' � � �(� � � C
and ' � � C%� � C , one can replace �(� in (6) by ' � � ��� � . The
resulting equation together with (3)–(5) provides the necessary
and sufficient condition for � � � � � and ' � � ��� � to be primal and
dual optimal respectively.

This approach breaks down when there are 
 J �
types

of prices because there cannot be more than one Lagrange
multiplier at each link. In general, an equilibrium no longer
maximizes aggregate utility, nor is it unique. However, as
shown in the next section, existence of equilibrium is still
guaranteed under the following mild assumptions.

A1: Utility functions ) �� are strictly concave increasing, and
twice continuously differentiable in their domains. Price
mapping functions ' � � are continuously differentiable in
their domains and strictly increasing with ' � � � C%� � C .

A2: For any � J C , there exists a number ������ such that if� � J ������ for link / , then

� � � � � ��! � for all �,+����)� with � � ��� � �
These are mild assumptions. Concavity and monotonicity of
utility functions are often assumed in network pricing for
elastic traffic. The assumption on ' � � preserves the relative
order of prices and maps zero price to zero effective price.
Assumption A2 says that when � � is high enough, then every
source going through link / has a rate less than � .

III. EXISTENCE OF EQUILIBRIUM

In this section, we prove the existence of network equi-
librium. We start with a lemma that bounds the equilibrium
prices.

Lemma 1. Suppose A1 and A2 hold. Given a network� � � ' � � � ) � , there is a scalar �"���# that upper bounds any
equilibrium price � , i.e., � � � �"���# for all / .
Proof. Choose � � ?%$'& � � � � � , and let ������ be the corre-
sponding scalar in A2. Suppose that there exists an equilibrium
price � and a link / , such that � � J � ���� . A2 implies that the
aggregate equilibrium rate at link / satisfies


�


� � ��#� � � � � � �(! ��� � ?%$'&� � �

Therefore, we get a link with � � J C but not fully utilized. It
contradicts the equilibrium condition (6).



4

The following theorem asserts the existence of equilibrium
for a multi-protocol network.

Theorem 2. Suppose A1 and A2 hold. There exists an equi-
librium price � 
 for any network � � � ' � � � ) � .
Proof. Let ������ be the scalar upper bound in Lemma 1. For
any ��� < C�� � ���# = � , define a vector function� � � � � � � � � � � H � (13)

For any link / , let� 7 � � � � � � ��� � �#�,� �(� 7 � � �(� : � � � � � � � (
Then we may write

� � � � as
� � � � � � 7 � � . Define function � �

as

� � � � � � � 7 � � � � H � �� � � � � � 7 � � (14)

We claim that � � � ��� � � 7 � � is a quasi-concave function in � � for
any fixed � 7 � . By the definition of quasi-concavity in [21], we
only need to check that the set� � � � � ��� � � � � �(� � � 7 � � ��� �
is convex for all � ��
 . If � J C , clearly

� � ��� by (14).
When � �!C , the set

� � can be rewritten as� � � � ���	��� H�
 � � � � � � � �(� � � 7 � ����
 � � ��

Since

� � � � � � � 7 � � is a non-increasing function in � � for any
fixed � 7 � , the set

� � is convex. Therefore � � � � � � � 7 � � is quasi-
concave in � � .

Since < C�� �"���# = is a nonempty compact convex set, by
the theorem of Nash [21], the quasi-concavity of � � � ��� � � 7 � �guarantees that there exists a � 
 � < C � � ���# = � such that for all/ � � � ���;�#� � *	� � 
� � @���� ?A@,B��� ��� F�� ������� � � � � � � � � 
 7 � �

We now argue that, for all / , either 1)
� � � � 
 � � C , or 2)� � � � 
 � ! C and we can take ��
� � C . These conditions imply

(6), and hence � 
 is an equilibrium price.
Case 1:

� � � C � � 
 7 � � J C . Since ) �� is strictly concave,� � � ��� � � 
 7 � � is nondecreasing1 in < C � � ���� = . Moreover, the proof
of Lemma 1 shows that

� � � � ���# � � 
 7 � � ! C . Therefore, there
exists a point � 
� in < C�� � ���# = where

� � � ��� � � 
 7 � � � C . This � 
�
maximizes � � � �(� � � 
 7 � � .Case 2:

� � � C � � 
 7 � � � C . Since
� � � ��� � � 
 7 � � is a non-increasing

function in � � , we have that� � � ��� � � 
 7 � ���!C for all �(� � < C � � ���� =
If H � � ! � � � C�� � 
 7 � � � C , then

� � � ��� � � 
 7 � � and � � � �(� � � 
 7 � � are
strictly decreasing in �(� and hence� 
� � @���� ?A@,B��� ��� F�� ������� � � � � � � � � 
 7 � � � C
Otherwise we have

� � � C�� � 
 7 � � � H � � from (13). In this
situation, all � � � going through link / are zero, and hence
we can set � 
� � C without affecting any other prices. More
precisely, a (possibly) new price vector !� with !��� � C and

1 "�#�$ %�#�&'%)(* #'+ is strictly increasing unless some ,.- $ % + becomes zero.

!� + � � 
+ for /0/� / is also a Nash equilibrium that maximizes� + � � + � !� 7 + � for / � � ��������� * .
Thus we have proved that, for / � � ��������� * ,� 
� � � � � 
� � � 
 7 � � � C � � � � � 
� � � 
 7 � � � C � � 
 � C

which is (6).

IV. LOCAL UNIQUENESS OF EQUILIBRIUM

Theorem 2 guarantees the existence of network equilibrium.
We now study its uniqueness properties.

In a single-protocol network, if the routing matrix � has full
row rank, then there is a unique active constraint set �* and a
unique equilibrium price � associated with it [20]. If � does
not have full row rank, then equilibrium prices � may be non-
unique but the equilibrium rates � � � � are still unique since the
utility functions are strictly concave. This also implies that the
set of links / with � � � � � � � � is the same for any equilibrium
price � , though the active constraint sets where � � J C may
not be unique.

In contrast, the active constraint set in a multi-protocol
network can be non-unique even if � has full row rank.
Clearly, the equilibrium prices associated with different active
constraint sets are different. Moreover, there can be multiple
equilibrium prices associated with the same active constraint
set, as we prove below.

We start with two examples of multiple equilibria. Example
1 has a unique active constraint set, and yet it exhibits
uncountably many equilibria. This example is the basis for
other examples in this paper. Example 2 has multiple active
constraint sets but there is a unique (but different) equilibrium
associated with each active constraint set. We then introduce
regular networks whose equilibrium prices are locally unique
and characterize them.

A. Two examples of multiple equilibria

Example 1: unique active constraint set but uncountably
many equilibria

In this example, we assume all the sources use the same
utility function defined as

) �� � � � � � � H �� 1 � H � � � 2 � (15)

Then the equilibrium rates � �
of type + sources are determined

by the equilibrium prices � as

� � � � � � 1 H � � � � ( ' � � � �
where 1 is a vector of appropriate dimension whose entries
are all 1s. We use linear price mapping functions:

' � � � � � 1 � �
where 1 �

are * � * diagonal matrices. Then the equilibrium
rate vector of type + sources can be expressed as

� � � � � � 1 H � � � � ( 1 � �
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When only links with strictly positive equilibrium prices are
included in the model, we have� � � � � 


� � � � � � � � � �
Substituting in � � � � � yields


� � � � � � � ( 1 � � � 

� � �

1 H �
which is a linear equation in � for given � �

, 1 �
, and � . It has

a unique solution if the determinant is nonzero, but has no or
multiple solutions if

����� � 

� � � � � � � ( 1 � � � C

When 
 � �
, i.e., when there is only one protocol

and � (which is the same as � � here) has full row rank,����� � � � � � � � ( 1 � � J C since both � � � � � � ( and 1 � are
positive definite. In this case, there is a unique equilibrium
price vector.

When 
 � � , there are networks whose determinants are
zero that have uncountably many equilibria. See Example 5 in
the Appendix for one where � does not have full row rank.
We provide here an example with 
 ��� where � still has
full row rank.

The network is shown in Figure 1 with three unit-capacity
links, � � � �

. There are three different protocols with the

1x1
2x1

1x2

1x3

3x1

2x2

Fig. 1. Example 1: uncountably many equilibria.

corresponding routing matrices

� � ��� � � � � 3 � � CC � � 8 ( � �
	 � � � � � � � � (
The linear mapping functions are given by1 � ��� � 1 � � diag �
� � � ���%�&� 1 	 � diag � � � � � � �
It is easy to calculate that

	
 ��� � � � � � � � ( 1 � � ������ ������� � �
��

which has determinant 0. Using the utility function defined
in (15), we can check that all the following are equilibrium
prices � �� � � �	 � � ����� �� �� � � � � H � � where � � < C�� � �.� � =

The corresponding rates are

� �� � � �	 � � ��� H � � �� � � � � � � �� � � � � �� � � �!� H � � � 	 � � � �
All capacity constraints are tight with these rates. Since there
is an one-link flow at every link, the active constraint set
is unique and contains every link. Yet there are uncountably
many equilibria.

Example 2: multiple active constraint sets each with a
unique equilibrium

Consider the symmetric network in Figure 2 with 3 flows.
There are two protocols in the network with the following

1x1
2x1

1x2

Fig. 2. Example 2: two active constraint sets.

routing matrices

� � � �� � C� �C �
�� � � � � � � � � � � � (

Flows � � � � � and � � ���%� have identical utility function ) � and
source rate � � , and flow ��� � � � has a utility function )�� and
source rate � � .Links 1 and 2 both have capacity � � and price mapping
functions ' �� � � � � � and ' � � � � � for protocols 1 and 2 respec-
tively. Link 2 has capacity � � and price mapping functions' �� � � � � � and ' �� � � � .

The following theorem provides a sufficient condition for
multiple equilibria [25].

Theorem 3. Suppose assumption A1 holds. The network
shown in Figure 2 has two equilibria provided:

1) � � ! � � ! � � � ;
2) for + � � ��� , � ) � � 5 � � � �#" � �

possibly $ , if and only if� � " C .
3) for / � � � � , ' �� � � � �%" � � as � � " � � , and satisfy

� ' � � ��� ) � � 5 � � � H � � ��� ! � ) � � 5 � � � � H � � �! ' �� ��� ) � � 5 � � � H � � ���
Proof: We first claim that, if � � ! � � and � )�� � 5 ��� � � H � � � J� ' � � ��� )�� � 5 � � � H � � ��� , then there is an equilibrium point where
only links 1 and 3 are saturated and link 2 is not. In this case
the equilibrium price for link 2 is � � � C and, by symmetry,
those for links 1 and 3 are both � � . Such an equilibrium, if
exists, is defined by the following equations:� ) � � 5 � � � � � � � � ) � � 5 � � � � � � ' � � � � � �� � � � � � � � � � � � � � ! � �
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Eliminating � � and � � , the above equations are reduced to:� ) � � 5 � � � H � � � � � ' � � ��� ) � � 5 � � � ��� (16)� � ! � � H � � (17)

An equilibrium exists if and only if (16)–(17) has a nonnega-
tive solution for � � . We now show that (16)–(17) indeed admits
a unique solution � 
 J C under the hypothesis of the theorem.

When � � � C , we have� ) � � 5 � � � H � � � � � ) � � 5 � � � ��! � � � � � � � � ' � � ��� ) � � 5 � C%���
The inequality and the last equality have made multiple use of
conditions 2 and 3 of the theorem. On the other hand, when� � � � � H � � , we have ) 5� ��� � � H � � � J � ' � � � ) 5� � � � H � � ���by condition 3. Since all functions here are continuous, � ) � � 5
are strictly decreasing, and ' �� are strictly increasing, there
exists a unique C ! � 
 ! � � H � � such that � )�� � 5 � � � H � 
 � �� ' � � ��� ) � � 5 � � 
 ��� .We next claim that, if � � ! � � � and � )�� � 5 ��� � � H � � ��!' �� ��� ) � � 5 � � � H � � ��� , then there is an equilibrium point where
only link 2 is saturated and links 1 and 3 are not. In this case� � � � 	 � C , and the following equations determine such an
equilibrium:� ) � � 5 � � � � � � � � ) � � 5 � � � � � ' �� � � � �� � � � � ! � � � � � � � � � � �
Eliminating � � and � � , the equilibrium is specified by� ) � � 5 � � � H � � � � � ' �� ��� ) � � 5 � � � ��� (18)� � J � � H � � (19)

When � � � � � H � � , we have� )�� � 5 � � � H � � � � � � )�� � 5 ��� � � H � � ��! ' �� ��� ) � � 5 � � � ���
by condition 3. When � � � � � ��� ,� )�� � 5 � � � H � � � � � � )�� � 5 � C%� � � � J ' �� ��� )�� � 5 � � � ���
where we have used conditions 2 and 3. Hence, again, there is
a unique � 
 that satisfies (18)–(19). Moreover, from (17) and
(19), the two equilibria are distinct.

Remark: TCP Reno, which reacts to loss probability, and
TCP Vegas/FAST, which reacts to delay, have utility functions
that satisfy the conditions in the theorem. Two equilibria have
been demonstrated experimentally using TCP Reno and TCP
Vegas/FAST in [25] for this example.

B. Regular networks

Examples 1 and 2 show that global uniqueness is generally
not guaranteed in a multi-protocol network. We now show,
however, that local uniqueness is basically a generic property
of the equilibrium set. We present our main results on the
structure of the equilibrium set here, and the proofs in the
next subsection.

Consider an equilibrium price � 
 � � . Recall the active
constraint set �* defined by � 
 . The equilibrium price �� 
 for
the links in �* is a solution of�� � �� � � �� (20)

By the inverse function theorem, the solution of (20), and
hence the equilibrium price �� 
 , is locally unique if the Jacobian
matrix �J � �� 
 � � � �� � � �� is nonsingular at �� 
 . We call a network� � � ' � � � ) � regular if all its equilibrium prices are locally
unique.

The next result shows that almost all networks are regular,
and that regular networks have finitely many equilibrium
prices. This justifies restricting our attention to regular net-
works.

Theorem 4. Suppose assumptions A1 and A2 hold. Given any
price mapping functions ' , any routing matrix � and utility
functions ) ,

1) the set of link capacities � for which not all equilibrium
prices are locally unique has Lebesgue measure zero in
 �
: .

2) the number of equilibria for a regular network� � � ' � � � ) � is finite.

For the rest of this subsection, we narrow our attention to
networks that satisfy an additional assumption:

A3: Every link / has a single-link flow � +%���"� with1 ) �� 2 5 � � � � J C .
Assumption A3 says that when the price of link / is small
enough, the aggregate rate through it will exceed its capacity.
It implies that the active constraint set is unique and contains
every link. Hence all results below that need A3 can be
interpreted as with respect to a fixed active constraint set.

Since all the equilibria of a regular network have nonsingu-
lar Jacobian matrices, we can define the index � � � � of �	� �
as � � � � � � �

if
����� � J � � ��� J CH � if
����� � J � � ��� ! C

We have

Theorem 5. Suppose assumptions A1–A3 hold. Given any
regular network, we have


� ��� � � � � � � H � � �
where * is the number of links.

Here, we give an important consequence of this theorem.
Another implication to global uniqueness will be shown in
Section V-A.

Corollary 6. Suppose assumptions A1–A3 hold. A regular
network has an odd number of equilibria.

Proof. Since both � � � � and � H � � � are odd, the number of
terms in the summation in Theorem 5 must be odd.

Notice that Corollary 6 implies the existence of equilibrium.
Although we proved this in Section III in a more general
setting, this simple corollary shows the power of Theorem
5.

Example 3: illustration of Theorem 5 and Corollary 6
We revisit Example 1 with modified utility functions. Recall

that in Example 1, as � varies from 0 to
� ��� � , we trace out all



7

equilibrium points. The components � �� and " �� � � �� of these
equilibrium points are shown by the (red) solid line in Figure 3.
Other sources � � � and their effective end-to-end prices " �� also
lie on similar straight lines. Since the network has uncountably
many equilibrium points, it is not regular, To make it regular,
suppose we change the utility functions of sources � +%�
�)� to

) �� � � � � ��� � � � � ��� �� � � � � � � 7����	 � � � H
� � � � if � � � /� �� �����
 � � � � if � � � � �
with appropriately chosen positive constants � � � and

� �� . These
utility functions can be viewed as a weighted version of the� -fairness utility functions proposed in [20].

The basic idea of how to choose � � � and
� �� to generate

only finitely many equilibrium points is as follows. First, we
pick two points in the equilibrium set of Example 1, say,
the points associated with � � C;� C � and � � C � C � . These
choices of � provide two distinct equilibrium points � " � � � and� !" � !� � . For instance, � � �� � " �� � � � C � � � � � C;� � � ��� corresponds to� � C � C � and � !" � !� � � � C;� � � � � C;� � � �%� corresponds to � � C � C � ,
as illustrated in Figure 3. Then, for each source �,+%�
�)� , find

x 11

q 11

1=(β
1
1/q

1
1)1/α1

1  x 1

5/6

7/8

1/8 1/6

  

(0.135,0.865)

  

(0.165,0.835)

Fig. 3. Example 3: construction of multiple isolated equilibria.

� � � and
� �� such that (4) is satisfied by the two equilibrium

points � " �� � � � � � and � !" �� � !� � � � with the new utility functions.
This is illustrated in Figure 3 where relation (4) with the new
utility function is represented by the (blue) curve, and � � � ,� �� are chosen so that the curve passes through the original
equilibrium points � � �� � " �� � and � !" � !� � . More specifically, given
two equilibrium points � " �� � � � � � and � !" �� � !� � � � , choose

� � � � ��
 � � " �� �IH ��
 � � !" �� ���
 � � !� � � �IH ��
 � � � � � �� �� � " �� 1 � � � 2�� �	
The resulting � � � and

� �� for all flows � +%�
�)� are shown in Table
I.

By construction, both (� �� � C;� � � � � � �� � C;� � � C ) and (� �� �C;� � � � � � �� � C � � � C ) are network equilibria. By Corollary 6,

TABLE I

EXAMPLE 3: ��� - AND ��� - .

Flows � � - � � -,��� 5.6851 0.0592,��� 4.0285 0.0803, �� 5.6851 0.0592, � � 0.0322 0.8389, �� 0.0322 0.8389, � � 0.0963 0.7041

there is at least one additional equilibrium. Numerical search
indeed located a third equilibrium with (� �� � C;� � � � , � �� �C;� �>C � ).

We further check the local stability of these three equilibria
under the gradient algorithm (23) to be introduced in Section
IV-C. The eigenvalues and index for each equilibrium are
shown in Table II. It turns out that the equilibrium (� �� �C;� � � � , � �� � C � � C � ) is not stable and has index 1, while the
other two are stable with index H � . The dynamics of this

TABLE II

EXAMPLE 3: STABILITY AND INDICES OF EQUILIBRIA.

Equilibria $ % � &'% � &'% � + Eigenvalues Index$������! #" &$��� %# &&�����! #" + ' ��� %�� & ' �)(*� +, & ' %#-�� (. ' �$������/+,% &0��� %#�#- &$�����/+,% + ��� %�� & ' �!%��  #% & ' %#%�� +,� �$������!-#" &$�����)(�&&�����!-#" + ' �!%�� +�� & ' �#� -,(�& ' ��� -,( ' �
network under the gradient algorithm can be illustrated by a
vector filed. By symmetry, the equilibrium prices for the first
and third link are always same. Therefore, we can draw the
vector field restricted on the plane � � � � 	 to illustrate the
system dynamics. The phase portrait is shown in Figure 4. The
(red) dots represent the three equilibria. Note the equilibrium
in the middle is a saddle point, and therefore unstable. The
(red) arrows give the direction of this vector field. Individual
trajectories are plotted with slim (blue) lines.
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Fig. 4. Example 3: vector field of (% � & % � + .
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C. Proofs and intuitions

In this subsection we provide proofs for the results on local
uniqueness.

Proof of Theorem 4. The main mathematical tool used in
our proof is Sard’s Theorem [4], [24], of which we quote
a version here that is tailored to our problem. Let � be an
open subset of 
 �

: and let
�

be a continuously differentiable
function from � to 
 �

: . A point ��� � is a critical point of�
if the Jacobian matrix � � � ��� of

�
at � is singular. A point* � 
 �

: is a critical value of
�

if there is a critical point� � � with * � � � � � . A point in 
 �
: is a regular value of

�
if it is not a critical value.

Sard’s theorem. If
� ��� " 
 �

: is continuously differentiable
on the open subset � � 
 �

: , then the set of critical values of�
has Lebesgue measure zero in 
 �

: .

Fix a routing matrix � and utility functions ) . There are
at most � � H � different active constraint sets. Let �* � *
be such a combination with �* links. Consider the set of all
possible link capacities � � � � � � / � * � under which the active
constraint set is �* , i.e., with such a capacity vector � , an
equilibrium price � has �(� J C if / � �* and ��� � C otherwise.
Fix such an equilibrium point � 
 . Again let �� denote the price
vector only for links in �* . Then �� 
 is not locally unique if
the function �� � 
���: " 
���: defined by �� � �� � � �� � � �� � has a
singular Jacobian matrix � �� � � �� at �� 
 , i.e., if �� 
 is a critical
point of �� . The set of such capacity vectors �� � 
���: under
which all links in �* have active constraints in equilibrium
satisfy �� � �� 
 � � ��
and hence are critical values of �� . Since �� is continuously
differentiable by assumption A1, we can apply Sard’s theorem
and conclude that the set of such capacity vectors �� has zero
Lebesgue measure in 
 ��: . The extension to 
 �

: for all link
capacities clearly also has zero Lebesgue measure in 
 �

: .
Since we only have a finite number of different active

constraint sets, the union of link capacity vectors that give
rise to locally nonunique equilibria still has zero Lebesgue
measure. This proves the first part of the theorem.

The equilibrium set � defined in (7) is closed because� � � � is continuous, and is bounded by Lemma 1. Hence �
is compact. Since � � � ' � � � ) � is a regular network, every� � � is locally unique, i.e., for each � � � we can find
an open neighborhood such that it is the only equilibrium in
that open set. The union of these open sets forms a cover
for set � . Since � is compact, it admits a finite subcover
[15], i.e., � can be covered by a finite number of open sets
each containing a single equilibrium. Hence, the number of
equilibria is finite.

Proof of Theorem 5. By assumption A3, we can always find� ��� � J C such that for any price � and link / with � � ! � ��� � ,
we have 


�


� � � ��� � � � � � � J � �

Let � � � < �"��� � � �"���# = � where ������ is defined in Lemma 1.
Clearly, all equilibria are in the set � . To prove our result,
we will invoke a version of the Poincare-Hopf Index Theorem
tailored to our problem [27], [18].

Poincare-Hopf Index Theorem. Let � be an open subset of 

and 	 ��� � " 
 �

be a smooth vector field, with nonsingular
Jacobian matrix � 	 � ��� at every equilibrium. If there is a � �
�

�
such that every trajectory moves inward of region � , then

the sum of the indices of the equilibria in � is � H � � � .

Gradient project algorithm. To construct the vector field 	
required by the index theorem, let �

� � � and consider the
following gradient algorithm from � to � proposed in [13].
The prices are updated at time � according to�� ����� � 
 � � � ����� H � � (21)

where 
 J C is an *�� * diagonal matrix whose elements
represent stepsizes. A source updates its rate based on the
end-to-end price

� � ��� � � � � ������� (22)

A consequence of assumption A3 is that � ����� � � ��� � J C for
all � under the gradient algorithm (21)–(22). This guarantees a
unique active constraint set that is * . Hence the equilibrium set� defined in (7) is equivalent to � � ���	��
 �

:
� � � � �>H � � C � .

Combining (21)–(22) with � � � � ����� � � � ����� yields the
required vector field 	 :�� ����� � 
 � � � � � ����� H � � � ��	 � � � ����� (23)

whose Jacobian matrix is:� 	 � � ���� � 
 J � � � ��
 ��� � � ���� (24)

where J � � � is given by (8). Clearly, � 
 is an equilibrium point
of 	 , i.e., 	 � � 
 � � C , if and only if � 
 is a network equilibrium,
i.e., � 
 � � . Since the network � � � ' � � � ) � is regular, J � � � is
nonsingular at every network equilibrium � 
 � ��
�� . Since
 is a positive diagonal matrix, � 	 � � � � ��� is also nonsingular
by (24) at all its equilibrium points � in � , as the index
theorem requires.

Consider any point � on the boundary of � . For any / , we
have one of two cases:

1) If � � � ��� � ������ , link / will be underutilized, � � � � � ����� !� � , and
��(� !!C according to (23).

2) If �(� ����� � � ��� � , the aggregate rate at link / will exceed� � , ��� � � ������� J � � , and
��(� J C according to (23).

Therefore, every point � on the boundary of � will move
inward. Hence our result directly follows from the Poincare-
Hopf index theorem.

V. SUFFICIENT CONDITIONS FOR GLOBAL UNIQUENESS

The exact condition under which network equilibrium is
globally unique is generally hard to prove. This section
provides four sufficient conditions for global uniqueness. The
first condition relates local stability of the equilibria to their
uniqueness. The second condition generalizes the full rank
condition of � from single-protocol network to multi-protocol
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network. The third condition guarantees uniqueness when the
price mapping functions are linear and link-independent. The
final condition implies global uniqueness of linear networks.

A. First condition: local stability and global uniqueness

Recall that under assumption A3, we can assume without
loss of generality that * is the unique active constraint set
that contains all links. We say an equilibrium � 
 � � locally
stable if the corresponding Jacobian matrix J � � 
 � defined in
(8) is stable, that is, every eigenvalue of J � � 
 � � ��� � � 
 � � ���
has negative real part. Hence a locally stable � 
 is also
locally unique, but the converse may not hold. To justify
this definition, take the matrix 
 in the gradient algorithm
(23) to be � � . Then the linearized system is ( � � denotes the
perturbation around � 
 ):

� �� � � J � � 
 � � � (25)

Since � J C is a scalar, the real part of the eigenvalues of� J � � 
 � has the same sign as that of the eigenvalues of J � � 
 � .
Hence the local asymptotic stability of � 
 implies that the
gradient algorithm (23) converges locally to � 
 .
Theorem 7. Suppose assumptions A1–A3 hold. If all equilib-
ria have index � H � � � , then � contains exactly one point. In
particular, if all equilibria are locally stable, then � contains
exactly one point.

Proof: The first claim of the theorem directly follows from
Theorem 5. We now claim that an equilibrium � 
 � � which
is locally stable has an index � � � 
 � of �
H � � � . To prove
the claim, consider a locally stable equilibrium price � 
 . All
the eigenvalues of J � � 
 � have negative real parts. Moreover,
since J � � 
 � has real entries, complex eigenvalues come in
conjugate pairs. The determinant of J � � 
 � is the product of
all its eigenvalues. If there are / conjugate pairs of complex
eigenvalues and * H	� / pairs of real eigenvalues, the product
of all eigenvalues has the same sign as � H � � � 7 � + which has
the same sign as �
H � � � . Hence the index of a locally stable
equilibrium is �
H � � � .

This result may seem surprising on the first sight as it relates
the local stability of an algorithm to the uniqueness property of
a network. This is because both equilibrium and local stability
are defined in terms of the function � � � � : an equilibrium� 
 satisfies � � � 
 � � � and the local asymptotic stability
of � 
 is determined by ��� � � 
 ��� ��� . The connection between
these two properties is made exact by the index theorem. An
implication of this result is that if there are multiple equilibria,
then no algorithm

�� � $ � � � ����� , whose linearization around
each equilibrium � 
 � � satisfies ��$ � � 
 ��� �%� � ��� � � 
 ��� ��� ,
can ever be found to locally stabilize all of the equilibria.
Conversely, if we can find a region that contains � and such
an algorithm such that i) all boundary points of that region
move inwards, and ii) the algorithm locally stabilizes any
equilibrium, then there is exactly one network equilibrium.

Local stability can be checked in several ways. For example,
if the Jacobian matrix is diagonal dominant at an equilibrium,
then the equilibrium is locally stable.

B. Second condition: negative definiteness of J(p)

In a single-protocol network, for the equilibrium price to
be unique, it is sufficient that the routing matrix � has full
row rank. Otherwise, only the source rates are unique, not
necessarily the link prices. In a multi-protocol network, this
is no longer sufficient. We now provide another sufficient
condition that plays the same role in a multi-protocol network
as the rank condition on � does in a single-protocol network
(see also the remark after Theorem 9).

Let $ � � $ � ��� �#�,� $�� � be a vector of real-valued functions
defined on 
 � . Let � � � � * � 
 � � $ � * � � C � and co � be its
convex hull. Define a set � � � � of vectors as� � � � � ��� 	 � 	 ��� H�� for � � ��� co � � (26)

as a function of the set � .

Lemma 8. If for every * � co � , the Jacobian matrix J � * � �� $ � * ��� � * exists and 	 ( J � * � 	 ! C for all 	 � � � � � , then �
contains at most one point.

Proof. For the sake of contradiction, assume there are two
distinct points � and � in � such that $ � � � � $ �	� � � C . Let� �	
%� � ��� ��
��
� H � � where 
 � < C�� � =
Then � $ � � �

%���� 
 � J � � �

%��� � � �	
%�� 
 � J � � �

������	� H � �
Hence, $ �	� � H $ � � � ��� �F J � � �

%�����	� H � � � 

Multiplying both sides by �
� H � � ( yields�
� H � � ( � $ �
� � H $ � � ��� �

� �F �	� H � � ( J � � �

%�����	� H � � � 

The left hand-side of the above equation is C , and the right-
hand side is negative under the assumption of the theorem.
This contradiction proves the theorem.

Let $ � � , and let � � � be the set of network equilibria.
Then Lemma 8, together with Theorem 2, provides a sufficient
condition for global uniqueness of network equilibrium.

Theorem 9. Suppose assumptions A1–A3 hold. If for every
price vector ��� co � , the Jacobian matrix J � � � defined in (8)
exists and 	 ( J � � � 	 !!C for all 	 � � � � � , then there exists a
globally unique network equilibrium.

In the single-protocol case, a similar result has been ob-
tained in [20]. However, for that case, the Jacobian matrix is
negative definite when � has full row rank. Then the condition
in Theorem 9 always holds and the equilibrium is unique. In
the multi-protocol case, the Jacobian matrix is in general not
symmetric and hence not negative definite. Therefore � having
full row rank is no longer sufficient for the condition in the
theorem to hold.

Since we do not know the equilibrium set � , the condition
in the theorem cannot be directly applied to prove global
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uniqueness. To use the theorem, however, it is sufficient to
find a convex superset !� of � and a superset !� of � � � �
such that 	 ( J � � � 	 ! C for all ��� !� and 	 � !� . This implies
the condition in Theorem 9 and hence global uniqueness. We
illustrate this procedure in the next example.

Example 4: application of Theorem 9 to verify global
uniqueness

We visit Example 1 for the third time but using ��
 � utility
functions for all sources, i.e.,

) �� � � � � � � ��
 � � � � � � for all � +%���"� (27)

Let the Jacobian matrix be

J � � � � �� 
 � � 
 �
� 
 � 	
 � � 
 � � 
 � 	
 	 � 
 	 � 
 	�	
��

where 
 + � � 
 + � � � � are functions of prices � given by (8). For
example


 � � � H �� � � H �� � � � � � � � � H �� � � � � 	 � � � � � �
It can be seen that J � � � is not negative definite for general �
unlike in the single-protocol case. Even though � can be hard
to find, we demonstrate how to find a simple convex superset!� of � and a simple superset !� of � � � � .

Consider the convex set

!� � � � ���	
 	: � � � � � � � 	 � � � � � � � ��� �
We claim that � � !� . To see this, let � be an equilibrium
price. If � � ! � , then � �� � � � � � will exceed the link capacity�

, and hence � � � � . A similar argument gives � � � � . To see� � � � , assume it is not true. Then

� �� � � � � � ! � ���� � � � � � � � � � � � � � ! � � � �� 	 � � � � ��� � � � � � � ��! � � �
Summing them yields � �� � � � � � � 	 � ! � . Hence the network
is not in equilibrium, contradicting that � is an equilibrium
price. Hence � � � � . The argument for � � ��� is similar.

Using the definition of !� , we can bound all 
 + � � � � for ���!� . The results are collected in Table III.

TABLE III

EXAMPLE 4: BOUNDS ON ELEMENTS OF J $ % +
Elements Upperbound Lowerbound� �0� ' ��� %��.+ ( ' �#���)(����� �0� ' ��� %��# �� ' �#���)(."#-� �0� ' ��� %��.+ ( ' �#���)(����� �&� ' ��� �.+#+ ( ' �����)(����� �/� ' ��� �# #-�� ' �����/+ (��� � � ' ��� �# #-�� ' �����/+ (��� � � ' ��� �.+#+ ( ' �����)(����� � � ' ��� ���!�#� ' ��� �.+,�#�� � � ' ��� ���!�#� ' ��� �.+,�#�

Let

!� � � � 	 ��
 	: � 	 � � 	 	 �

We claim that � � � � � !� . To show this, note that co � � !�
since co � is the smallest convex set that contains � . Hence� � � � � � � !� � . Since � � � � 	 at equilibrium, 	 � � 	 	 holds
for any 	 � � � !� � from the definition of !� . Hence, � � !� ��� !�
and therefore � � � � � !� .

We now check that 	 ( J � � � 	 !!C for all ��� !� and 	 � !� .
For any 	 � !� , 	 ( J � � � 	 is the following quadratic form in 	 �
and 	 � :
	 ( J � � � 	 � 	 �� � 
 ��� � 
 	�	 � 
 � 	 � 
 	 � � �

	 � 	 � � 
 � � � 
 � � � 
 � 	 � 
 	 � � � 	 �� 
 ���
If 	 � and 	 � have the same signs, then since 
 + � are all negative
from Table III, 	 ( J � � � 	 !!C . If 	 � and 	 � have opposite sign,
then a sufficient condition for 	 ( J � � � 	 !!C is� 
 � � � 
 � � � 
 � 	 � 
 	 � � � ! � 
 � � � 
 ��� � 
 	�	 � 
 � 	 � 
 	 � �
Using Table III, it is easy to check that the maximum value
of � 
 � � � 
 � � � 
 � 	 � 
 	 � � � H � 
 � � � 
 � � � 
 	�	 � 
 � 	 � 
 	 � � isH C;� �!��� � . Therefore we have found a superset !� of co � and
a superset !� of � � � � such that 	 ( J � � � 	 !�C for all � � !�
and all 	 � !� . This implies the condition of Theorem 9 and
hence the global uniqueness of network equilibrium.

C. Third condition: linear link-independent ' �
When the price mapping functions are linear and link-

independent, i.e., ' � � � � � � � / � � � for some scalar / � J C ,
it is easy to show that we have an unusual situation in the
theory of heterogeneous protocols where the equilibrium rate
vector � solves the following concave maximization problem?A@>B� 


� � � / � ) �� � � � � � s. t. � � � �
Therefore, such a network always has a globally unique
equilibrium when ) �� are strictly concave.

Here we provide another proof using Theorem 9.

Theorem 10. Suppose assumptions A1–A3 hold and � has
full row rank. If for all + and / , ' � � � � � � � / � � � for some
scalar / � J C , then there is a unique network equilibrium .

Proof. We prove this by showing that the Jacobian matrix
J � � � defined in (8) is negative definite over all � � C . Then
the result follows from Theorem 9.

Under the assumptions of the theorem, J � � � can be simpli-
fied into (from (8)–(10))

J � � � � 

� � �

�
� � � � $ � � & ( � ' � � � ����� 


� / � � �
�

� � � � $ � � & (
where � � � � � � � � � � � ��� � " � . Since ) �� are strictly concave,
� � � � � is a strictly negative diagonal matrix for all � � C .
Now, 
 � � � is symmetric. Moreover, since � has full row rank,��� ( is positive definite, i.e., for any nonzero vector 	 ��
 �

,

� 	 ( � � � � � � ( 	 � 


� $ � � � � ( 	 & ( � � � � ( 	 J C
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Then there exists at least one + such that �
� � � � � � � ( 	 is

nonzero. Without lose of generality, assume it is + � �
. Then

	 ( J � � � 	 � 	 (


� / � � �

�
� � � ��� � � � ( 	� 


� / � � � � � ( � � � � � � �� / � � � � � ( � � � � � � � ! C
where the first inequality follows from the fact that � � � � � is
negative definite. Hence J � � � is negative definite.

D. Fourth condition: linear networks

We now apply Theorem 7 to prove global uniqueness of
linear networks. Consider the classic line network shown in
Figure 5. There are * links and * � � flows. Suppose without

1x

L+1x

2x Lx
Fig. 5. Corollary 11: line network.

loss of generality that every flow uses a different protocol.
This implies that � � � � � � � � �%� � ��� � " � is a negative scalar
under assumption A1. Denote by �

�
a * � � vector with

�
in

the + th entry and C elsewhere, and 1 a *K� � vector with
�

in
every entry. Then � � � �

�
for + � � ����� * , and � � : � � 1.

Theorem 11. Suppose assumptions A1–A2 hold. The linear
network in Figure 5 has a unique equilibrium.

Proof. Take 
 � � in the gradient algorithm (23). We will
prove that all the eigenvalues of the Jacobian matrix

J � � � � 

� � �

�
� � � ��� � � � ( � ' � � � ��%�

have negative real part for all � � C . This implies that all
equilibria are locally stable. By Theorem 7 there must be a
unique equilibrium.

In the network shown in Figure 5, for + � � ����� * ,� � � � ( � ' � � � ��%� � � ' �� � � ���� � � � � � (
Since � � � � � is a negative scalar, we can define a positive
number

� � such that:

� � � � � � � � � � � ( � ' � � � ���� � H � � � � -�� � � � (
For + � * � � , � ' � � � � � �%� is a positive definite diagonal
matrix. Recall that � � � � � is a scalar. Assume that the � th
diagonal entry of matrix � � � � � � ' � � � ��� ��� is H�� � . Denote by
� the *!� � vectors formed from � � . Then for + � * � � :
� �
�

� � � ��� � � � ( � ' � � � ���� � H 1 - 1
(

diag ��� � � � H 1 � (

By combining the results above, we obtain

J � � � � � : �

� � � � �

�
� � � � � ( � ' ����

� H �

�

� � � � -�� � � � ( H 1 � (� H diag � � � � H 1 � (
By the following Lemma, all the eigenvalues of above matrix
have negative real parts. Therefore, there must be a unique
equilibrium by Theorem 7.

Lemma 12. Suppose that � is a positive definite diagonal
matrix, and � is a positive vector, then the eigenvalues of
� � 1 � ( have positive real parts.

Proof: See Appendix VII-B.

Remarks:

1) The above result can be generalized to include more
than one multi-hop flows, provided they all belong to
the same type * � � and the sets of links they traverse
are nested, i.e., * � � � : �� ��� * � � � : �� ��� - - -�� * � � � : �� �
for 	 multi-hop flows.

2) Theorem 7 also implies the global uniqueness of equi-
librium for any network in which no flow passes through
more than 2 links in the active constraint set, when A1–
A3 hold. In this case, the Jacobian matrix J � � � is strictly
diagonally dominant with negative diagonal entries, and
hence its determinant is � H � � � . As a consequence, we
need at least a three-link network to have multiple
equilibria if A1–A3 are satisfied.

3) If A3 is violated, then there are two-link networks that
have multiple equilibria; see Example 5 in Appendix
VII-A with two links and two protocols. Since uni-
protocol network always has a unique equilibrium, this
is a “smallest” network with non-unique equilibria.

VI. CONCLUSION

When sources sharing the same network react to different
pricing signals, the current duality model no longer explains
the equilibrium of bandwidth allocation. We have introduced
a mathematical formulation of network equilibrium for multi-
protocol networks and studied several fundamental properties,
such as existence, local uniqueness, number of equilibria, and
global uniqueness. We prove that equilibria exist, and are
almost always locally unique. The number of equilibria is
almost always finite, must be odd when they are associated
with the same active constraint set. We provide four sufficient
conditions for global uniqueness.
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VII. APPENDIX

A. Smallest network with multiple equilibria

Example 5: a two-link network with non-unique equilibria
In this example, we again assume that all sources use the

same utility function defined as

) �� � � � � � � H �� 1 � H � � � 2 �

The network topology is shown in Figure 6 with link capacities� � < � � � = . The corresponding routing matrices for these two

1x2

1x1

Fig. 6. Example 5: a network with 2 links and 2 protocols.

protocols are

� � � � � � 3 �� 8
We use linear price mapping functions ' � � � � � 1 � � , + �� � � , where 1 �

are � � � matrices given by1 � � � � 1 � � diag � � � � �
As for Example 1, we check the matrix�
 � � � � � � � � � ( 1 � � 3 � �� � 8
which has determinant 0, implying multiple equilibria. It is
easy to verify that the following points are all equilibria:� � � � � � � � � � � H � �.� � where � � < C � � ��� =
The corresponding rates are:� �� ��� � � H � ��� � � � � � � � � � � �.�
The capacity constraints are all tight.

Remarks: Note that even with a single protocol, the example
above has non-unique equilibrium price vectors since the
routing matrix is not full rank. However, in that case, the
equilibrium rates are unique, unlike the case of multiple
protocols.

B. Proof for Lemma 12

Proof. Suppose that � is an eigenvalue of � � 1 � ( , then
diag � � � H � � � 1 � ( is singular. If � � � � for certain � , then,
since

� � J C , � is positive. Otherwise the following matrix is
also singular � � diag

� �� � H ��� 1 � ( (28)

The rank of matrix diag � � � � � � H � ��� 1 � ( is
�
. Moreover it has

only one nonzero eigenvalue equal to � � � � � � � � H � � . For the
matrix in (28) to be singular, it must have a zero eigenvalue,
and this is possible if and only if


� � �� � H � � � H �
The real part of � � � � � � H � � � is � � � � � H � � � ��� � � � H � � � . If� � � � C , the sum of the real part of � � � � � � H � � � cannot beH � . So we must have � � � J C .


