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Accommodating backbone flexibility continues to be the most difficult
challenge in computational docking of protein–protein complexes.
Towards that end, we simulate four distinct biophysical models of protein
binding in RosettaDock, a multiscale Monte-Carlo-based algorithm that
uses a quasi-kinetic search process to emulate the diffusional encounter
of two proteins and to identify low-energy complexes. The four binding
models are as follows: (1) key-lock (KL) model, using rigid-backbone
docking; (2) conformer selection (CS) model, using a novel ensemble
docking algorithm; (3) induced fit (IF) model, using energy-gradient-based
backbone minimization; and (4) combined conformer selection/induced fit
(CS/IF) model. Backbone flexibility was limited to the smaller partner of
the complex, structural ensembles were generated using Rosetta refinement
methods, and docking consisted of local perturbations around the
complexed conformation using unbound component crystal structures for
a set of 21 target complexes. The lowest-energy structure contained N30%
of the native residue–residue contacts for 9, 13, 13, and 14 targets for KL,
CS, IF, and CS/IF docking, respectively. When applied to 15 targets using
nuclear magnetic resonance ensembles of the smaller protein, the lowest-
energy structure recovered at least 30% native residue contacts in 3, 8, 4,
and 8 targets for KL, CS, IF, and CS/IF docking, respectively. CS/IF
docking of the nuclear magnetic resonance ensemble performed equally
well or better than KL docking with the unbound crystal structure in 10 of
15 cases. The marked success of CS and CS/IF docking shows that
ensemble docking can be a versatile and effective method for accommodat-
ing conformational plasticity in docking and serves as a demonstration for
the CS theory—that binding-competent conformers exist in the unbound
ensemble and can be selected based on their favorable binding energies.
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Introduction

The formation of highly specific protein com-
plexes is a fundamental process in biology, and the

structures of these complexes provide detailed
insight into the mechanisms of protein function.
Given the enormous number of undetermined
complex structures and the difficulties in determin-
ing structures through X-ray crystallography or
nuclear magnetic resonance (NMR), there is a need
for accurate computational methods to predict
protein complex structures. Complex structure
prediction, also known as ‘protein docking,’ con-
sists of determining the structure of the bound
complex using the unbound structures of its
partners (for a review, see Gray1). Although
protein docking could be viewed as primarily an
engineering problem—without the need to follow

*Corresponding author. E-mail address: jgray@jhu.edu.
Abbreviations used: KL, key lock; CS, conformer

selection; IF, induced fit; CS/IF, conformer selection/
induced fit; FFT, fast Fourier transform; MC, Monte Carlo;
MD, molecular dynamics; CAPRI, Critical Assessment of
Protein Interactions; AChe, acetylcholinesterase; FAS2,
fasciculin II; PDB, Protein Data Bank; MSF, mean square
fluctuation.

doi:10.1016/j.jmb.2008.05.042 J. Mol. Biol. (2008) 381, 1068–1087

Available online at www.sciencedirect.com

0022-2836/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.



Author's personal copy

the physical basis of protein binding—physical
models of biomolecular interactions have long
served as starting points for development. Further-
more, the success or failure of docking algorithms
based on these models may provide insight into the
biophysical models themselves.
A comparison of bound and unbound structures

often reveals significant changes in backbone con-
formation upon binding,2,3 which confound current
docking methods and represent the single greatest
challenge to predictive protein docking. Accurate
modeling of backbone conformational changes in
docking is difficult because of the enormous com-
plexity of backbone conformational space both in
size and in degrees of freedom (for a review, see
Bonvin4), making exhaustive sampling impossible.
Furthermore, since changes in backbone conforma-
tion affect both the intramolecular and the inter-
molecular energies of putative complexes, they
create additional challenges in the discrimination
of near-native structures. Effective strategies for
both backbone conformational sampling and discri-
mination are needed before flexible docking is fea-
sible for predictive applications.
Four biophysical models of protein binding sug-

gest distinct conformational sampling strategies in
flexible protein docking. First, the key-lock (KL)
model of protein interactions, proposed by Fischer
in 1894, states that proteins interact purely via sur-
face complementarity of their rigid unbound struc-
tures.5 The KL model is the most influential model
in the development of protein docking algorithms,
underlying the original grid-based6 and fast Fourier
transform7 (FFT) techniques. Since most modern
dockingmethods include side-chain motions in some
capacity, for the purposes of this article, we define the
KL model in terms of protein backbone flexibility.
After allowing side-chain motions, KL docking stra-
tegies include, among others, ZDOCK/RDOCK,8,9

ClusPro,10 and RosettaDock.11 These methods are
moderately successful at predicting complexes for
proteins that undergo minimal backbone conforma-
tional change upon binding, but perform progres-
sively worse as the magnitude of backbone con-
formation changes increases.12 Furthermore, these
methods are far more successful when starting from
bound structures than when starting from unbound
structures,11,13,14 even in cases with minor conforma-
tional changes, indicating that backbone flexibility is
an important component to protein binding in gene-
ral and that accurate modeling of backbone flexibility
may improve docking for all complexes, not just
those that exhibit greater flexibility.
Second, the conformational selection (CS) model

proposed by Monod et al. for protein allostery and
later adapted to protein interactions by Kumar et al. is
a statistical mechanical view of protein binding.15,16

The unbound state of a protein is represented by an
ensemble of low-energy conformations, or confor-
mers, one ofwhich is the bound conformation.During
the binding process, the bound-like conformers are
selected over the other conformers in the ensemble as
a result of their favorable binding energies. Thus, for

docking, backbone flexibility is modeled implicitly as
a pregenerated ensemble of rigid structures generated
from the unbound structure. Previous CS-docking
examples include both FFT-based17–19 and Monte
Carlo (MC)-based ensemble docking.20 Both Smith
et al. and Grunberg et al. used molecular dynamics
(MD) to create an unbound ensemble that contained
conformations that, in some ways, resemble the
bound conformation, but both groups were unable
to recover the bound structure in its entirety.18,19

Subsequent FFT-based cross-docking of an ensemble
of structures from the MD simulations showed subs-
tantially improved samplingnear the bound structure
in the former study and marginal improvements in
docking accuracy in the latter study. Bastard et al.
carried out ensemble docking with an ensemble of
loop conformations and successfully discriminated
near-native structures when the bound loop confor-
mation was deliberately added to the ensemble.20

Third, in Koshland's induced fit (IF) model,21 two
proteins recognize each other to form an encounter
complex, and then mutually alter their structures to
form the intricate surface complementarity observed
in bound structures. This model dictates that the
bound conformation of a protein exists in response to
the presence of the partner in complex, so the back-
bone conformational space must be sampled expli-
citly during docking in response to local energetics of
the interface. Explicit backbone flexibility has been
modeled primarily using MD,22–24 energy minimi-
zation,23,25 or gradient-basedmethods inMCminimi-
zation,26,27 but not FFT-based methods. Wang et al.
have shown impressive results in docking proteins in
which a loop undergoes moderate to large conforma-
tional changes upon binding using explicit backbone
flexibility, but their methods are extremely computa-
tionally intensive and require prior knowledge of the
flexible regions, limiting their use in blind structure
prediction.26,28 Krol et al. carried out both MD relax-
ation and energy minimization of docking poses and
showed significant increases in the fraction of native
residue contacts recovered.23

The fourth model is a hybrid conformer selection/
induced fit (CS/IF) model proposed by Grunberg
et al.where binding is a two-stage process that begins
with conformational selection to form an encounter
complex, followed by an IF or ‘refolding’ step that
leads to the final bound conformation.19 The con-
formations that are selected to form the encounter
complex need not resemble either the bound or the
unbound structure. A docking algorithm based on
this model would combine both ensemble docking
and explicit backbone flexibility during docking.
Krol et al. employed a docking strategy that com-
bines FFT-based cross-docking of MD-generated
ensembles with MD refinement of top-ranked
decoys on a limited set of targets.17 Their approach
improved docking accuracy by measure of the
number of native residue contacts recovered, but
decreased accuracy by other measures such as the
root mean square deviation (RMSD) of interface
residues. HADDOCK combines both implicit and
explicit backbone flexibilities while incorporating
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biochemical information,22 and it is capable of using
ensembles from a wide variety of sources including
MD, homology modeling, or NMR structures. When
HADDOCK was used to dock MD-derived ensem-
bles for two sets of Critical Assessment of Protein
Interactions (CAPRI) targets, significant improve-
ments over rigid-body docking were observed.25,29

In several specific applications, docking of ensem-
bles of NMR models using HADDOCK successfully
generated structures of unknown protein complexes
that have been subsequently validated by biochem-
ical experiments.30–32

Our goal in this work is to implement the four
binding models as conformational sampling strate-
gies in a common algorithm (RosettaDock11) and to
evaluate the differing abilities and limitations of each
approach. We aim to create the optimal docking
algorithm that allows backbone flexibility. As this is
an ambitious goal, we limit this study to docking
targets with small tomoderate amounts of conforma-
tional change upon binding, and we restrict back-
bone motion to the smaller of the two proteins
(ligand). At a minimum, a flexible backbone algo-
rithmmust be able to recover correct docked complex
structures (near-native) for these simpler targets.
Insights gained in this study can be later extended
toward the goal of capturing large-scale conforma-
tional change in docking. Furthermore, we test our
new ensemble-based methods using the sets of
structural models provided by NMR solution-state
studies (hereinafter referred to as NMR ensembles).
Compared to computational ensembles, NMR
ensembles are typically more diverse and arguably
provide better representation of the unbound state.33
Although NMR structures make up roughly 15% of
known structures, a systematic study showing
successful docking using NMR ensembles, to our
knowledge, has never been performed.

Results

We have implemented and tested flexible back-
bone docking approaches using RosettaDock, a
multiscale MC-based algorithm that samples dock-
ing orientations by emulating the diffusional en-
counter of two proteins in solution and by identify-
ing low-energy complexes using an approximate
energy function. Although RosettaDock is not a
rigorous physical simulation of protein binding, its
multiscale approach, quasi-kinetic sampling me-
thod, and previous success in the CAPRI27,28,34,35
make it well suited for applying the four kinetic
models of binding to protein docking. The low-
resolution phase of RosettaDock simulates the form-
ation of an encounter complex between two proteins,
while the high-resolution phase models the transi-
tion from the encounter complex to a fully com-
plexed structure. Physically realistic conformational
sampling strategies may more effectively locate the
correct complex structure36 and, likewise, an effi-
cient sampling technique may provide insight into
the underlying theories that inspired its design.

The methods are tested on a set of docking targets
using both crystal structures and NMR ensembles
of the ligand, and backbone flexibility was limited
to the ligand (Table 1). Docking is restricted to local
perturbations around the native complexed orien-
tation (local docking) that resembles blind predic-
tive docking in cases where biochemical inform-
ation on the interaction is available. Global docking,
where all of docking search space is sampled, while
compatible with the presented methods, is out-
side of the scope of this study due to the computa-
tional cost of evaluating a target benchmark of this
size (∼100 times the computational cost of local
docking).11

Ensemble generation

To dock crystal structures, we created computa-
tional ensembles using RosettaRelax,37,38 a multi-
scale MC-based structural refinement algorithm that
samples the local conformation space for alternate
low-energy structures using small backbone tor-
sion angle perturbations, side-chain packing, and
energy-gradient-based minimization in torsion
space. Each structure required 15–30 min to generate
on a 1.5-GHz processor, and 10 structures were
generated for each target. Fig. 1a illustrates the en-
semble generation technique for crystal structures,
including idealization of bond lengths and angles,
low-resolution relaxation, and high-resolution struc-
tural refinement. Fig. 1b illustrates the preparation
of NMR ensembles, which consists of idealization
followed by high-resolution refinement.
For the Rosetta-generated ensemble, diversity is

achieved primarily through the low-resolution
relaxation step. Conformers are typically within
1.0 Å Cα RMSD of each other, while NMR ensembles
are generally much more diverse, as can be seen by
comparing Fig. 1a and b. To show the conformational
range of each type of ensemble and their potential for
containing a binding-competent conformer, the Cα

RMSD of the interface residues towards the bound
ligand conformation after superposition of the entire
ligand (BB_rmsd) is shown in Table 1 for the closest
and the farthest conformers in each ensemble. In the
Rosetta-generated ensembles, the closest conformer
is often farther from the bound structure than the
unbound crystal structure, suggesting that, within
this target set, Rosetta has a limited ability to
generate conformers that are closer to the bound
state. In the NMR ensemble, the closest conformer is
often significantly closer to the bound conformation
than the first conformer (Model 1) in the NMR struc-
ture coordinate file, which is typically the model that
satisfies the most experimental constraints.

Docking algorithms

The general docking algorithm is illustrated in
Fig. 2. The ligand in the starting structure is first
randomly translated and rotated to generate an ini-
tial starting position that approximates a collisional
encounter between the two partners in which the
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appropriate interacting surfaces are proximal to
each other.11 Typically b3.5% of initial starting posi-
tions are b10 Å from the native structure by Cα

RMSD of ligand residues after superposition of the
receptor (L_rmsd)with the native structure. The initial
complex then undergoes 500 cycles of low-resolution
docking, which consists of randomized rigid-body
moves of∼1 Å each, followed by a Metropolis accep-
tance criterion. During this phase, side chains are
represented rigidly as centroid pseudo atoms.
To capture conformer selection (CS) in binding, we

added a step in the low-resolution stage (Fig. 2, green
box) of the algorithm immediately following the
rigid-body move and preceding the Metropolis step.

Following a rigid-body move, the entire ensemble of
conformers is superposed along the interface resi-
dues of the current conformer (Fig. 1c). The centroid-
mode binding energy is calculated for each con-
former and used to generate a partition function. A
conformer is selected from the ensemble to replace
the current conformer based on its Boltzmann-
weighted probability within the partition function.
Once a conformer is selected, the Metropolis cri-
terion is applied on the combined rigid-body/CS
move. The use of a partition function in this manner
allows for robustness of this method towards both
ensemble size and heterogeneity, compared to a
simple random selection. CS is restricted exclusively

Table 1. Crystal structure and NMR docking targets

Crystal structure docking targets

Complex PDB Receptor PDB Receptor Ligand PDBX Ligand Size Ubxtal Ensmin Ensmax

2PTC(E:I) 2PTN B-Trypsin 6PTI Pancreatic trypsin inhibitor 10 0.28 0.82 1.3
2JEL*(LH:P) 2JEL(LH) Jel42 Fab fragment 1POH A06 phosphotransferase 10 0.31 0.39 1.0
1BVK(DE:F) 1BVL(LH) Antibody Hulys11 Fv 3LZT Lysozyme 10 0.38 0.71 1.8
1BQL*(LH:Y) 1BQL(LH) Hyhel-5 Fab 1DKJ Lysozyme 10 0.40 1.7 2.4
1DFJ(E:I) 2BNH Ribonuclease inhibitor 7RSA Ribonuclease A 10 0.40 1.7 2.4
2KAI(AB:I) 2PKA(XY) Kallikrein A 6PTI Pancreatic trypsin inhibitor 10 0.40 0.67 1.1
2BTF*(A:P) 2BTF(A) B-actin 1PNE Profilin 10 0.44 0.91 1.5
1BRS(A:D) 1A2P(B) Barnase 1A19(A) Barstar 10 0.47 0.77 1.7
1BRC(E:I) 1BRA Trypsin 1AAP(A) APPI 10 0.57 0.99 1.6
2SIC(E:I) 1SUP Subtilisin BPN 3SSI Subtilisin inhibitor 10 0.65 0.97 2.2
1MLC(AB:E) 1MLB(AB) IgG1 D44.1 Fab fragment 1LZA Lysozyme 10 0.73 0.69 1.7
2SNI(E:I) 1SUP Subtilisin novo 2CI2(I) Chymotrypsin inhibitor 2 10 0.82 0.96 1.9
1WQ1(G:R) 1WER RAS-activating domain 5P21 RAS 10 0.85 1.0 1.5
1UGH(E:I) 1AKZ Uracil DNA glycosylase 1UGI(A) UDG inhibitor 10 0.90 0.92 1.3
1CHO(E:I) 5CHA(A) α-Chymotrypsin 2OVO Ovomucoid third domain 10 0.95 1.1 1.8
1ACB(E:I) 5CHA(A) α-Chymotrypsin 1CSE(I) Eglin-C 10 1.0 0.79 1.8
1CSE(E:I) 1SCD Subtilisin Carlsberg 1ACB(I) Eglin-C 10 1.0 0.79 1.8
1MAH(A:F) 1MAA(B) AChe 1FSC FAS2 10 1.0 0.87 1.4
1FSS(A:B) 2ACE(E) AChe 1FSC FAS2 10 1.2 0.90 1.6
1TGS(Z:I) 2PTN Trypsinogen 1HPT Pancreatic trypsin inhibitor 10 1.6 1.8 2.5
1CGI(E:I) 1CHG α-Chymotrypsinogen 1HPT Pancreatic trypsin inhibitor 10 1.8 1.8 2.3

NMR structure docking targets

Complex
PDB

Receptor
PDB Receptor

Ligand
PDBX

Ligand
PDBN Ligand Size Ubxtal UbNMR Ensmin Ensmax

1AY7 1RGH(B) Ribonuclease SA 1A19 1BTB Barstar 30 0.62 0.86 0.57 1.4
1BRS 1A2P(B) Barnase 1A19 1BTB Barstar 30 0.52 0.94 0.72 1.3
1EAW 1EAX(A) Matripase 9PTI 1PIT Pancreatic trypsin inhibitor 20 0.62 0.97 0.76 1.7
1AK4 2CPL Cyclophilin 1E6J 1OCA HIV capsid 20 0.50 0.97 0.78 2.0
2KAI 2PKA(XY) Kallikrein A 6PTI 1PIT Pancreatic trypsin inhibitor 20 0.40 1.1 0.74 2.0
2PTC 2PTN B-Trypsin 6PTI 1PIT Pancreatic trypsin inhibitor 20 0.28 1.2 0.84 2.2
1KTZ 1TGK Transforming

Growth Factor - Beta
1M9Z 1PLO Transforming Growth

Factor - Beta receptor II
10 0.39 1.2 0.96 1.6

2PCC 1CCP Cytochrome C
peroxidase

1YCC 2HV4 Cytochrome C 35 0.35 1.3 0.88 2.6

2BTF* 2BTF(A) Actin 1PNE 1PFL Profilin 20 0.44 1.8 0.92 2.6
1BVK 1BVL(LH) Antibody

Hulys11 Fv
3LZT 1E8L Lysozyme 50 0.38 2.1 0.86 6.4

1MLC 1MLB(AB) IgG1 D44.1 Fab
fragment

3LZT 1E8L Lysozyme 50 0.73 2.2 1.6 4.0

1CSE 1SCD Subtilisin Carlsberg 1ACB(I) 1EGL Eglin-C 25 1.0 2.5 1.3 4.4
1CHO 5CHA(A) α-Chymotrypsin 2OVO 1OMT Ovomucoid

third domain
50 1.0 2.5 1.2 2.7

1B6C 1D6O(A) FK506 Binding
Protein

1IAS 1FKR Transforming Growth
Factor - Beta receptor I

20 0.66 3.3 1.3 3.8

1ACB 5CHA(A) α-Chymotrypsin 1CSE(I) 1EGL Eglin-C 25 1.0 3.9 1.9 4.8

PDB codes include chain identifiers. Size is the number of conformers in each ensemble, Ubxtal is the BB_rmsd of the unbound structure
crystal structure to the bound crystal structure, UbNMR is the BB_rmsd of the first model in the NMR structure for NMR targets, and
Ensmin and Ensmax are the minimum and maximum BB_rmsd of conformers in the ensemble, respectively. All RMSD measurements are
listed in angstroms.
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Fig. 1. Ligand ensemble generation and CS. (a) Crystal structures are idealized and then relaxed at low and high
resolutions to generate an ensemble of 10 structures. (b) Conformers in an NMR ensemble are idealized and refined at
high resolution only. (c) During low-resolution docking, conformers are superposed along the current conformer's
interface residues, and a conformer is selected from a partition function using Boltzmann-weighted energies.

Fig. 2. The flexible docking algorithm. The low-resolution phase models the formation of an encounter complex, and
the high-resolution phase models its transition to a bound complex. CS and CS/IF docking include the CS step (green
box). IF and CS/IF docking include backbone minimization (orange box).
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to the low-resolution phase to remain consistentwith
the theory that the conformers in the unbound
ensemble represent distinct low-energy structures
that are the result of thermal fluctuations at time
scales much greater than those of a binding event.
The lowest-energy complex sampled during the

low-resolution phase serves as a putative encounter
complex and is converted to a high-resolution struc-
ture through a side-chain packing step. The complex
then undergoes 50 steps of high-resolution refine-
ment consisting of rigid-body moves of ∼0.1 Å and
periodic combinatorial side-chain packing, followed
by energy-gradient-based minimization of rigid-
body orientation (R,T) and side-chain torsion angles
(χi,n). To capture IF in binding, we use a previously
developed26 extended minimization scheme (Fig. 2,
orange box) that includes the backbone torsion angles
(φn,ψn), allowing the backbone conformation of the
ligand to respond to local energy gradients along the
interface created by the docking process. The lowest-
energy structure in the high-resolution stage is
selected as the final complexed structure for that
iteration of the docking algorithm (hereinafter referred
to as a ‘decoy’), the entire algorithm is repeated to
generate 1000 decoys, and all decoys are reranked by
all-atom binding energy. To test the four kinetic
models (KL, CS, IF, and CS/IF), we simply include or
skip the appropriate CS or IF step in the algorithm.
The computational cost of a docking method re-

stricts not only user accessibility but also the extent of
conformational sampling, which is often a limiting
factor in predictive docking. Using a 1.5-GHz
processor, the standard RosettaDock algorithm
requires 1.5–5 min to generate a single decoy,
depending on the size of the protein partners. The CS
method requires timeapproximately 1.5–2 times longer
per decoy for an ensemble of 10 conformers, represent-
ing a 5-fold increase in efficiency over exhaustive
docking of each conformer in the ensemble to the
receptor. The IF method requires time approximately
4–6 times longer per decoy than standardRosettaDock,
while the CS-IF method requires time approximately
5–7 times longer. Therefore, some consideration must

be placed on the computational costs of each method,
along with overall docking performance, when evalu-
ating the methods in this study.

Energy function and discrimination

Energetic discrimination of near-native decoys
remains a persistent challenge in flexible docking
across FFT-based,18 MD-based,17,23 and MC-based
methods,26 due in part to the interplay between
intramolecular and intermolecular energies. Previous
studies on docking have used either total energy of a
complex, intermolecular energies between two part-
ners in a complex, or binding energy of a complex,
which measures the difference in energy between the
bound complex and the unbound state.17,18,23,24,26

Although rigid-body docking with standard Rosetta-
Dock uses total energy, the variation in the backbone
conformation in flexible docking can lead to signifi-
cant changes in intramolecular energies, which can
alter both sampling and discrimination. We therefore
compared the use of total energy and binding energy
for CS and final decoy discrimination.
Figure 3a shows the observed frequency that a

particular conformer was selected in the low-
resolution phase of CS docking when using total
energy or binding energy in generating the partition
function in the CS step, as a function of its unbound
energy. Using total energy in the CS step leads to
a large bias towards low-energy conformers in the
ensemble. While thermodynamically correct, it de-
pends on the accuracy of the relative free energies
of the different conformers and prevents adequate
sampling of the entire ensemble. By contrast, the
use of binding energy leads to a more even distri-
bution between conformers. Unexpectedly, CS is
slightly biased towards higher-energy conformers
when using binding energy compared to total
energy, possibly due to the nonspecific burial of
hydrophobic residues.
To illustrate the effects on near-native discrimina-

tion, Fig. 3b charts 1000 decoys in docking funnel
plots (energy versus L_rmsd to the native structure)

Fig. 3. (a) The frequency of selecting a particular conformer during the CS step versus the internal energy for each
conformer when using total energy (red) and binding energy (blue) for 1BRC. (b) Total energy versus L_rmsd and binding
energy versus L_rmsd for 1BRC. CAPRI criteria: high-quality decoys are shown in brown, medium-quality decoys are
shown in orange, and acceptable-quality decoys are shown in tan; note that high-quality decoys sometimes meet the
CAPRI I_rmsd criterion rather than the L_rmsd criterion.
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created by the CS method for the same target. The
degree of near-native discrimination in a docking
funnel can be quantified by the difference in average
energy of near-native decoys and the average energy
of non-native decoys, normalized by the standard
deviation of the energy of non-native decoys (here-
inafter referred to as Z-score).39 Z-scores of −1.2 and
−2.6 for the total energy and binding energy,
respectively, show that the use of binding energy
yields significantly improved discrimination. Since
binding energy avoids accurate thermodynamic
calculation of free energies of the conformers, the
starting conformers must be physically realistic and
of comparable energies.

Case study: Acetylcholinesterase
(AChe)–fasciculin II (FAS2)

To illustrate the results of the four docking algo-
rithms in detail, we analyze the representative case

of the AChe–FAS2 complex [Protein Data Bank
(PDB)40 code 1FSS] before describing the results of
the entire target set. There is a change in conforma-
tion of the interface residues of FAS2 from the
unbound state to the bound state that impedes high-
quality prediction using current dockingmethods. In
global docking of 1FSS, neither Li et al., using
ZDOCK+RDOCK, nor Smith et al., using an FFT-
based ensemble docking method, were able to gene-
rate a prediction that was within 2.5 Å Cα RMSD of
interface residues (I_rmsd) among their 10 top-
ranked decoys.9,18 In local docking, Wang et al.
used both rigid and flexible backbone docking in
RosettaDock, but did not produce a decoy within
2.0 Å I_rmsd in the top three predictions.26

FAS2 features a three-finger structural motif
common to a number of toxins. A visual comparison
of the bound crystal structure41 with the unbound
crystal structure42 reveals a ∼2 Å movement of loop
II (Fig. 4a). Computer simulations have provided

Fig. 4. Backbone variability of FAS2. (a) Bound (red) and unbound (blue) FAS2 conformations. (b) Ensemble
generated by Rosetta from the unbound FAS2 conformation. (c) Cα MSF for the Rosetta ensemble (black circles), the Cα

MSF between the bound and the unbound FAS2 conformation (red squares), and the Cα MSF calculated from the
crystallographic B-factors43 from 1FSC (green triangles).

Fig. 5. Binding energy versus L_rmsd, binding energy versus fnat, and the top-ranked decoy (blue) superposed along
the receptor (green) with the crystal structure of the bound ligand (red) for AChe binding to FAS2 (1FSS). (a) KL docking
using the bound FAS2 structure. (b–e) KL, CS, IF, and CS/IF docking, respectively, using the unbound FAS2 structure. The
unbound AChe structure (1FSC) is used in all cases. CAPRI criteria: high-quality decoys are shown in brown, medium-
quality decoys are shown in orange, and acceptable-quality decoys are shown in tan.
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Fig. 5 (legend on previous page)

1075Flexible Backbone Protein–Protein Docking



Author's personal copy

evidence for both conformational gating44 and an IF
mechanism45 of binding to AChe. The ensemble re-
presenting the unbound state of FAS2 that was
generated from the unbound crystal structure con-
tained conformational variability in all three loops,
but most noticeably in loop II (Fig. 4b). A quantitative
analysis of the heterogeneity in the ensemble com-
paring the mean square fluctuation (MSF) of Cα

position for the ensemble with the Cα MSF between
the bound and the unbound conformations and
the Cα MSF calculated from the crystallographic
B-factors43 of the unbound structure (Fig. 4c) reveals
good qualitative agreement. Themost flexible regions
are loop II (residues 27–34), loop I (residues 5–12), and
the turn region between loops I and II (residues 15–
24). Furthermore, NMR data of the solution-state
dynamics of the closely related toxin-α46 also follow
the diversity of the FAS2 ensemble generated using
Rosetta. Broad agreement with these diverse mea-
surements of protein flexibility suggests that con-
formational heterogeneity in the Rosetta ensembles
qualitatively reflects inherent flexibility of the pro-
tein, validating their use as a representation of the
unbound state. In fact, four conformers in the en-
semble were closer to the bound state than to the
unbound state,with BB_rmsd of 0.90Å, 0.94Å, 1.06Å,
and 1.10 Å compared to a BB_rmsd of 1.15 Å for the
unbound crystal structure.
To capture the results using the four docking

methods, Fig. 5 presents the lowest-energy struc-
ture and docking funnel plots for docking FAS2 to
the unbound AChe structure as a function of both
ligand RMSD (L_rmsd) and the fraction of native
contacts recovered ( fnat). The upper bound of
accuracy is represented by KL docking using the
bound crystal structure of FAS2 (Fig. 5a), which
produces the lowest-energy structure with a CAPRI
accuracy rating of high quality, an L_rmsd of 1.1 Å,

and an fnat of 0.74. In contrast, KL docking using
the unbound crystal structure of FAS2 (Fig. 5b) does
not produce a docking funnel towards the bound
complex and contains numerous false positives, or
non-native structures with low energy, including
the lowest-energy structure. CS docking (Fig. 5c)
produces a lowest-energy structure of medium
quality with an L_rmsd of 2.3 Å and an fnat 0.45.
IF docking (Fig. 5d) shows a more pronounced
docking funnel than the KL method, but also
contains a number of false positives, including the
lowest-energy structure. Finally, like the CS docking,
CS/IF docking (Fig. 5e) produces a lowest-energy
structure of medium quality, with an L_rmsd of
2.5 Å and an fnat of 0.61.
The high level of accuracy of the interface in the

lowest-energy structure from the CS/IF method is
illustrated in Fig. 6, where both the position of FAS2
relative to AChe and the side-chain orientations on
both partners are recovered closely. Hydrogen-bond
donor atoms from one partner are within 4 Å of
hydrogen-bond acceptor atoms from the other
partner for 9 of the 15 hydrogen bonds; the unusual
hydrophobic stacking interaction between Met33 of
FAS2 and Trp279 of AChe41 is recovered; and,
overall, 61% of the native residue–residue contacts
are satisfied. The only major interactions not
recovered in the model compared to the bound
structure are the polar and hydrophobic interactions
between the C-terminal Tyr61 of FAS and Lys341,
Pro76, and Phe75 of AChe.
The significant difference in docking accuracy

achieved by the docking algorithms is a result of
their respective treatments of backbone flexibility.
Therefore, it is useful to analyze how the different
methods affect the backbone conformation of the
ligand during docking. Figure 7a demonstrates the
breadth and density of backbone conformational

Fig. 6. Details of the lowest-
energy structure ligand (cyan) and
receptor (green) for the CS/IF me-
thod for 1FSS superposed with the
native structure (gray) along the
receptor. This decoy has an L_rmsd
of 2.5 Å, an I_rmsd of 0.94 Å, and an
fnat of 0.61.Met33 of FAS2 andTrp239
of AChe are shown as spheres.
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space being sampled by showing the BB_rmsd and
UB_rmsd (Cα RMSD of interface residues to the
unbound structure) for all 1000 decoys for the
flexible docking methods. KL docking samples the
single unbound backbone conformation that is
1.15 Å from the bound structure (red line for
comparison), while CS docking samples 10 distinct
backbone conformations, ranging from 0.90 Å to
1.64 Å from the bound structure. Since both IF and
CS/IF docking include explicit backbone flexibility,
each backbone conformation generated from dock-
ing is a unique result of the stochastic docking
process. As a result, these methods sample a wide
variety of backbone conformations. Although IF
docking samples nearly as wide a range of confor-
mations as CS/IF docking (0.75–2.0 Å compared to
0.63–1.93 Å), a large fraction of these conforma-
tions was closer to the unbound state, indicating
that it is unable to overcome conformational and
energetic barriers to move towards the bound
state. Overall, the FAS2 conformations from CS
and CS/IF docking were closer to the bound
conformation than the unbound crystal structure
in 40% and 42% of decoys, respectively, compared
to 22% in IF docking.
Ideally, to achieve appropriate energetic discrimi-

nation of near-native complexes in flexible docking,
an energy funnel should exist not only in the rigid-
body conformational space towards the bound
docking orientation of the two partners (measured
by binding energy versus L_rmsd) but also in the
backbone conformation space towards the bound

backbone conformation of both partners (measured
by binding energy versus BB_rmsd). Although in this
study the receptor was kept fixed in the unbound
conformation, an energy funnel towards the bound
conformation of the ligand may still be observed.
Figure 7b shows the binding energy and the
BB_rmsd for all decoys from CS, IF, and CS/IF
docking with near-native decoys in tan, orange, and
brown for acceptable-quality, medium-quality, and
high-quality predictions, respectively (compare to
the energy funnel in rigid-body conformation space;
Fig. 5c–e). Docking decoys close to the native docked
orientation should have lower energies for confor-
mers closer to the bound conformation. Overall, a
distinct energy funnel is not observed in the
dimension of BB_rmsd for any of the three flexible
docking methods, although in both CS and CS/IF
docking, the decoy with the lowest binding energy
also had a relatively low BB_rmsd (1.0 Å and 1.2 Å,
respectively). The lack of an energy funnel in back-
bone conformation space could be due either to
sampling of too few backbone conformations or to a
deficiency in energy function in discriminating
bound-like conformers during docking. Alternately,
differences between the bound receptor conforma-
tion and the unbound receptor conformation (which
is kept fixed in the unbound form) could force the
ligand to adopt a binding-competent conformation
slightly away from the bound conformation, obscur-
ing or eliminating an energy funnel in this relatively
narrow range of conformation space (BB_rmsd of
0.9–1.3 Å).

Fig. 7. Backbone sampling and discrimination. (a) The BB_rmsd and UB_rmsd in each decoy output by CS, IF, and
CS/IF docking, respectively. Red lines show the BB_rmsd and UB_rmsd of the unbound and the bound conformations,
respectively. (b) Binding energy versus BB_rmsd for CS, IF, and CS/IF docking, respectively. CAPRI criteria: high-quality
decoys are shown in brown, medium-quality decoys are shown in orange, and acceptable-quality decoys are shown in
tan.
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Table 2. Results summary for crystal structure targets

KL(B) KL CS IF CS/IF

PDB N10 fnat L_rmsd I_rmsd
CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality

2SIC 10 0.85 3.9 0.51 *** 10 0.72 1.8 0.38 *** 10 0.74 3.6 0.59 *** 8 0.67 3.4 0.52 *** 10 0.74 3.9 0.52 ***
1MAH 10 0.64 0.23 0.13 *** 3 0.78 2.3 0.66 *** 8 0.59 1.6 0.65 *** 6 0.64 2.4 1.1 ** 6 0.69 3.7 1.4 **
1CHO 10 0.75 0.76 0.31 *** 10 0.53 1.8 0.78 *** 5 0.81 1.6 0.47 *** 6 0.39 6.3 1.5 ** 5 0.54 7.7 1.7 **
2PTC 10 0.60 2.7 0.58 *** 10 0.48 3.5 0.86 *** 10 0.43 4.3 1.0 ** 10 0.55 3.0 0.68 *** 10 0.62 2.3 0.75 ***
2BTF 6 0.86 1.0 0.38 *** 8 0.44 2.6 1.2 ** 7 0.45 3.0 1.9 ** 4 0.41 2.2 1.5 ** 9 0.69 1.9 0.67 ***
1ACB 10 0.68 0.88 0.40 *** 6 0.38 6.1 1.3 ** 10 0.51 3.3 0.84 *** 10 0.57 2.9 1.1 ** 10 0.60 3.8 0.82 ***
1BRC 10 0.36 9.2 2.0 ** 9 0.43 4.2 1.5 ** 9 0.58 3.2 0.81 *** 9 0.57 2.8 0.72 *** 4 0.36 8.2 1.1 **
2SNI 10 0.76 0.91 0.25 ** 8 0.38 5.4 1.5 ** 10 0.51 5.7 1.2 ** 7 0.40 6.1 1.6 ** 10 0.77 2.3 0.82 ***
1BQL 7 0.41 3.1 1.1 ** 9 0.39 5.1 1.6 ** 10 0.74 5.2 1.3 ** 6 0.07 22 11 6 0.33 3.6 1.4 **
1UGH 10 0.70 0.43 0.19 *** 6 0.37 5.2 2.5 * 3 0.23 5.6 2.8 * 9 0.30 3.4 1.9 ** 5 0.31 5.0 2.5 **
1WQ1 4 0.39 4.9 1.5 ** 0 0.17 5.8 3.7 * 0 0.26 3.6 2.1 * 0 0.09 6.9 4.1 0 0.07 6.5 4.2
2KAI 6 0.72 2.5 0.47 *** 0 0.04 10 4.5 4 0.03 8.4 3.2 * 6 0.50 5.9 1.2 ** 10 0.58 2.9 0.69 ***
2JEL 8 0.79 0.74 0.26 *** 7 0.10 9.3 4.6 * 7 0.77 1.2 0.43 *** 10 0.68 1.3 0.46 *** 9 0.56 1.6 0.55 ***
1BVK 0 0.11 20 5.9 0 0.25 9.7 4.7 * 0 0.12 30 10 0 0.08 19 9.2 0 0.24 10 4.3
1CSE 10 0.64 1.3 0.36 *** 0 0.00 13 6.0 5 0.32 2.7 1.2 ** 2 0.13 18 7.4 2 0.03 13 5.5
1DFJ 0 0.00 12 7.1 0 0.00 19 7.3 0 0.00 22 11 0 0.00 25 12 0 0.00 18 8.5
1FSS 10 0.74 1.1 0.43 *** 1 0.05 12 7.9 5 0.45 2.3 1.2 ** 6 0.00 13 8.1 7 0.55 3.2 1.4 **
1TGS 10 0.74 1.7 0.50 *** 5 0.09 15 9.4 10 0.64 2.4 0.87 *** 7 0.12 16 9.3 7 0.55 4.9 2.4 **
1CGI 3 0.69 1.2 0.42 *** 0 0.06 17 9.5 0 0.08 13 5.0 0 0.16 13 5.8 0 0.28 19 10
1MLC 4 0.08 19 9.4 2 0.71 23 11 1 0.14 20 9.1 3 0.48 2.3 1.1 ** 2 0.14 20 9.2
1BRS 4 0.09 18 9.5 1 0.03 19 11 8 0.00 18 9.5 9 0.43 3.0 1.5 ** 5 0.06 19 11
Totals 17 (15) 9 (8) 13 (13) 13 (11) 14 (13)

KL(B) is KL docking using the bound ligand, and KL, CS, IF, and CS/IF are the four docking methods using the unbound ligand. N10 is the number of structures among the 10 lowest-energy structures
that are of at least medium quality. The fnat, L_rmsd, I_rmsd, and CAPRI ratings are for the lowest-energy structure produced. Totals show the number of targets for which the lowest-energy structure
was of at least medium quality and, in parenthesis, the number of hits for each method (hit is defined as having a lowest-energy structure of at least medium quality and N10N4). Targets are sorted by
I_rmsd in the KL(Ub) case. CAPRI ratings are acceptable (*), medium quality (**), and high quality (***).
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Flexible docking methods outperform rigid-body
docking

We applied the four docking methods to a set of 21
target complexes using crystal structures for both the
ligandand the receptor.Adockingmethodwas said to
produce a ‘hit’ if it passed two criteria: (1) the lowest-
energy structure was of at least medium quality, and
(2) at least 5 of the 10 lowest-energy structures were of
at least medium quality. This represents a relatively
strict criterion in which a docking run is deemed
successful only if its lowest-energy structure is of good
quality and it has converged on that solution. We also
performed KL docking of the bound ligand with the
unbound receptor to serve as a control.
Table 2 shows the number of medium-quality or

high-quality decoys within the 10 top-scoring struc-
tures (N10) and the L_rmsd, I_rmsd, and fnat of the top-
scoring decoy. Figure 8a summarizes these results as a
histogram of hit quality, and funnel plots for each
method for several selected targets are presented in
Supplementary Fig. 1. KL docking with the bound
ligand structure produced 15 total hits (12 of high
quality and 3 of medium quality) and represents the
upper bound of results achievable by modeling
backbone flexibility in the ligand. KL docking using
the unbound crystal structure produced 8 total hits (3
of high quality and 5 of medium quality), demon-
strating the potential for improvement in modeling
flexibility in the ligand backbone conformation.
As seen in Fig. 8a, CS/IF docking came closest to

the quality of KL docking, with the bound ligand
conformation producing 13 total hits (7 high-quality
predictions and 6 medium-quality predictions). CS
docking performed comparably to the CS/IF dock-
ing with 13 total hits (7 high-quality predictions and
6 medium-quality predictions, respectively). IF
docking produced 11 hits (with 4 high-quality
predictions and 7 medium-quality predictions, res-
pectively). At least one of the flexible docking
methods produced a hit in 8 of the 13 cases in
which KL docking did not; in the 8 cases where KL
docking did produce a hit, in 4 cases, at least one of
the flexible docking methods produced a higher-
quality hit. Overall, there was substantial overlap in
the improvement in performance of the flexible
dockingmethods compared to KL docking, with 8 of
21 cases in which two or three of the flexible docking

methods produced a top-ranked decoy of a higher
CAPRI quality than KL docking (e.g., 2JEL in Table 2;
funnel plots in Supplementary Fig. 1).

Assessing ensemble docking and explicit
backbone minimization

In a comparison between the flexible docking
methods within each target, the two ensemble
docking methods (CS and CS/IF) combined to
produce 14 top-ranked decoys that were highest in
fnat, compared to 5 top-ranked decoys produced by
the nonensemble dockmethods (KL and IF). Further-
more, the CS and CS/IF methods had, overall, a
greater number of hits and a higher accuracy of hits.
The larger breadth of conformations sampled by the
CS methods is critical to the success of the flexible
docking methods, even in complexes with relatively
small conformation changes.
In a number of cases, an improvement in docking

performance was observed despite the fact that there
were no conformers in the ensemble that were closer
to the bound structure than to the unbound struc-
ture. Although initially counterintuitive, this obser-
vation agrees with the findings of both Smith et al.
and Grunberg et al. and suggests that there is
inherent value in allowing backbone conformational
variability in docking, irrespective of whether the
bound conformation is being sampled.18,19 Even a
small relatively homogenous ensemble of 10 struc-
tures can make a significant difference in docking
compared to a single structure.
The explicit backbone minimization methods (IF

and CS/IF) produced greater sampling of higher fnat
decoys, as seen in the example of 1FSS (Fig. 4).
Similarly, Krol et al. observed increased fnat when
refining near-native decoys using MD, possibly as
the result of the formation of a greater number of
energetically favorable contacts along a putative
docking interface when minimizing or relaxing.23

The increase in sampling is not clearly reflected in the
overall results, however, because discrimination is
more difficult. In the case of 1CSE, the top-ranked
decoy is near-native in the CS method, but not in the
CS/IF method, despite the fact that both methods
use an identical ensemble of ligand conformations.
Explicit backbone minimization improves the bind-
ing energy across all decoys, and, in this case, the

Fig. 8. Histogram of hit quality (quality of the top-ranked decoy for all runs, with at least 5 of the 10 top-scoring decoys
being of medium or high quality) for each docking method for (a) crystal structure targets and (b) NMR targets. CAPRI
criteria: high-quality decoys are shown in brown, and medium-quality decoys are shown in orange.
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binding energy of a non-native docking orientation
is improved more than the binding energy of the
near-native docked orientation, leading to a false
positive. The loss of a near-native lowest-energy
structure is also observed in two cases (1BQL and
1WQ1) when comparing KL docking with IF dock-
ing. In summary, except in cases where explicit
backbone minimization results in a false positive, it
generally improves the quality of the top-ranked
decoy. Indeed, where CS and CS/IF docking both
produced a hit, backbone minimization in CS/IF
docking leads to an increase in fnat in 8 of 12 cases.

Ensemble docking with NMR targets

We applied these docking methods to a set of 15
targets in which the unbound ligand structure is an
NMR ensemble. A comparison of the BB_rmsd of
both the unbound crystal structure and the closest
conformer in the NMR ensemble to the bound crys-
tal structure in Table 1 reveals a significant degree of
variability in the NMR ensemble. Still, the closest
NMR conformer to the bound conformation is often
substantially closer than an arbitrary conformer in
the ensemble, providing a means for overcoming the
structural uncertainties.
Table 3 shows the docking accuracy for the four

methods using the NMR structure of the ligand, with
rigid-body docking results with the unbound and the
bound crystal structures provided for comparison.
Figure 8b summarizes these results as a histogram of
hit quality, and Supplementary Fig. 2 provides
docking funnels for each target across all themethods.
For KL and IF docking, the starting structure was the
first conformer in the NMR structure coordinate file
from the PDB (Model 1). For the CS and CS/IF
methods, the entire NMR ensemble was used.
KL docking with the bound ligand conformation

produced nine hits, all of high quality. KL docking

with the unbound ligand conformation produced
seven hits (four of high quality and three of medium
quality). In contrast, KL docking with the NMR
ensemble Model 1 produced three hits, all of
medium quality, demonstrating the difficulties inhe-
rent in docking NMR structures compared to crystal
structures.
Overall, while none of the flexible docking me-

thods was able to approach the accuracy of docking
with the bound ligand conformation, CS docking
approached the results of KL docking with the
unbound crystal structure, producing eight hits (two
of high quality and six of medium quality). CS/IF
docking produced six hits (three of high quality and
three of medium quality), while IF docking pro-
duced three hits (two of high quality and one of
medium quality).
Two trends can be observed from the data. First, in

contrast to the crystal structure docking targets, with
one exception, IF docking only produces a hit if KL
docking produces a hit. When IF docking does
produce a hit, it generally improves the accuracy of
the hit, for example in 2PTC,where IF docking is able
to produce a high-quality hit where KL docking
produces a medium-quality hit. A potential explana-
tion is that the single backbone methods (KL and IF)
only produce hits in cases where the NMR structure
is close to the bound conformation: for all three cases
in which the IF docking produced a hit, the first
conformer in the NMR ensemble Model 1 has a
BB_rmsd in the lower range among NMR targets, at
0.94 Å, 1.12 Å, and 1.16 Å for 1BRS, 2KAI, and 2PTC,
respectively.
Second, the ensemble docking methods perform

significantly better than the single-backbone meth-
ods, especially for targets with a BB_rmsd of the first
conformer in the NMR ensemble of N1.2 Å. As a
representative example, we examine the docking of
α-chymotrypsin with the NMR solution structure of

Table 3. Results summary for NMR targets

KL(B) KL(Ub) KL

PDB N10 fnat L_rmsd I_rmsd
CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality N10 L_rmsd I_rmsd

CAPRI
Quality

1KTZ 10 0.80 3.0 0.50 *** 9 0.85 1.9 0.47 *** 2 0.03 25 9.3
1EAW 5 0.40 3.4 1.2 ** 6 0.50 2.3 0.69 *** 2 0.25 8.1 2.6 *
1CHO 10 0.75 0.76 0.31 *** 10 0.53 1.8 0.78 *** 8 0.22 10 2.2 *
2PTC 10 0.60 2.7 0.58 *** 10 0.48 3.5 0.86 *** 6 0.43 5.4 1.4 **
1CSE 10 0.64 1.3 0.36 *** 8 0.57 3.6 1.0 ** 0 0.07 15 7.3
2BTF* 5 0.86 1.0 0.38 *** 8 0.44 2.6 1.2 ** 5 0.03 21 13
1ACB 10 0.68 0.88 0.30 *** 6 0.38 6.1 1.3 ** 0 0.18 10 2.9 *
1B6C 9 0.70 2.3 0.56 *** 7 0.43 8.6 1.4 ** 0 0.07 22 13
1AK4 10 0.70 4.6 0.60 *** 1 0.27 19 2.5 * 0 0.00 24 9.3
2PCC 0 0.00 27 14 1 0.27 8.7 3.7 * 0 0.06 14 5.5
2KAI 6 0.72 2.5 0.47 *** 0 0.04 10 4.5 5 0.47 6.6 1.3 **
1BVK 0 0.11 20 5.9 0 0.25 9.7 4.7 * 1 0.24 16 7.6
1AY7 6 0.73 3.2 0.86 *** 0 0.10 16 7.7 0 0.00 20 9.4
1MLC 4 0.08 19 9.4 2 0.07 23 11 0 0.08 26 9.7
2BRS 4 0.09 18 9.5 1 0.03 19 11 7 0.63 2.1 1.0 **
Totals 11 (11) 8 (8) 3 (3)

CS IF CS/IF

N10 fnat L_rmsd I_rmsd
CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality

KL(B) is rigid-body docking using the bound structure, KL(Ub) is rigid-body docking using the unbound crystal structure, and KL,
CS, IF, and CS/IF are the four docking methods using the ligand solution-state NMR structure. All column descriptions are the same
as in Table 2. Targets are sorted by I_rmsd in the KL(Ub) case. CAPRI ratings are acceptable (*), medium quality (**), and high quality
(***).
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eglin-C (1ACB). CS docking produces a moderate
docking funnel (Fig. 9a) with a Z-score of −0.95 and
a medium-quality hit. Figure 9b shows the binding
energy plotted against the BB_rmsd for each decoy,
which, in contrast to the example of 1FSS (Fig. 7b),
shows a pronounced energy funnel towards the
bound backbone conformation. Out of the consider-
able diversity in the entire 20-model NMR ensemble
of eglin-C (Fig. 9c), CS docking successfully selects
the conformer closest to the bound conformation
(BB_rmsd of 1.9 Å; Fig. 9d and e). In contrast, the
first model in the NMR ensemble used in the (un-
successful) KL and IF docking is much farther from
the bound conformation (BB_rmsd of 3.9 Å; Fig. 9d).
Similar results are observed for other cases (e.g.,
1EAW and 1CSE) and also for CS/IF docking
(funnel plots in Supplementary Fig. 2).
The issues with near-native discrimination

observed in docking crystal structures when using
IF were present in the results for NMR targets as
well. In 1CHO, CS docking produced a medium-
quality hit, while CS/IF docking failed to produce
even a single medium-quality decoy among the 10
top-scoring decoys. Likewise, CS docking produced
a medium-quality hit for 2BTF, while the top-scoring
decoy from CS/IF docking was of acceptable quality
and only 2 of the top 10 decoys were of medium or
better quality. In a surprising number of cases, the
top-ranked decoy from CS/IF docking was of
acceptable quality. In three cases (1KTZ, 1CHO,
and 2PCC), CS/IF docking appears to have con-
verged at the solution, producing at least 5 of the top
10 decoys at acceptable quality. For 1KTZ and 2PCC,
this represents an improvement over the other
docking methods; for 1CHO, it is a decrease in ac-
curacy compared to CS docking.
Interestingly, in 4 of 15 cases, CS/IF docking

produced a top-ranked decoy that was of higher ac-
curacy than KL docking with the unbound crystal

structure; in another 5 cases, it performed equally
well. In 2 of those 4 cases (2KAI and 2BRS), KL
docking using just a single conformer from the NMR
ensemble outperformed KL docking with the
unbound crystal structure, suggesting that the
improvement in docking is a result of differences
between all NMR conformers and the crystal struc-
ture, and not the use of multiple NMR conformers.
Nonetheless, excluding those 2 cases, CS/IF dock-
ing performs equal to or better than rigid-backbone
docking with the crystal structure in 8 of 13 cases.
By using an ensemble docking with minimization
method, it is possible for the first time to
locally dock NMR structures with comparable
accuracy to rigid-body docking with crystal struc-
tures.

Discussion

CS and IF are two fundamentally distinct kinetic
mechanisms for protein binding, and here we
attempt to model them as conformational search
strategies within RosettaDock. RosettaDock's MC
algorithm samples different thermodynamic config-
urations of the system irrespective of time, limiting
the conclusions we can draw about the physical
validity of these two mechanisms. However, the
success of these distinct conformational search
strategies in recapitulating the binding models that
inspired their design can be addressed. The success
of CS docking using both computationally generated
ensembles and NMR ensembles suggests that bind-
ing-competent conformers do exist in the unbound
ensemble, as demonstrated by Grunberg et al., and
that these conformers can be selected from the
ensemble based on their favorable binding energies,
both central tenets of the CS binding model.19

Likewise, success of IF docking through energy-

Table 3

CS IF CS/IF

N10 fnat L_rmsd I_rmsd
CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality N10 fnat L_rmsd I_rmsd

CAPRI
Quality

0 0.29 6.3 4.2 * 1 0.46 4.9 1.8 ** 1 0.30 4.8 4.1 **
6 0.38 4.8 1.8 ** 7 0.04 10 5.0 8 0.35 3.7 1.5 **
5 0.39 8.9 1.9 ** 1 0.44 9.0 2.1 * 0 0.48 9.8 2.2 *
10 0.54 5.5 1.1 ** 10 0.35 3.3 1.0 *** 9 0.57 4.0 0.75 ***
3 0.03 13 5.6 1 0.16 14 6.8 2 0.26 5.6 1.8 **
8 0.48 2.6 1.7 ** 0 0.10 15 8.8 2 0.30 6.4 3.1 *
10 0.25 5.1 1.7 ** 0 0.00 19 6.8 8 0.31 4.0 1.7 **
0 0.13 13 5.2 0 0.07 16 7.7 0 0.07 14 4.9
0 0.02 28 7.6 0 0.21 15 3.6 * 0 0.18 15 3.7 *
0 0.00 20 9.3 0 0.38 7.7 3.1 * 0 0.25 8.5 3.4 *
9 0.55 4.5 0.90 *** 9 0.55 4.3 0.9 *** 8 0.50 5.2 1.1 **
0 0.06 19 10 4 0.00 21 12 0 0.24 9.5 4.2 *
7 0.67 2.1 0.99 *** 6 0.06 20 8.8 5 0.72 2.2 0.91 ***
0 0.05 19 9.4 0 0.03 17 9.2 0 0.25 8.3 3.4 *
6 0.67 2.5 1.2 ** 6 0.58 3.9 1.9 ** 10 0.75 2.9 0.87 ***

8 (8) 4 (3) 8 (6)
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gradient-based backbone minimization demon-
strates that a binding-competent conformation can
be reached through a low-energy pathway through
conformational space from the unbound structure
while in complex with the partner—a necessary
component in the IF binding model. Finally, the
success of CS/IF docking, especially in the number
of top-ranked structures of acceptable quality in the
NMR targets, suggests that, for larger conforma-
tional changes, both CS over a broad range of
conformational space and local IF may be necessary

for binding, as proposed by both computational19
and experimental47 studies.
As observed in CAPRI, accommodating backbone

flexibility is currently the biggest obstacle to
accurate protein–protein docking. Although most
of the crystal structure docking targets we tested
were classified as ‘rigid body’ by Mintseris et al.,
modest backbone conformational changes between
the bound and the unbound states can still make
high-resolution docking challenging.48 In rigid-
body global docking, Li et al. produced at least one

Fig. 9. NMR docking results for
CS docking of 1ACB. (a) Binding
energy versus L_rmsd. (b) Binding
energy versus BB_rmsd. (c) Rosetta-
refined NMR ensemble. (d) Lowest-
energy conformer from CS docking
(purple) superposed on the bound
structure (red) and the first model
in the NMR ensemble (blue). (e)
Lowest-energy structure from the
CS method (receptor, green; ligand,
purple) superposed on the native
complex (gray).
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medium-quality prediction among their 10 top-
ranked predictions in 9 of 21 (43%) targets that
overlapped with ours.9 In FFT-based global docking
using MD-derived ensembles, Smith et al. produced
at least one medium-quality prediction in their 10
top-ranked predictions for 4 of 12 (33%) targets that
overlapped with ours.18 Using backbone minimiza-
tion in local docking with Rosetta (very similar to
our IF docking), Wang et al. produced at least
medium-quality models in their 3 top-ranked pre-
dictions in 9 of 17 (53%) targets that overlapped with
ours.26 In our study, CS and CS/IF docking pro-
duced a top-ranked medium quality prediction in 13
and 14 of 21 crystal structure targets (62% and 67%),
respectively. Although direct comparisons with
other studies are difficult due both to differences in
docking strategies (global versus local docking) and
to the different target sets used, the general im-
provement in performance observed in our study
may be attributed to better discrimination between
conformers due to a more physically realistic scoring
function and the greater breadth of conformational
sampling due to the use of an ensemble of unbound
structures.
Although no flexible docking method clearly out-

performed the other in cases where the single
unbound conformation was relatively close to the
bound conformation (BB_rmsdb1.1 Å), in cases
where the single conformation was relatively far
from the bound conformation (BB_rmsdN1.3 Å),
particularly among the NMR targets, the ensemble
docking methods (CS and CS/IF) significantly out-
performed the backbone minimization method (IF).
Furthermore, CS docking, which was the most
successful method in both target sets by some
measures, is the least computationally expensive.
However, the CS/IF method did show moderate
improvements in some cases, particularly in increas-
ing the number of native contacts. Therefore, one
potential strategy for predictive docking would be to
use CS docking first for global searches where near-
native discrimination and computational efficiency
are paramount. Potential near-native orientations
and their respective binding-competent conformers
can then be used as starting structures for further
local docking and refinement with IF docking.
Our work included the first systematic study of

docking using NMR solution-state structures. NMR
ensembles contain conformational variation as a
result of both methodological reasons, such as
underdetermination of protein structure, and bio-
physical reasons, such as solution-state protein
dynamics.49 Our results suggest that, while a single
conformer may not be sufficient for docking, the use
of the entire NMR ensemble can overcome structural
uncertainties in the model to a degree that is com-
parable to rigid-body docking of unbound crystal
structure. Conformational heterogeneity in NMR
structural ensembles has demonstrated qualitative
agreement with a number of quantitative measures
thought to be related to protein dynamics, from
experimental data such as S2 order parameters46

and crystallographic B-factors,43 to computational

simulations using MD,33,43 essential dynamics,50 or
normal-mode analysis.51 Although, to our knowl-
edge, a direct relationship between this heterogene-
ity and binding-induced conformation changes has
not been studied, our results show that the
conformational variation found in NMR ensembles
provides meaningful backbone conformational sam-
pling in ensemble docking and may thus, to some
degree, be relevant to the conformational changes
associated with binding. Still, the difference in per-
formance between docking with the NMR ensem-
bles and docking with the unbound crystal struc-
tures suggests that structure underdetermination
plays a predominant role in the conformational
heterogeneity of NMR ensembles.
These flexible docking methods were inspired by

biophysical models of protein binding, but they can
be appliedmore broadly to address uncertainty in the
bound backbone conformation in docking, whether
that uncertainty is the result of true flexibility (i.e.,
binding-induced conformational changes) or uncer-
tainties in the initial unbound structures. Efficient
methods for general sampling of conformational
plasticity in proteins during docking could be applied
to docking of homology model or low-resolution
structures, where docking of an ensemble of multiple
structural models instead of a single model may
effectively increase the margin of error in structural
modeling as applied to docking. We have recently
demonstrated this in a separate study where docking
of an ensemble of multiple antibody homology
models to their respective antigens, using the CS-
docking methods presented here, significantly out-
performs the docking of a single homology model in
recovering near-native docking solutions.52 Likewise,
HADDOCK has shown several specific successes in
docking ensembles from a variety of sources from
homology models to NMR structures.30–32 Together,
these results suggest a fundamental robustness of
ensemble docking for accommodating conforma-
tional plasticity.
There are a number of limitations to the methods

for use in predictive docking efforts such as CAPRI.
First, this study analyzed local docking only, but
often global docking is necessary when no biochem-
ical information exists to assist in prediction. A test of
global docking for both target sets with all four
dockingmethodswas beyond the scope of this study,
but successful local docking can improve global
docking. Using RosettaDock, Gray et al. showed that
global docking succeeded in 18 of 24 cases where
local docking produced a medium-quality or high-
quality prediction, and in none of the 6 cases where
local docking produced, at best, an acceptable-
quality prediction, suggesting that the increase in
medium-quality and high-qualitymodels using local
flexible docking in this study may directly translate
to improvements in global docking.11

Second, effective energetic discrimination of near-
native decoys with explicit backbone flexibility in
docking remains a challenge in IF and CS/IF
docking. Although the use of binding energy in
this study yielded improvements in discrimination
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compared to total energy, the existence of false
positives still confounded accurate docking, perhaps
as a result of inaccuracies in the energy function.
Deficiencies in the energy function may include
backbone torsion angle and other internal energy
components, accurate modeling of electrostatics and
side-chain protonation states, ordered water mole-
cules at the interface, or the correct balance between
scoring terms. Additionally, more sophisticated
approaches to discriminating near-native funnels in
rigid-body docking53 can be extended to include
variables such as backbone conformation or con-
former identity.
Finally, large global conformation changes (e.g.,

domain hinge motions) or large local conformation
changes (e.g., loops) cannot yet be accurately
modeled because neither the ensemble generation
method nor the backbone minimization used in this
study can capture conformational changes of that
magnitude. The docking methods presented here
were developed to be largely independent of the
method of ensemble generation, so the ensemble
generation method can be tailored to accommodate
specific types of conformational flexibility. Large
globalmotionsmay bemodeled using larger ormore
diverse ensembles generated from normal-mode
analysis,54 accelerated MD,55 or essential dyna-
mics.50,56 Likewise, specific features of the protein
structure can be varied between conformers in the
ensemble (e.g., the substrate binding-loop conforma-
tion of an enzyme, the conformation of a disordered
region of an unbound crystal structure, or VH–VL
orientation in antibody docking). Previous methods
addressed specific types of conformation changes
such as hinge motions or domain–domain motions,
with some predictive success.57,58 Progress has been
made towards the prediction of flexible regions of
proteins that change conformation upon binding,59

as well as the generation of ensembles of flexible
regions that contain bound-like conformations,60

both of which can improve the quality of the ensem-
bles generated for docking.

Conclusion

In this study, we present three different methods
for accommodating backbone flexibility in protein
docking and show substantial improvements in
overall docking accuracy, including sampling and
discrimination,without using any a priori knowledge
of the flexible regions of the ligand protein. These
methods have been intentionally developed to be
versatile and can be used in conjunction with
ensembles derived from a wide variety of sources,
including NMR data, MD simulations, loop ensem-
bles, and homology modeling. Local docking using
RosettaDock is featured in a number of successful
CAPRI strategies;27,28,53,61 given the substantial im-
provements in performance over the standard Roset-
taDock algorithm, the new methods are a significant
step forward in the state of the art of protein–protein
docking towards general flexible docking. Incorpora-

tion of backbone conformational plasticity into dock-
ing might ultimately allow us to expand the list of
“dockable” components beyond high-resolution
crystal structures to lower-resolution electron micro-
scopy structures, NMR structures, and homology
models, whichwill be essential to applying predictive
docking towards a structural understanding of pro-
tein interactions in conjunction with ongoing geno-
mic and proteomic efforts.

Materials and Methods

Structural data

We assembled two target sets to test our docking
methods (Table 1). The crystal structure target set consists
of 21 protein complexes from Protein–Protein Docking
Benchmark 1.0,62 with a BB_rmsd of b2.0 Å and no
disordered residues in the interface region of the unbound
crystal structures. The NMR structure target set consists of
15 complexes from both Protein–Protein Docking Bench-
mark 1.0 and Protein–Protein Docking Benchmark 2.048

thatmeet the same criteria and also have an unboundNMR
structure and an unbound crystal structure in the PDB.40

Docking metrics

A number of metrics that are sensitive to the ligand
position relative to the receptor, the specificity of the
interactions across the interface, and the backbone
conformation of the ligand are used to measure docking
accuracy. L_rmsd is an overall measure of the ligand
position and orientation with respect the receptor and is
the RMSD of Cα coordinates of the ligand protein between
the decoy and the native structure after superposition of
the receptor. Interface RMSD (I_rmsd) is the Cα RMSD of
interface residues in the decoy compared to the native
structure after superposition of the interface residues,
where interface residues are defined as those with
intermolecular distances of b4 Å in the native structure.
The fraction of native residue–residue contacts ( fnat) is a
measure of the specificity of the interactions across an
interface. For CAPRI, Mendez et al. outline three classifica-
tions for docking accuracy based on these metrics:
high quality ( fnatN0.5 AND [L_rmsd b 1.0 OR I_rmsd b
1.0]); medium quality ( fnat > 0.3 AND [L_rmsd b 5.0 OR
I_rmsd b 2.0]); acceptable quality ( fnat > 0.1 AND [L_rsmd
b10.0 OR I_rmsd b 4.0]).63 The backbone RMSD of the
flexible ligand is measured as the Cα RMSD of interface
residues after superposition of the entire ligand, to the
bound ligand conformation (BB_rmsd) and the unbound
ligand conformation (UB_rmsd).

Docking methods

Backbone flexibility is always limited to the ligand,
which is defined as the smaller of the two proteins in the
complex. All starting structures are prepared by replacing
the side chains with rotamers from a standard rotamer
library expanded to include rotamers from the unbound
crystal structures.11,39 Independent local docking runs
generate 1000 decoys for docking crystal structures or
5000 decoys for docking NMR structures for CS or CS/IF
docking in order to accommodate the significantly larger
ensemble sizes.
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KLdocking is local docking using standard RosettaDock
as described by Gray et al., with rotamer torsion angle
minimization as described by Wang et al.11,39 Antibody
docking targets use an alignment file that biases low-
resolution docking towards complementarity-determining
region residues, as described previously.34,64,65 For IF
methods, the gradient-based energy minimization is
expanded beyond rigid-body orientation to include back-
bone torsion angles during the minimization step in the
high-resolution MC minimization phase of RosettaDock,
as described byWang et al.26 The unbound ligand structure
used in IF docking was relaxed prior to docking to ensure
that the structure was at a local energy minimum with the
Rosetta energy function, as described by Wang et al.26

For CS docking's CS moves, all n conformers in the en-
semble are superposed along the interface residues of the
current conformer (residueswith b4 Å atomic distance to the
receptor). Binding energy is calculated for each conformer
to create a partition function Z ¼ Pn

i expð�DGbinding
i =RTÞ,

and a random conformer i is selected based on its Boltz-

mann probability Pi ¼ expð�DGbinding
i =RTÞ
Z

. As in IF dock-

ing, each conformer in the NMR ensemble underwent
high-resolution refinement prior to docking to ensure that
they were in a local energy minimum within the Rosetta
energy function.

Scoring methods

Scoring both during the docking simulation and during
the final decoy discrimination is based on binding energy,
which is defined as the change in total energy from the
final bound complex and the total energy of the initial
unbound state: ΔGbinding=G(complex)−G(unbound). The
unbound energies for the receptor and each ligand con-
former are calculated by taking the lowest energy from
doing 10 independent side-chain packing runs. The total
unbound energy is the sum of the unbound energies of the
receptor and the ligand, and is specific to the conformer
used in the final complex: G(unbound)=G(receptor)+
G(conformer i). All unbound reference energies are calcu-
lated prior to docking.
The Rosetta centroid-mode energy function used in

docking is identical with that used in Gray et al. and
consists of contact, bump, residue environment, and
residue–residue pair potential.11 The Rosetta all-atom
energy function used in docking consists of van der
Waals, hydrogen bonding, side-chain probability, solva-
tion, and electrostatic terms,11 and the weights used for
each component are identical with those used by Wang
et al.39 At high resolution, an additional component of a
secondary-structure-dependent backbone (Ramachan-
dran) torsional potential was also used66 and assigned
a weight of 0.1.

Ensemble generation

Ensembles are generated using RosettaRelax as des-
cribed by Misura and Baker, except that ‘wobble’ and
‘crank’ perturbations are omitted primarily to reduce
computational cost.37

Algorithm availability

Ensemble generation, NMR ensemble refinement, and
all docking methods presented here are freely available for
academic and nonprofit use as part of the Rosetta

structure prediction suite†. The distribution includes
supporting scripts, documentation, and full source code.
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