Chapter 7

The Rotation Group and lts Representations

7.1 The Groups SO(3) and SU(2)

The rotation group SO(3) is of fundamental importance in modern
physical theories. Many physical systems admit SO(3) as a symmetry group,
a fact which is related to the conservation of angular momentum for such
systems. Moreover, the theory of spin and isotopic spin of particles is inti-
mately related to the rep theory of SO(3) and its locally isomorphic compan-
ion SU(2). The theory of hypergeometric functions is associated with the
study of the Lie algebra of SO(3). Finally, a knowledge of the rep theory of
the rotation group and its Lie algebra is indispensible for an understanding
of the more complicated rep theory of the classical groups.

Recall that SO(3) = SO(3, R) is the group of all 3 x 3 real matrices
such that 4'4 = E; and det A = +1 (see Section 2.1). This is the natural
realization of SO(3) as a transformation group on R;. We have shown that
SO(3) is a three-parameter Lie group whose Lie algebra so(3) consists of all
3 % 3 real matrices @ such that @' = —@. As a convenient basis for so(3)
we choose three tangent matrices to the one-parameter groups of rotations
about the x, y, and z axes, respectively. The rotations about the z axis are

cosp —sing 0
(1.1) sing cosg O]
0 0 I
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This is a one-parameter subgroup of SO(3) with tangent matrix

0 —1 0
(1.2) g.=[1.0 0
0 0 0
at the identity. Similarly
0 0 O 0 0 1
(1.3) Bip=10 +01-=1]s 2 1285 Qo4 090
Oyl O —1 0 0

are tangent matrices to one-parameter subgroups of rotations about the x
and y axes, respectively. We have

I . © 0 cosp O sing
(14) expoL,=|0 cosg —sing|> expeoL, = 0 l 0
0 sing cosg —sing 0 cosg

Since these three tangent matrices are linearly independent, they form a
basis for se(3). As the reader can easily verify, the commutation relations
of the basis vectors are

(1.5) [£,, £,] = £;, [£,8] =85, [£5.8,] =1L,

In Section 5.4 we showed that SU(2) was also a three-parameter real Lie
group. As the reader can easily verify, every 4 € SU(2) can be written in the
form

o B
1.6 il S T
o (—ﬁ &)
where |af* + |B[2 = 1. If 4, 4,, 4, € SU(2) then

Ahl —_ ,ﬂil — (ﬁi _-ﬂ)r AIAE — ( ml_ml " ﬁl_ﬁ%.’ ml_ﬁz —I_ ﬁl_ii )
T . '_ﬁl'm’l e mlﬁl! _ﬁlﬁz + 0,0,
The Lie algebra su(2) = L(SU(2)) consists of all 2 X 2 complex skew-
Hermitian matrices @ of trace zero:

ix — X, + ix
3 3 2 1
(

e il o —1X;

(1.7) ) x; € R.

As a basis for su(2) we choose the elements

AR otg (0 if2)j o ( 0 -—1;2)’ T (ffz 0 )
ij2 0 1/2 0 0 —i2

A direct computation shows that these matrices satisfy the commutation
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relations (1.5). Thus so(3) and su(2) are isomorphic Lie algebras, so SO(3)
and SU(2) are locally isomorphic Lie groups. However, this isomorphism is
not global.

To exhibit explicitly the relation between SO(3) and SU(2), consider the
adjoint rep of SU(2) on its Lie algebra: |

(1.9) QA —>® = AQA™ ' = su(2), @ € su2), Ae SUQ).

(See Section 5.6.)

Now det ® = det (4@A~!) = det Q. Therefore, writing
(1.10) {B:( sy — Wt iyl)
Vi + 1Yy, — 1),

we find
(1.11) Pt A —=det B = det @ = x° =X, - X%
According to (1.9) the y, are linear combinations of the x,:

3
(1.12) y= 3 RAyx,  J=1,23

Since (1.9) defines a rep of SU(2) the 3 x 3 matrices R(A) satisfy R(AB) =
R(A)R(B) for all 4, B & SU(2). Moreover, from (1.11) and (1.12), R(A4)'R(A4)
= E,,le., R(A) € OQ3). The rep A — R(A) is continuous and SU(2) is con-
nected. Thus det R(A4) is a continuous function of A4, and since R(E,) = E,,
we conclude that det R(4) = 1 for all A € SU(2). We have shown that
R(A) € SO(3) and A — R(A) is a homomorphism of SU(2) into SO(3).

We now verify that this homomorphism covers SO(3). Let R € SO(3)
and set y, = 3 R, x,. Defining @, & = su(2) by (1.7) and (1.10) we find
tr@ =tr® =0, det @ = det ® = x,* + x,2 + x,% = ¢, so the Hermitian
matrices i@ and /® have the same eigenvalues, +ig. Therefore, i@ and i®
are similar and there exists a unitary matrix B such that 8 = BGB~'. Now
|det B| = 1 for B unitary, so B = ¢4, where ¢*® = det Band 4 € SU(2).
Thus 8 = AGA !, so R = R(A) and the homomorphism 4 — R(A) maps
SU(2) onto SO(3). Finally, the relation

(—A)B(—A)! = AGA"!

shows that R(4) = R(—A), so two elements of SU(2) map onto a single ele-
ment of SO(3). Note: The matrix —4  SU(2) if A € SU(2).

The reader can check that R(4) = E, if and only if A = L E,. Thus,
SO(3) is isomorphic to the factor group SU(2)/{ -+ E,}. Exactly two elements of
SU(2) map onto one element of SO(3). (Since — A is far from E, when A4 18
close to E, it is clear that this map is locally an isomorphism.)

Writing o« = a + ib, B = ¢+ id, a, b, ¢, d € R, in (1.6) we see that the
only restriction on these four real parameters is a* + b*> + ¢* + d* = 1.
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Topologically, SU(2) is homeomorphic to the unit sphere S, in four-dimen-
sional space. If 4 € SU(2) is a point on this sphere then — A4 is the point on
the other end of the diameter of S, passing through 4. Topologically, SO(3)
1s homeomorphic to the projective space obtained by identifying opposite
ends of each diameter in S,. We say that SU(2) is a covering group of SO(3)
and that it covers SO(3) twice. (For a more geometrical derivation of the
relationship between SU(2) and SO(3) see Gel'fand et al, [1].)

The Euler angles (¢, 0, ) form a convenient coordinate system for
SU(2). Consider the product

(1.13)  A(p, 0, ) = (exp pd;)(exp 89,)(exp ¥ J,)

i | (e“’-’* 0 ) (CDS 16 isin %B) (e‘“’-” 0 )
V0 e 2] \jsin 16 cos 16 O g2

B (fﬁ i)

- (e”’*"”” cos 40 ie'*~¥)2 gin —%B)
ie'v=?"2gin 1B e etv¥2 cos 10
It follows that any 4 € SU(2) is determined by Euler angles (@, 8, w), where
(1.14) |e| =cos46, arga =4(p + y), arg f = e — vy + m),
(1.15) cos 48 = |al, sin 38 = | B, 9 = argo -+ arg f — 1n,
w = arga — arg f + 4=, |af| = 0.
If we restrict the Euler angles to the domain
(1.16) 0 < g < 2m, 0<0@<m, —2n < w << 2m,

then for |afi| == 0, (p, 8, w) are uniquely determined. (Recall that the argu-
ment of a complex number is determined only up to an integer multiple of
2m.) However, if |aff| = 0, an infinite number of Euler angles describe the
same group element. The Euler angles are coordinates on the sphere S,
somewhat analogous to the coordinates latitude and longitude on the sphere
S, 1n three-space. All points on §, have unique values of latitude and longi-
tude except the poles, where the longitude becomes indeterminant. The
Euler angles are still very useful despite this drawback because the set on
which they are indeterminant has lower dimension than three. Thus, if we
integrate a function over SU(2) using the invariant measure, the behavior of
the function on this set will have no effect on the integral.

Clearly, the Euler angles of the product of two group elements can be
expressed as analytic functions of the Euler angles of the factors. The results
are given by expressions (2.16).
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The invariant measure on SU(2) can be computed directly from the for-
mulas of Section 6.1. Let A(p, 8, w) € SU(2). Then

e icos@ —desinf , :
-+ (cos y sin 8)9, + (cos £)9,

0A 0 ey J
A fg_g = (lfgfw 3 y ) — (cos w)dg, — (siny)d,

i
Thus
sinysinf coswsin@ cosf
Vip,0,w) = det( COS W —sin i 0 ) = sin @
0 0 [ .
and

(1.17) dA—=sinfBdpdddy, 0<g<2n 0<O<m —2n<y<2nm

Since SU(2) is compact, d4 is both left- and right-invariant. The volume of
the group is

(1.18) V= '[mmd,q - rl dy jz do L sin 6 df — 1672,

Note that the Euler angles ¢, v are indeterminant only for @ = 0, = and these
points make no contribution to the integral.

Now that we have successfully parameterized SU(2) we use the homo-
morphism A4 — R(A) to parametrize SO(3). The one-parameter group
exp 1§, in SU(2) maps onto the one-parameter group R(exptg,) in SO(3).
Thus R induces a Lie algebra isomorphism which maps §, to £," =
(d/dt)R(exp td,) |-, By direct computation from (1.9) and (1.12) we see that
£, = £,. Similarly, g, maps to £, and §, maps to £,.

Thus

(1.19) R(A) = R(exp pd;)R(exp 69,)R(exp wd;)
— (exp @L£;)(exp 6L )(exp wL,),

or from (1.1) and (1.4),

(1.20)

cos @ cosy — singsinw cosf, —cosgsiny —singcosycosf, singsinf
R(A) = (sin @ cos W + cosgsinwcosf, —singsiny + cos@cos ¥ cosf, —cospsin 6‘)-
sin  sin 8, cos ¥ sin @, cos @
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Since R(4) = R(—A), two different sets of Euler angles determine the same
rotation matrix. Indeed it is easy to check from (1.20) that R(A(p, 0, y)) =
R(A(p, 8, w + 2m)). Thus, to uniquely associate a rotation matrix R(g, 6, w)
with each set of Euler angles it is enough to restrict the angles to the domain

(1.21) 0<p < 2nm, 0<0<m, 0 <y < 2m,

i.e., ¥ now runs over a domain of 2m rather than 4z radians. In the cases
8 = 0, = only the sum ¢ -  is determined by R, but this exceptional set is
of lower dimension than three.

Since SO(3) and SU(2) are locally isomorphic, the invariant measure on
SO(3) must be given by (1.17), again except that the domain of the variables
@, 0, w is given by (1.21) rather than by (1.16). Thus the volume of SO(3)
is 872, half that of SU(2).

Let T be a rep of SO(3) by operators T(R). Then the operators T'(4) =
T(R(A)), A € SU(2), define a rep of SU(2) such that T'(—4) = T'(4).
Conversely, if S is a rep of SU(2) such that S(—A4) = S(4) forall 4 € SU(2)
then the operators S'(R(4)) = S(A4) define a rep of SO(3). Thus, there is a
1-1 relationship between reps of SO(3) and those reps S of SU(2) such that
S(—A) = S(A), i.e., such that S(—E,) is the identity operator.

Since SU(2) and SO(3) are compact groups, the problem of constructing
all reps of these groups reduces to the problem of constructing all finite-
dimensional unitary irred reps. Suppose S is a unitary irred rep of SU(2)
on an m-dimensional vector space. Now —E, € SU(2) commutes with all
A € SU(2), so S(—E,) commutes with all operators S(4). But S is irred, so
by the Schur lemmas, S(—E,) = «E, where E is the identity operator. Since
(—E,)* = E, we have a? = 1, or ¢ = +1. Thus, S(—E,) = +E. If the plus
sign occurs then S is called integral and it defines an irred rep of SO(3).
However, if the minus sign occurs then S does not define a single-valued rep
of SO(3). [It is frequently stated that S defines a double-valued rep of SO(3),
i.e., two operators are associated with a single group element.] We shall call
these reps half-integral.

In quantum mechanics the half-integral reps of SU(2) appear even though
one is initially concerned only with the rotation group SO(3). The reason for
this is that the states of a quantum mechanical system are given by rays in
Hilbert space rather than by vectors. Thus the vectors ev, 0 < y < 2=,
all correspond to the same state for fixed v in the Hilbert space 3C. A rotation
R of 2z radians about the z axis will transform this state into itself. However,
Rv need not be v. In fact if Rv = v then the state will be mapped into itself.
It is possible to show that for any action of SO(3) as a continuous transforma-
tion group on the states of JC we can always choose the state vectors v so y
is either 0 or = (Wigner [1]). The case y = & actually occurs, e.g., the electron
wave functions, so we are led to consider double-valued reps of SO(3).
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Let § be a real n-dimensional matrix Lie algebra. The complexification

—— G, of G is the complex n-dimensional Lie algebra consisting of all complex

linear combinations of elements in the real algebra G. It is easy to check that
isomorphic real Lie algebras have isomorphic complexifications. Let X be
a complex n-dimensional matrix Lie algebra. A subset X, is a real form of
X if &, is a real n-dimensional Lie algebra. A given complex Lie algebra may
have several nonisomorphic real forms. If X, is a real form of &, then (X,),
is an n-dimensional complex Lie algebra and (X,), < K. Since X is n-dimen-
sional, (&), = X. Conversely, if G, is the complexification of G it is obvious
that G is a real form of G,.
Now s/(2) = s5l(2, €) is the complexification of su(2). Indeed, if we set

(1.22) ==+ +id, I =—ids,

where i = ./—1 and the g, are given by (1.8), we find that §=, g° form a
basis for a three-dimensional complex Lie algebra with commutation
relations

(1.23) [$%, %1 = £9*, [9".97]1=28.
Comparing these relations with (10.9), Section 5.10, we see s/(2) = (su(2))..
Furthermore, su(2) is a real form of s/(2).

It is clear from these remarks that any rep T of su(2) on a complex vector
space V induces a rep of s/(2). Indeed, T(9*) = +T(,) + iT(d,), T(§*) =
—iT(g,). Conversely, any rep of s/(2) on ¥ induces a rep of su(2) by restric-
tion. One of these reps is irred if and only if the other 1s 1rred.

Thus, to find the finite-dimensional irred reps of su(2) it is enough to
compute the finite-dimensional irred reps of s/(2) and restrict these reps to
su(2). Then the results can be exponentiated to obtain irred reps of SU(2).

7.2 TIrreducible Representations of SU(2)

In Section 5.10 we constructed a family of finite-dimensional irred reps of
SL(2). The rep D®, 2u =0, 1,2, ..., is defined by operators

(2.1) [T(Af)2) = (bz + d)*f (E i ;)

b
i (“ )E SL(2), fe VW,
c d
acting on the (2u -+ 1)-dimensional space of polynomials of order 2u. The
corresponding rep of s/(2) is given by
(2.2) J3h, = (j— uwh,, J*h, = (j — 2wh,. T R—"—JH, 13

where h,(z) = z/, 0 < j < 2u, is a basis for U™, By the remarks at the end
of the preceding section, (2.2) also defines an irred rep of su(2). We need only
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express the Lie derivatives J;, k = 1, 2, 3, corresponding to J, in terms of
J*,J3 and use (2.2) to compute the action of J, on a basis for V™, In partic-
ular,

(2.3) J=="= L. ¥, JP=—il,.
We now exponentiate each rep of su(2) to see if it defines a global irred
rep of SU(2).

If we consider SL(2) as a real Lie group of dimension six then SU(2) is
a connected Lie subgroup. Thus, to obtain the group reps of SU(2) induced
by the reps of su(2) we restrict the operators T(4), (2.1),to 4 € § U(2), (1.6):

2.4) (T(A)/)e) = (B2 + 87/ (G BY, Fevd

We shall again denote these (2u -+ 1)-dimensional reps of SU(2) by the sym-

bol D, The D™ are irred because their associated Lie algebra reps are irred.
Note that

(2.5) [T(—E,)f1(z) = (—1D*[(2),

or T(—E,) = (—1)*E. Thus, for u =0, 1, 2,... the reps are integral
and define irred reps of SO(3). On the other hand, for u = 4,3, ... the
D® are half-integral and yield double-valued reps of SO(3). We shall show
later that the D™ constitute all the irred reps of SU(2) and the D" for u an
integer constitute all the irred reps of SO(3).

Since SU(2) is compact there must exist an inner product (-, —) on U
with respect to which D™ is unitary. Thus,

(2.6) (T(Af, T(ADh) = (f,h), A€ SUQ)

for all f, h € V™. Let exp tJ, = T(exp tg), where the J, form a basis for
su(2). Substituting into (2.6), differentiating with respect to #, and setting
t = 0, we find

(2.7) S LLh)y=—( ), k=123,
ie., J.¥ = —J,. Thus the operators J, are skew-Hermitian. Stated another
way, the operators iJ, are Hermitian, i = /—1. It follows from (2.3) that
(JDY*=J", (J)*=J* and (J3)* =J°.

The relations

(J*h,, k) = (h;,J3h,), (J* k) = (h;, J hy)

together with (2.2) imply
(28) (hj: hk} 7T Ur .r]'i k:
29) Qu—PDlbm =G+ DRI j=01,...,2u— L.

Thus the basis vectors /,(z) = z/ are mutually orthogonal. Expression (2.9)
shows the relationship between the norms of the basis vectors. We can
normalize the inner product by choosing || 4, || arbitrarily. Then (2.9) will
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fix the remaining norms. We now choose an ON basis { £} for V®, The basis
vectors will be labeled by the eigenvalue m = j — u of f,, with respect to
J?, rather then the parameter j. Normalizing A,(z) = | by [|A,|]* = (2u)!
we obtain the relation || 4, |[* = (2u — j)!j!. Therefore, the vectors

oy DR (=2t
GO D= = pr = e mt e
m=—u,—u-+1,...,u—1,u,

form an ON basis for V™. It follows from (2.2) that
@10 Pf,=mf,, I =@t m+ )uF m)S,.,.

The matrix elements of the rep D™ with respect to the ON basis { £}
are

I'in(A) = (T(A) f s 1)

or

TALND) = X Tin @), —u<m<u.
Thus,
(2.12)

_ B+ @z — Bt & o (DA
8D = T —mtw Ty 2 =t w e

Equating powers of z on both sides of this expression, we obtain

u . 4 (H —+ m}l {H = H)! 1/2 mu+n&u—n)§m—n

szl("“_”:m—H;m—ﬂ—i—l;—"g

)

In terms of the Euler angles (1.13) this reads
(2.14)

Thulp, 0, ) =

I‘n—m[{ﬂ - .’H}! (H = ."I).t‘ I/4 E”"iﬁmv}{sillﬂ}m“"(l + cos e}u-}n—m
{”+”)!(”—m}!_| 2T'(m — n + 1)

cmsﬁi—l)

XIFI(—u—n,m—u;m—n—}- l;cnsg—l—l

. pmm {H 7 m)!(u 2 ”)!J”l ilng+my) D-n,m
— | [(u+n)!(u—m]! e P.mm(cos @)
(see the Symbol Index). By suitably manipulating these formulas we could
obtain many other expressions for the matrix elements. Note the simple
dependence of T%, on ¢ and w. The group property

H

(2*15} T:m(AiAE)'__' Z TﬁJ(AI}Tﬁm(AE)

f=—u
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defines an addition theorem obeyed by the matrix elements. To apply the
addition theorem when the 7* (A4) are parametrized by the Euler angles
it is necessary to compute the Euler-angles (g, 8, w) of a product A(p, 8, y) =
A(p,,6,,w)A4,(p,,0,,¥,). A straightforward though tedious computation
yields

cos @ = cos 6, cos 8, — sin @, sin 8, cos(p, + w,),
e'? = (e'"[sin B)(sin @, cos 8, + cos @, sin @, cos(p, + w,)
(2.16) + isin 6, sin(p, + ¥,),
giletw) 2 — (glertwi)2cos 18)(cos 48, cos 48, /7 Fvii2
— sin 40, sin 40, e~ !Prtvai2),

and the addition theorems are obtained by substituting (2.14) and (2.16) into
(2.15). The unitary property of the operators T(A4) implies

(2.17) Ton(A7) = T5.(4),

or in Euler angles,

(— 1y P mm(cos §) = E u. 3: Eﬁ = E;iP;”-"(cﬂs 9).

Also, |T“ (A)| < 1 or

—_— (u -+ n)! (u— m]!}“*i
| P;m™(cos 0)| < A=) 0<<f<nm.
We can obtain an integral expression for the matrix elements by setting
z = ¢ in (2.12), multiplying by e “®*"*, and integrating both sides of the
resulting expression from 0 to 27:

: (=D (u— n) (w4 n)! ]
(2.13} Tnm('?; ﬁ', ‘ﬂ) — 2n [{u — m)! (u _|_._m}!:l

¥ En (:’ sin ug-e""' - COoS %)uhm

g . ARSI y )ﬁm —fy{utn)
X (EDS?E 1S - e dy.
The matrix elements T%,.(@, 8, w), [, m, integers, are proportional to the

spherical harmonics Y,"(0, w). Indeed

(2.19)
f A N2 = )Y E
T:Jm(';o: B: W) — (g_'_—]) YI (H: W) T EI; TE m;il PI (C'DE Q)E Y
where the P,"(cos ) are the associated Legendre functions. Moreover,
[220) Tiﬂﬂ(';p: H:‘ w} = PI(CDS H)!

where P,(cos 8) is the /th Legendre polynomial.
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According to the general theory of Section 6.2, the matrix elements
T= (A) satisfy the orthogonality relations

Gy g P ATED dA =18 5 Grim O
SU(2) Ty izl 2”1 _|_ ] myng ™ gy Malie "

Thus,

j " ay f " do f dd T4, (9,0, y)T%,. (¢, 0, y)sin 8
—in 0 0

16m*

- 2“; _]_ ] 5":!‘!1 "511'1!1"11 5""’”‘

The w and ¢ integrations are trivial, while the 6 integration gives

2 (u—nm(u—m)!
u+1(u+n)(u+ m! ™
For n = m = 0 these are the orthogonality relations for the Legendre poly-
nomials. Note: By definition,

(2.22) P%~m(cos §) = P,m(cos B), P2%cos @) = P,(cos 8),

where P,”, P, are Legendre functions. At this point we know only that the
functions {(2u - 1)V/2T*% (A4)} form an ON set in L,(SU(2)), but later we will
show that they form a basis, i.e., the D* constitute a complete set of irred
reps of SU(2).

We now compute the character y*(4) of D*. By definition,

L Pz7(cos B)P3"(cos ) sin 8 df) = »

I

(2.23) X(A) = 2 ThaA).

M=—u

This expression is too complicated to compute easily. On the other hand we
know T®“(BAB ') = T“(4) for all A, B e SU(2). From elementary
matrix theory, every 4 € SU(2) can be diagonalized by a unitary similarity
transformation. Indeed, there exists a number 7, —2n < 7 < 2m, and a

B & SU(2) such that
El’r.-"! ﬁ
(4] )

D e =it/ 2

Therefore, the conjugacy classes in SU(2) are labeled by the parameter 7.
Passing from SU(2) to SO(3) by the usual homomorphism we see that A
represents a rotation through angle 7 about a fixed axis. [In SO(3), two rota-
tions about distinct axes are conjugate if and only if they have the same
rotation angle.]

We have shown that A4 is conjugate to the group element C with Euler
parameters (0, 0, 7), or & = €2, § = 0. By (2.12), T,,.,(C) = e™*. Thus,

() e = F ) R EI{H+1}T o~ E-mr — Siﬂ[{“ +_é-)‘r]p
el Y= 2 SRSt sin(7/2)

me=—u




7.3  Irreducible Representations of sl(2) 233

where we have used the formula for the ».im of a geometric series. It 1s not
difficult to express y'"“'(A) directly in terms of the parameters of 4, but the
expression 1s not very enlightening. For u =71=0,1, 2, ... the formula
XP(R(A)) = sin[(/ + })r]/sin(7/2) gives the character of the rep D of
SO(3) where R(A) is a rotation through the angle 7 about a fixed axis. In this
case T + 2z yield the same value as 7.

Let D™, D™ be irred reps of SU(2) and consider the tensor product
D™ ) D™, This rep is (2u + 1)(2v + 1)-dimensional and its character is
Y% X y(A) = ¥y (A)y*(A). We can determine the decomposition of
D% & D™ into a direct sum of irred reps of SU(2) by expressing y™ &) x™
as a sum of simple characters. Now

X{uil @ I{:.rj(A} — i i Ff[m-l—ﬂ'}'f — E i E,-.ifr — u;v lxiw}{A}!
mM==i p==p w=g=p k=—w w=|u—p

where we have assumed u = v. [Note: The term e** occurs min(u + » 4+ 1
— | k|, 2¢ + 1) times in the above expansion.] In general

HAY

(2*25} Im @ ,‘(“"(A) = 2 IXM{A)'
Therefore,
(226} D« @ Dhﬂ e Diute) @ Dlu+ p=1) (_BI wll] @ Dtlu—rﬂ'

This expression is known as the Clebsch-Gordan series. Note that each
irred rep which occurs on the right-hand side of (2.26) has multiplicity one.
Thus, the decomposition of the rep space into irred subspaces is unique and
independent of basis. In Section 7.7 we discuss this decomposition in detail.

7.3 Irreducible Representations of s/(2)

In Section 7.1, we showed that s/(2) is the complexification of the real Lie
algebra su(2) = so(3). Therefore, there is a 1-1 relationship between irred
reps of 5/(2) and irred reps of su(2). To determine all finite-dimensional irred
reps p of these Lie algebras it is enough to classify (up to isomorphism) all
finite-dimensional complex vector spaces V and operators /=, J* on V satisfy-
ing the commutation relations

(3.1) [, J%] = d= [T TRl =203
such that V is irred under the J-operators. Here J? = —iJ;, J= = +J, +

iJ,, and J, = p(g,). The operators (3.1) will prove to be much more conveni-
ent for computations than the J,.

The following computation should be familiar to those readers who have
studied quantum mechanics. A good understanding of this procedure is es-
sential since similar methods will be used to construct the irred reps of all
the classical groups.
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Let p be a finite-dimensional irred rep of s/(2) on V. As the reader can
verify, the Casimir operator

(2  C=—()P— P — P =TT+

commutes with J*, J3. By the Schur lemmas, C must be a multiple of the
identity operator on ¥, C = AE.

Let h, € ¥ be an eigenvector of J* with eigenvalue g: J°h, = gh,. Now
[J3,J*]h, = J*h,, or J3(J*h) = (¢ + 1)J*h,. Thus, either J*h, = @ or J"h,
is an eigenvector of J® with eigenvalue g + 1. Similarly the commutation
relation [J3,J~] = —J~ implies that J"h, =0 or J~h, is an eigenvector of J*
with eigenvalue ¢ — 1. By a simple induction argument
J3I*yh, = (g + KTV,  JT Vb= (g — k) Fh, k=0,1,....
Since V is finite-dimensional there exists an integer r = 0 such that (J*)'h, %
0 and (J*)*'h,=0. Set (J*)yh, =f,, where u = g -+ r. Then J*f, = ul,.
Similarly there is an integer s > 0 such that (J7)*f, % 8, (J7)y"'f, = 0. We
will show that the eigenvectors f,,, m=u,u — 1,...,u — s, where f,, =

(J)y~™f, form a basis for V.
Now Cf, = Af,. On the other hand, by (3.1) and (3.2),

Cf, = Jt 4 J33 + ), =JJ', + w(u + 1A,
Since J*f, = 0 we obtain A = u(u + 1). Applying C to f,_, we find
L. =uu+ If,_, =T +J30° —If,_, =@u—s)u—s— 1,

sinceJ f,_, = 0. Thus, u(u + 1) = (u — s)(u — s — 1) or s = 2u. 1t follows
that 2u is a nonnegative integer. Since J°f,, = mf,,, —u < m < u, we obtain

Cf, = u(u + Df, = (J*T~ + J3J? — PN, = I,y + m(m — DA,

orJ*f, = (u — m)(u + m -+ Df,,,,u— 1 =>m= —u. We have shown that
the (2u -+ 1)-dimensional subspace of ¥ spanned by the {f,} is invariant and
irred under p. Since p is irred, this subspace must be V itself. The rep p is
now completely determined.

B3 BE =min Jet ==43 oy JHf, = w—mlu—+m-+ D,
—u << m= i

(On the right-hand sides of these expressions we adopt the convention:
f — 0 if m is not an eigenvalue of J3.) Conversely, if 2u is a nonnegative
integer then the operators J=,J* defined by (3.3) determine an irred rep
D™ of 51(2). If u % » then D™ is not equivalent to D' since the two reps have
different dimensions.

The rep D uniquely determines and is determined by the eigenvalues
—u, ..., +tuof J3. However, the basis vectors are not uniquely determined.
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If {y,.: —u <_m <C u}is a set of nonzero complex constants then the eigenvec-
tors {f,’ = y.f.} also form a basis for V. If the constants are chosen such
that 9,.../7, = [(u +m + )(u — m)]"2, —u<m <_u — 1, then relations
(3.3) become

SNy = mh,, J7L, = [(u F m)u £ m+ D',

(3.4)
Cf, = u(u + 1),

where we have omitted the prime on f,’. Note that expressions (3.4) and
(2.11) are identical. Thus the reps D", 2u = 0,1, 2,..., of SU(2) con-
structed in the preceding section constitute all the bounded irred reps of
SU(2), up to equivalence. [Furthermore, the reps of SL(2) constructed
in Section 5.10 constitute all finite-dimensional irred reps of SL(2) as a com-
plex Lie group.]

Another useful basis for ¥ is obtained by setting y_../7,, = —(u + m +
1). Relations (3.3) become

(32)0 A ==mi,.; JEH = (—u £+ mif,.q, Cf, = uw(u + 1f,,.

Although we have confined ourselves to a search for finite-dimensional
reps, expressions (3.5) can also be used to construct infinite-dimensional
irred reps of s/(2). (Here we mean V is infinite-dimensional in the algebraic
sense. We do not consider ¥ as a Hilbert space.) Indeed if 2« is a complex
number, not a nonnegative integer, and V is a vector space generated by the
vectors {f,}, m = —u, —u + 1, —u+ 2, ..., then expressions (3.5) define
an irred rep 7, of s/(2) on V, as the reader can verify. Since J f_, = 0 the oper-
ator J* has a lowest eigenvalue —u, i.e., an eigenvalue whose real part is
least. However, J? has no highest eigenvalue. The rep 1, is said to be bounded
below. The reps D™ are bounded both below and above. Using similar tech-
niques one can use expressions (3.5) to construct infinite-dimensional reps
which are bounded above but not below or which are bounded neither above
nor below. A systematic study of such reps is undertaken by Miller [1].

We have already seen the infinite-dimensional reps 1,. In Section 5.10
we constructed the local multiplier rep

K U onsurpfaz c)‘

(3.6) [T(A)f1(z) = (bz + d) f( e A e SL(2)

of SL(2) on the space @ of all functions analytic in a neighborhood of z = 0.
Here 2u 1s not a nonnegative integer. As a basis for @ we choose the functions
h(z)=2z/,j=0,1,.... The Lie derivatives associated with (3.6) are easily
computed to be

(3.7) J' = —2uz + z¥(d/dz), J- = —dldz, J?} = —u + z(ddz).
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Setting [, (z) = h(z) = 2/, whére m + u = j, we find
JHf, = (—2uz + 22 dldz)z"" = (m — u)fri1)
(3.8) Jf, = —dz"*"[dz = —(m + W[y i) A ¢

Jif, = (—u + zdldz)z""* = mf,,
m=—u,—u-+1,—ut+2,....

Thus the local multiplier rep (3.6) induces the irred rep T, of s1(2). Conversely,
the infinite-dimensional rep 1, induces the local multiplier rep (3.6), which we
will also call 1,. Note that the group rep 1, is purely local.

7.4 Expansion Theorems for Functions on SU (2)

We have shown that the (2u - 1)-dimensional reps D*, 2u =0, 1, 2,
... constitute a complete set of nonequivalent irred unitary reps of
SU(2). Thus, by the Peter-Weyl theorem, the functions ¢*.(@, 0, ¥) =
Qu 4+ V2T (9,0, w), —u <m, n <u, 2u—=0,1,..., constitute an ON
basis for L,(SU(2)). [Here we use Euler coordinates on SU(2) for the matrix
elements (2.14).] The matrix elements satisfy orthogonality relations (2.21).
Furthermore, if f € L,(SU(2)) then

(4.1) flo, 0, w) ~ hﬁ:}u y i_u at.0ne, 0, v),
where
(4.2)
T " e 1 2n d 2n d J‘n: d'a B - 6 I B
I'Jnm — (f! ';gl'i‘m) b G lﬁﬂl J—ln 'F J-ﬂ l?] 3 f{?g 5 I',E!’){ﬁ,,m(l;ﬂ, 3 W) SINL 0.
The Parseval equality reads
(4.3) =3 3 lal

2u=0 m,n=—Hu

With simple modifications these results apply to functions in L,(SO(3)).
The modifications are (1) u takes only integral values, (2) the volume of
SO(3) is 8x? rather than 16z%, and (3) the variable w runs over the range
0 << w < 2z rather than —2r < w < 2m.

Some particular cases of (4.1) are of special interest. Suppose f8,w) €
L,(SO(3)) is independent of the variable ¢. If we think of (@, w) as latitude
and longtitude, we can consider f as a function on the unit sphere §,, square-
integrable with respect to the area measure on S,. Since the g-depen-
dence of ¢“.(p, 0, ) is e, it follows from (4.2) that a%, = 0 unless n = 0.
The only possible nonzero coefficients are agm, whereu=1=0,1,2,....
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By (2.19)
(4.4) Pom(@, 0, W) = (4m)' 2 Y,™(0, w),
where ¥;™ is a spherical harmonic. Thus,

iy i
(4.3) fl0,y) ~ f.V_.; MZ.’L ; cn YO, ),
where

46 o= [ ay [ 1O WTTF@Ysnb (X7 YE) = 6 b

This is the expansion of a function on the sphere as a linear combination of
spherical harmonics. As usual, (4.5) converges in the norm of L,(SO(3)),

not necessarily pointwise.
If f(8) € L,(SO(3)) is a function of @ alone then the coefficients a%,, are
zero unless # = m = 0. From (2.20),

47  oho(p,0,9) = 2l + 1)2P(cos @), [=0,1,2,...,
where
(4.8)

is a Legendre polynomial of order /. The coefficient of X' in the expansion of
P/(x) is nonzero and P,(1) = 1. The expansion of f(f) becomes

1(6) ~ ;j eP(cos), ¢, =32+ 1) [ f(B)P(cos 6) sin 6 b,
(4.9) - : .
_[ P(cos @)P,(cos &) sin @ d8 = 20,,/(2] + 1).

Expressions (4.9) can be simplified by introduction of the new variable
x=c080,0<0 <=

The reader can construct some examples of the above expansions by
considering the generating function (2.12) and the addition theorem (2.15).
Other examples can be obtained by manipulation of the integral expression
(2.18) for the matrix elements. If n = m = 0, v = [, (2.18) becomes

2n
(4.10) P(cos 8) = (1/27) j (cos @ | isin 8 cos pY dy.
0
Setting z = ¢, we can write this last equation as a contour integral
(4.11) P(cnsﬁjziﬂcuswrisine(z 4| 4,
i ! 2mi 2 z

where the contour is a simple closed curve surrounding the origin. The change
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of variable z=[t — cos@ -+ (1> — 2tcos @ -+ 1)! 2]/(isin @) transforms
(4.11) into
g1 it di
Eleos0) = 7 35{:2 —JtcosG + 1)
where the contour can be chosen as the circle [f| = r > 1. Setting s = ¢/,
we find

| § ¥ =Ly :
27ti J (s> — 2scos @ + 1)12

The analytic function (s* — 2scos@ + 1)7"2 = 3 c,s" possesses a poOwer
series expansion convergent for |s| < 1. It follows from (4.12) and the
Cauchy integral theorem that ¢, = P,(cos 0):

|zt ==

(4.12) Pcos 0) =

(4.13) h(s,x)=(s* —2sx + 1)1 2 = i‘, s"P (x), — <= xSl
n=10

One can check that A(s, cos 8) € L,(SO(3)) for |s| < 1, so this is an example
of the expansion (4.9). This generating function is often used to define the
Legendre polynomials. Let P,'(x) = (d/dx)P,(x).

Theorem 7.1.
(a) P(1)=1;
(b) P(—=1)=(—1);
(c) (2n+ DxP(x) = (n + 1)P,,,(x) — nP,_,(x);
(d) (1 —x?)P,/(x) + nxP,(x) = nP,_(x);
() (1 — x)P,)(x) — (n + DxP,(x) = —(n + 1)P,.,(x);
(f) [(1 — x)P, (@) +nn+ DPx)=0,n=0,1,2,....

Proof. These results follow from (4.13). (a) A(s, 1) = (1 — )" = ol
() h(s, —1) = (1 + )" = 3 (—s)" (©) (s* — 2sx + 1) dh/ds = (s — x)h.
Now compare coefficients of s on both sides of this equality. (d) Follows from
the identity (I — x2)(@h/dx) + xs(dh/ds) = s*(dh[ds) + sh. (¢) Follows from
the identity (1 — x2)(@h/dx) — xs(3h/ds) — xh = —odh[ds. (f) An easy
consequence of (d) and (e). Q.E.D.

Any identity we can obtain for the generating function implies an identity
for the Legendre polynomials. Thus, the identity s dh/ds = (x — 5) dhldx
implies
(4.14) nP(x) = xP,(x) — P,_i(x).

Identities such as (c)-(e) which relate different Legendre polynomials
are called recurrence formulas. The differential equation (f) is the Legendre
equation. Here we have derived these results by manipulation of the generat-
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ing function /(s, x), but we shall see that all these identities, including the
generating function, have a simple group-theoretic interpretation.

7.5 New Realizations of the Irreducible Representations

From an abstract point of view we have completely classified the irred
reps of SU(2) and SO(3). We have obtained simple realizations or models
of these reps in which the underlying vector spaces consist of polynomials
in one complex variable. In actual physical or geometrical systems, however,
the group action may appear far different from that in our models. In other
words, even though two group reps are abstractly equivalent they may appear
physically or geometrically quite different. For this reason it is useful to
survey some of the distinct realizations of the reps D which appear in
mathematical physics.

For our first model we consider the natural action of SO(3) as a trans-
formation group on R,:

(51)) Xl X A € SO(3), %X = (%, 9 mlieniRy

(The inverse is necessary to conform to the definition of a Lie transformation
group as given in Section 5.9.) Using the basis £,, £,, £, for so(3) as defined
by (1.1)=(1.3) and computing the corresponding Lie derivatives we find

R AT =g e e
(52} LI —EEJ-} }«’E Lz—xa—z Eax L3 -—-_PE J:dy
As guaranteed by the general theory, these Lie derivatives satisfy the com-
mutation relations

(5-3) [LI!LE]:LTJ [inLa]:Ln [LE!LI]:LE

and generate a Lie algebra isomorphic to so(3). The Lie derivatives (5.2)
are essentially the angular momentum operators of quantum mechanics.
We shall construct models of the reps D where the action of the group and
Lie algebra is given by (5.1) and (5.2), and the underlying vector space
consists of functions on R,.

First of all we define operators

(5.4) Lt = L, SiL,, = LY=1iLs;

which satisfy the commutation relations (1.23) and form a basis for the com-
plex Lie algebra s/(2). [Note: These operators are not identical with (2.3).
Nevertheless they satisfy the same commutation relations:

[L3, L*] = 4+ L=, (L%, L_] O3

The choice (5.4) is more convenient for the computation to follow.] The
action (5.1) of SO(3) on R, is not transitive. In particular x> + y* 4 z* is
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invariant under the group. Any sphere of radius r and center at @ is mapped
into itself. To exploit this property we introduce spherical coordinates
r, 0, e:

(5.5) x = r sin @ cos ¢, y = r sin @ sin g, z =rcosé,

r>0 0<<m 0<op<2n
Then the L-operators become |
a ¥
dp
independent of r. We now look for realizations of D™ such that the basis
space V™ is a space of analytic functions of 8, ¢ and the operators L=, L*

are given by (5.6). According to expressions (3.4) we must find basis functions
£.(0, p) = Y.™(@, p) for V* such that

sy - BERE AL,  ETe=la Tt d DISYE,
CY» =(L*L™ + L*L? — L)Y, = u(u + )Y,
Since L? = —id/dp we have
—i Y "[dp = mY,",  Y,"(6,9) = Q.7(0)e™,
where 0,™() is yet to be determined. The equation L™Y,* = 0 becomes
(d]d)Q* —ucotf@ Q) =0,

(5.6) gt e*‘*(j:a% 4+ teot 9%} Lty

whose solution i1s
0. = ¢, sin* 8 = ¢ (1 — cos? 0)*%,

where ¢, is an arbitrary nonzero constant. We can now use the “lowering
operator” L~ to obtain the functions Q," recursively from @,

(5.8) —(d/dO)Qr" — (m + 1)(cot )07+ = [(u + m + 1)u — m)]"2Q,™.
A straightforward induction argument and (5.8) yield the explicit expressions

(g — -+ m! TV » gy-mr2 @~ "(1 — cos? G)"
(59) 0O = gt my| 5 O s gy
—u << m < u.

The equation L~ ¥Y;* = 0 applied to (5.9) yields the condition

do;" R . 2 O (u+1) zdzuﬂ(l —CO8" H)u —
'——&E.— “E' H(Eﬂt H)Qu o (_zu_)i(l Cos 3} ai ﬂ'({.‘,{}‘ﬂ 8)2u+1 =T D

This condition can be satisfied only if ¥ = /is an integer. Foru = 4,4, . . .,
our construction fails. This is not surprising since the angular momentum
operators (5.2) were obtained from an action of SO(3) as a transformation
group. For u = I, however, we have found a highest weight vector Y/ and a
lowest weight vector Y;*. By copying the construction of the reps D in
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Section 7.3, the reader can check that the functions ¥, ™ satisfy all the relations
(5.7):

:i:a%Q,"’ — mcotB Q" = [(I F+ m)I &+ m -+ 1)]Y207*,

510

oot ]
mﬁ(slnﬁaﬁﬁ [I{f 1) — __?]Q, = Doy — B,
where the last expression is obtained by writing CY,” = /(/ 4 1)Y,” in terms
of differential operators.
The constant ¢, is usually fixed by the requirement

J.zn Jan' 1 EIE(B, .;p) |2 sin 8 46 d@ 2= |
0 <0 ==
or

(=]l + DIy
(5.11) ¢ =5 [ - } ,
where the phase factor (—1) is introduced to conform to convention.

The basis functions Y,;"(f, ) are just the spherical harmonics. To show
this explicitly we obtain some new expressions for the matrix elements
T= (A) derived in Section 7.2. From (2.12). T%,(A) is, to within a constant
factor, the coefficient of z**" in the Taylor series expansion of g(4, z). Thus,

T (4) = (_l}u—m[{“ = ﬂ}!jl”z dh+n§(14: z)

(u 4+ n)! 7/ iz A [
In terms of the functions P»™(cos @), (2.14), this reads
(5.12)
E MR L W 1
P-mm(cos @) =

(u + m)! dz**"

T e

Setting y = (izsin 8 + cos 8 — 1)/2, we find dy = 1isin @ dz and

(5.13) P;mm(cos @) = 2,;(( E utn - (1 — cos @)"~m/2(] 4 cos @)=+m)2

d“""[( | — cos @)y*™(1 4 cos 8)* "]
d(cos B)“*"

In particular, from (2.14), (2.16), (2.19), and (2.22) we obtain the expressions
d (1 — cos? @)

(5.14) Pp(cos @) = U + ”J'( ] — cos? §) /2

m)! 271 d(cos By "
for the associated Legendre functions and
m _ RN = FH)!]”I m tmp 0
(5.15) Y@, m)_[ R Pm(cos B)e™, I<m<l,
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for the spherical harmonics. This last expression agrees with (5.9) and (5.11),
so the basis functions for the realization (5.7) are just spherical harmonics.

We have already seen that special functions appear in Lie theory as
matrix elements of group reps. The above example shows that they also
appear as basis functions in the underlying vector space of a group rep.

Now that we have found realizations for the reps D"’ of so(3) we can
determine the action of SO(3) on these realizations. Indeed SO(3) acts on
R, according to (5.1). It is not difficult to show that the resulting identity is

(5.16) (W(AB) = 3 Th(B)T4.(4).

a special case of (2.15). Recall that
o 4m \/2
T (A(p, 0,w) = i"(577) Y1, 9).

Since r? = x? + y? 1+ z% is invariant under the action of SO(3) the set
{f(NY,™O, p): —! < m < I} forms a basis for a realization of the irred rep
D™, Here f(r) is an arbitrary nonzero function. It follows that L,(R,), the
Hilbert space of all Lebesgue square-integrable functions on R,, decom-
poses into a direct sum of irred reps D", each D*’ with infinite multiplicity.

An important special case of these considerations is the space ‘W' of all
homogeneous polynomials u(x, y, z) with degree / in x, y, z which satisfy
Laplace’s equation:

v 0Pu o 0% 0t

(3:17) vu_&x1+&y1+3?_0*

It is easy to show that under the action (5.1) of SO(3) any solution of La-
place’s equation is mapped into another solution. Furthermore, any homo-
geneous polynomial of degree / is mapped into another homogeneous
polynomial of degree /. Thus, W' is a finite-dimensional space invariant
under the action of SO(3). We shall decompose W' into a direct sum of irred
subspaces. Introducing the change of variable £ = x + iy, n = x — iy, we
see that every ¥ € W' can be written uniquely in the form

u=Y a, &z,

where

4(0*u/d& dn) + (9*u/dz?) = 0
and n, m run over all nonnegative integers such that 0 << n 4 m << /. Thus
gamﬁnmf"_‘q’""z"”'” Ll —n—ml—n—m— DEgrz-nm2] =0,

or
(5.18) 4n+ D(m+ Da,sy s+ —m—n)fl —m —n— l)a,, =0.
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It follows from this expression that once values are prescribed for the 2/ + 1
independent constants a, ,,, 0 < m < [/, and aq, ,, | < n < [, the remaining
constants are uniquely determined. Thus W' is (2/ + 1)-dimensional. It is
clear that the polynomial |
17112 ¢ 1MEL
I [CERVCRC
belongs to W'. Now W' is invariant under the operators L*, L?, expressions
(5.6). From (5.7) we see that the 2/ + 1 linearly independent functions
rYm@, ¢), —I <m<| all lie in W. Since W' is (2/ 4 I)-dimensional it
transforms irreducibly under the rep D'.
A well-known model of the rep D™ of SL(2) is defined on the (2u + 1)-
dimensional space ®* of homogeneous polynomials of degree 2u in the
complex variables z,, z,. The group action is

B

(5.19) (z.}m-—ﬁ(z,,z;)A=(z“z1)(:’ .

Thus,

(520)  [T(Aplz,, z,) = plaz, + pz,, Pz, + 02,),  p € O~

To see the connection between this expression and our previous models, set
w = z,/z,. Thenany p € ®*can be written uniquely as p(z,, z;) = z;3“p(w, 1),
where p(w, 1) = h(w) is a polynomial in w of order at most 2u. We can
factor z3* from both sides of (5.20) to obtain the result

)} A € SL(2).

(5.21) (T(AMIw) = (Bw + Soh( ).

=

This expression is identical with the model (2.1) of D', Restricting (5.20)
to the subgroup SU(2), we get a model of the rep D™ for this subgroup.

We have seen (5.20) before. Indeed, if we let V' be the two-dimensional
space V = {az, + bz,:a, b € €} then ®* can be identified with the (2u + 1)-
dimensional subspace of completely symmetric tensors in ¥*2. This subspace
is determined by the Young frame [2u], i.e., the frame with one row and 2u
columns. The action (5.20) of SL(2) on this subspace is induced by the action
(5.19) of SL(2) on V. In Section 4.3 we showed that [2u] determined an irred
rep of GL(2). Now we see that the restriction of this rep to SL(2) and then to
SU(2) remains irred. The other irred reps [f,.f.], f, = f,, of GL(2) also
restrict to irred reps of SL(2). However, as we shall show later, on restriction
to SL(2) we have the equivalences [f,, ;] =[f, — f,,0], so the frames
[f,]1=1f,,0],f, =0,1,2,...,exhaust the irred reps of SL(2). In Chapter
9 we will study the irred reps of SL(n) and SU(n), and demonstrate the
relationship between these reps and Young diagrams.
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For our next example we construct a model of the infinite-dimensional
local rep T_,,, of SL(2). Consider the operators

i R i e 6 ..a._. ij p—y i*
(522)  J _rl((xz ”a_xi”arJrz) =t

acting on a space of analytic functions of x and ¢. These operators satisfy the
commutation relations

[J3, %] = +J%, [J*, ] =2J3
of s/(2). In order to construct a model of 7_,,, we must find functions f,(x, 7)
= g ()t k=0, 1,2, .. ., suchithat
{5*23) ijk=(k‘|'i‘)fm J+fk:(k‘|‘ l}fk+1!' J_sz _k.}rk-li

[see (3.6) and (3.8)]. It follows that the functions g,(x) satisfy the recurrence
relations

(x2 — 1g." + (k+ Dxge = (K + 1)g4ys
(x2— 1)g, — kxg, = —K&--

Furthermore the relation (J*J~ + J3J? — J%)f, = —1f, implies that the
g.(x) satisfy the second-order differential equation

(5.25) [(x — 1)(d?/dx?) + 2x(d]dx) — k(k + 1)]g.(x) = 0,
iy 1 O ey

Expressions (5.24) determine the g,(x) up to a multiplicative constant. Indegd
the relation J~f, = 0 implies g,'(x) = 0, or g,(x) = c. If we set ¢ = 1 we can
uniquely determine the remaining g,(x) from the first of the recurrence for-
mulas (5.24). The second recurrence formula and the differential equation
(5.25) are consequences of the commutation relations and do not have to be
verified explicitly for the g,(x). Rather then determine the g,(x) recursively
we compare our recurrence formulas with Theorem 7.1 to obtain

(3.26) g.(x) = P(x),  filx, D) = P(x)t*+1V/2,

Thus the Legendre polynomials define a model of _,,,. The operators
(5.22) determine a local Lie multiplier rep T of SL(2). In particular,

T(exp ag®) f(x, 1) = f(x, te*)
T(E:{p ﬁ;‘,}t)f(x, !) e Q:_r”“f(x E}igi' ; IQ?H)’
0. =p4" — 2,3-?:!“ £ 1.

Just as in (10.22), Section 5.10, we could use these results to compute T(A)
for any A € SL(2). However, we shall not do this here. The matrix

elements B, (A), (10.26), of the operators T(4) with respect to the basis
f, are model-independent. That is, they are completely determined by the

(5.24)
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relations (5.23) and are independent of our particular realization of this rep.
We have

(5.27)
T(A)f, = i}} B(A)f, k=012.., A= (: j) e SL(2).

For certain group elements A the functions B, (A4) are very simple. For
example,

—b)Y" k! (I — k)|, | =k,
(528)  Bu(exp(—bg") — {': R k)

0, <<k
c* kI (K — 1), k=1
5.29 B,.(exp(—cg™)) =
( ) el P( cd J) {U, k<]

[Note: The reader can obtain these results directly from relations (5.23).]
Substituting (5.26) and (5.28) into (5.27) and simplifying, we obtain

(5.30)

= = (4K
2 —~(k+1)/2 X b -
(1 4 b — 2bx) Pk(“ e be}m) 5 b’( ; )PH;(x},

( H )

m

is the binomial coefficient. This expression makes sense for |b| <|x 4
(x2 — 1)2|. For k = 0, (5.30) reduces to the standard generating function

where

(1 4 b2 — 2bx)~ 42 — )i;] b'P(x).

Similarly, by substituting (5.26) and (5.29) into (5.27) we obtain

k

k

(5.31) (I + ¢® + Zcx]“”Pk((] T ; jll_—;fx)”“) = E)( ; )C"Pf(x).
The point of this example is that identities such as (5.30) and (5.31) have a
group-theoretic interpretation, Using the same operators (5.22) we could
construct models of each of the irred reps 7,. The basis functions are essential-
ly the Gegenbauer polynomials C;*(x) and our method yields generating
functions and relations for the C#(x).

Another interesting model of 7, i1s obtained from a consideration of the
operators

(5:32)

jif*'———r(z%—l—f&%—z—u)r J':I“(z%—r%—u)s .-”:IE,‘??’
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acting on a space of analytic functions of the complex variables z, 1. As the
reader can easily verify, these operators satisfy the commutation relations of
si(2). To construct a realization of 1, we must find functions f,_.(z,t) =
g.(z)t7#** such that

ijm:mfm* Jifm:(_uim)fmil‘

Cf,,= (T~ + 33 —=T3)f,, =uu+ iy
Thus the special functions g,(z) satisfy
(5.34) zg/ (k- du—2g = (k — 2u)gp 45 28, — kg, = —kg&i-1»
(5.35) 28y — Qu + 2)g. + kg, = 0, k=0,1,2,....

The functions g,(z) are determined to within a multiplicative constant by
these relations. Indeed the relation J f, = 0 implies g," = 0 or g,(z) = ¢.
Setting ¢ = 1 we can then uniquely determine all of the g.(z) recursively
from the first formula (5.34). The solutions are

(5.33)

_ D(—2u)k! ;21 -
(5'36) gk(z) L F(k == ZH} Lk (5)1 k — D.’n ]! 2: w989
where L{*(z) is a generalized Laguerre polynomial of order k and I'(z) is the
gamma function (see the Symbol Index). Recall that 2u 5 0, 55 condiie

function L, (z) = L{®'(z) is an (ordinary) Laguerre polynomial. The L 2a=1)(z)
satisfy the Laguerre differential equation (5.35).
A direct computation shows that the operators (5.32) determine a local

multiplier rep T of SL(2) given by

(5.37)
T(A)f(z, t) = (d + bt)(a + c/t) ﬂxp(d_’!j[_‘%)
z{ at +c¢ c bt
xf({a:+c){bt+d)’br—|—d)’ —(<15 —J‘-:::l.

The matrix elements B, (4) of the T(4) with respect to the basis f,_,(z, t)
are given by (10.26), Section 5.10. Substituting these expressions into

T(A)fiu = 3 BuA)f -

and simplifying, we obtain identities for the Laguerre polynomials. For
example, from (5.28) there follows

=

(5.33) (l . b)!n-k e:-:p( l—jzb)Li—zu—x:-(l_i_b) -~ E] (f ‘]; k)b"L{;,f;""”(E},
|b| < 1.

For k =0, L¥(z) =1 and this expression simplifies to a well-known
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generating function for the Laguerre polynomials:
—bz . e
s 2u = lr(—2u-1)

(539) (1 —bexp({25) = 5 HLIIG),  [bl< 1.

Similarly, the matrix elements (5.29) yield the identity
k fk— 2u— 1

(1 + eprgie(Es) = % ( ’ )cfu—_ﬁ"-”(z).

=0

1 4+ ¢ I

It is shown by Vilenkin [1] and Miller [1] that all hypergeometric and
confluent hypergeometric functions can be obtained as basis functions in
models of irred reps of s/(2). Furthermore, in the work of Miller [1]it is shown
how to derive such models in a systematic fashion.

7.6 Applications to Physics

Here we present a few of the many applications of the rep theory of
SO(3) and SU(2) to problems in mathematical physics. In Section 3.8 we
studied the relationship between symmetry and perturbation theory in quan-
tum mechanics. Though our discussion was limited to finite symmetry groups
it carries over without change to compact Lie symmetry groups.

Recall that the Hamiltonian H of a nonrelativistic quantum mechanical
system containing k particles with masses m,, ..., m, Is

6.1) Hio j"zi (—12m) A, + V(X1 ..., Xy,

where V(x,,...,X,) is the potential function and x;, € R, designates the
coordinates of the jth particle. (We are using units in which 2 = 1.) The
Hilbert space JC consists of all Lebesgue square-integrable functions ¥(x,,

e, 7

1PI = [ ¥y x)PdX <00, dx =di, -o-d,.
Rak
The inner product on JC is

(T,@):j WX,,. .., X)BX,,...,xX,)dx.

Rs*
We can define a unitary rep T of SO(3) on IC by
(6:2) [FCAFI(Xqsvs X)) = A Xy vwgd X0 A € S0(3),
It is an elementary computation to verify T(AB) = T(A)T(B) and (T(A)Y,
T(A)D) = (¥, ®) for all 4, B € SO(3) and ¥, @  JC.
Now SO(3) is a symmetry group of H provided T(4)H = HT(A) for all
A € SO(3), ie., provided V(4x,,...,4x,) = V(x,,...,X;). If SO(3)
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1s a symmetry group and A 1s an eigenvalue of H then the eigenspace
(6.3) W, ={¥  3C: HY = AY]

is mvariant under T. By the results of Section 3.7, we can decompose W,
into a direct sum of subspaces irred under T

iy

W, =3 W,
2 =2 2 DWW

Here T | W!" is equivalent to the irred rep DY and g, is the multiplicity of
D“ 1n T. For simplicity we assume dim W, << oo, though this assumption
could be removed with a little care. Then, only a finite number of the g,
‘are nonzero. Furthermore, if SO(3) 1s a maximal symmetry group and there
1s no accidental degeneracy then only one of the g, 1s nonzero.

The most important (and common) case in which SO(3) appears as a
symmetry group is the one where the potential takes the form

(64} V = V(“K.r [ x;“& ||K,I|)

That is, V depends only on the mutual distances between particles and/or
their distances from a common point. A special case 15 V(x) = V(|| x]|]|).
a single-particle, radially symmetric potential. These potentials admit the
larger symmetry group O(3). Indeed V(A4x,, ..., Ax,) = V(x,,..., x,) for
all A € O(3).

The 1rred reps of the compact group O(3) can easily be obtained from
those of SO(3). Indeed SO(3) is a normal subgroup of index two in O(3).
The left coset decomposition of O(3) is

0(3) = {SO(3), I-50(3)},

where the inversion / = —E,. Let D be an irred unitary rep of O(3). Since /
commutes with all elements of O(3), D(/) must be a multiple aE of the
identity operator. But D(/)* = D(I*) = D(E,) =E, so ¢ = +1. Since D
is irred and D(/) = +E it follows that D|SO(3) 1s still irred. Therefore
D|ISOB)=D", [ =0,1,2,.... We conclude that there are two families
DY, DY of irred reps of O(3). Their definitions are

(6.5) DY(14) = DY(A4) = D(A),
(6.6) DU(I4) = —DY(A) = —D¥(4), A e SO3).

The D' are called positive reps and the D’ negative reps. Here dim D! =
2041,

Returning to the study of a system with potential (6.4), we see that each
irred subspace W' of W, will transform according to DY, In a one-particle
system with central potential V(||x||) we can say more. The space W;"
consists of functions ¥(x) = ¥(x, y, z) transforming irreducibly under
D', hence under the rep DY of SO(3). Thus, we can find a basis for W
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of the form f,(x) = ji(r) Y"(0, @), —! << m < [, where the Y, are spherical
harmonics and r, @, ¢ are spherical coordinates. The inversion / maps X to
—x, or in terms of spherical coordinates, (1,8, @) to (r,m — 0,7 + @). In
our study of Laplace’s equation (5.17) we showed that »' ¥,"(6, ¢) is a homo-
geneous polynomial of degree /in x, y, and z. Thus, under inversion ¥,"(, ¢)
— Y™ —0,n+ ¢) = (—1)Y™0, ¢). If ! is even then W{" transforms
under the representation DY of O(3); if / is odd then W}’ transforms under
D%, The sign of (—1)' is sometimes called the parity of the rep. In this
example the symmetry of the Schrodinger equation under rotations has
completely determined the angular dependence of the eigenfunctions. Only
the radial dependence j(r) remains to be determined from the dynamics
of the problem. The well-known separation of variables method applied to
the Schrédinger equation yields a second-order ordinary differential equation

for j,(r):

(6.7) LAl |+ [ LD 4 v i) = 40k,

The permissible solutions of this equation are those such that j(r)Y,"(6, ¢) =

3, ie., J.: |j,(r)|> r* dr < oo. Only for certain values of A, the eigenvalues,

do there exist solutions belonging to C.
The characters of DY are easily obtained from the characters of the reps
D% of SO(3). If R is a rotation through the angle 7 about some axis then

(6.8) YO(R) = x"“(R) = {sin[(/ + Hr}/sin }7.

In the limit as T — 0 we get ¥y'(E,) = 2/ + 1. If S is a rotation through the
angle 7 followed by an inversion, then

(6.9) 2(S) = —x(S) = {sin(/ + })el}/sin }7.

Suppose the k-particle system with Hamiltonian (6.1) is an atom or molecule.
If this system is put into a crystal the new Hamiltonian is

(6.10) H, = 3 (—1/2m) A, + V(Xpr- oo s X) 4+ VilXps v o5 X0,

where V/, is the potential due to the crystal. Let G be the maximal point sym-
metry group of this crystal. Note that G is a finite subgroup of O(3). Thus,
the symmetry of the system is reduced from O(3) to G under the perturbing
potential V. If A is an eigenvalue of H whose eigenspace transforms accord-
ing to the (2/ -+ 1)-dimensional rep DY (or D) then under the perturbing
potential this degenerate energy level splits into energy levels whose eigen-
spaces transform according to irred reps of G. We can determine this splitting
directly from the simple characters of O(3) and G.

Suppose the eigenspace W, of H transforms according to DY’. Then the
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restriction of DY to the subgroup G splits into a direct sum of irred reps
of G:

DY G= 3 @ a,T.
a=1

The character y(A4) of DY | G is obtained from y{"(A) by restricting 4 to G.
Since G is a crystallographic point group it contains only rotations or
rotation-inversions through the angles 0, +#n/3, +xn/2, +2#/3, and =. Now
from (6.8) '

1 2n\  sin[(2al/n) + (m/n)] by
(@11} X J(i?) i sin(z/n) : =& 04,0,

For fixed n this expression is periodic in / with period n. Thus, to evaluate
w, for any G it is enough to compute (6.11) for 0 </ < n.

For example, suppose G = O, the octahedral group. The conjugacy
classes are E, €,2,@,, €,, ©,, so O contains only twofold, threefold, and four-
fold rotation axes. We compute i, on these conjugacy classes for 0 <</ < 5:

l E 3642 68, 6Cy 8C3

0 1 I 1 1 !
1 3 —1 —1 I

. 3 | 1 — —1
3 7 —1 —] — |
4 9 1 1

5 11 s - =]

Indeed, y*(E,) =2/ + 1, x"“(m) = (—1), and so on. Using the character
table of O, (6.22) of Section 3.6, we can write ¥, = > ai'x"* and compute
the multiplicity '’ of T’ in DY’ | O. The results are

(6.12)
v, = x'V, w, = ', w, = ¥ -y, Wy = ¥+ ¥ + 2,
W= 3V 4 x4+ y@ 4y, W = ¥ b 2p@ 4 g,

The interpretation of the expansion for y,, for example, is that a ninefold
degenerate energy level of H splits into four energy levels under the per-
turbation, one of the split levels is nondegenerate, one is twofold degenerate,
and two are threefold degenerate. We can continue in this fashion to compute
the splitting of an arbitrary (2/ + 1)-fold energy level under a perturbation
with octahedral symmetry. Since O contains only proper rotations the split-
ting for D¥ | O is exactly the same as the splitting for DY’ | O.

If G contains rotation-inversions the determination of the splitting of the
energy levels is analogous to that given above except that the results for
DY | G differ from those for DY | G.
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Some Lie subgroups of O(3) are of importance for perturbation theory
calculations. Suppose we break the symmetry of a rotationally symmetric
system by introducing a perturbing potential which transforms like the z
component of an axial vector in xyz space. Then the symmetry group of the
perturbed Hamiltonian will be C.., = C.. x {E, I}, where C.. = U(l) is the
group of all rotations about the z axis and {E, I} consists of the identity ele-
ment and the inversion /. (The choice of the z axis is arbitrary. Any other axis
of symmetry would do.) As an example of such a perturbation consider an
electron in a spherically symmetric field. If a uniform magnetic field parallel
to the z axis is applied to this system, the perturbed system has symmetry
C.,. (We are ignoring the spin of the electron. This complication will be
considered in Section 7.8).

Since C.., 1s abelian its irred reps are one-dimensional. Furthermore, since
[* = E and I commutes with all elements of C., it follows that T(/) = 41
for any irred rep T. We already know the irred reps of C... They are denoted
by the integer m: y™(C(0)) = ™, m =0, +1, ..., where C(f) is a rotation
through the angle @ about the z axis. It follows that the irred reps of C.., are
w'™, where

(6.13) wir(C@®)=e", | pPE) =+, m=0,+l,....

Suppose the eigenspace W, of the unperturbed Hamiltonian transforms
according to the irred rep DY with character y!", (6.8) and (6.9). Now
DY | C.., has character y ' (C(@)) = y'"(C(@O)) =Dt em =1 __ w'm(6).
Therefore, under the perturbing potential the degenerate energy level splits
completely into 2/ 4 1 simple sublevels, each with parity +1. Similarly
DY | C.., has character ¥ |C.., = 3L.__, w'™, so the degenerate energy level
splits into 2/ 4 1 simple sublevels with parity —1. In the case where the
perturbing potential is a magnetic field this splitting of energy levels is called
the Zeeman effect.

It was shown in Section 2.9 that a molecule whose atoms all lie on a single
line L possesses the symmetry group C.., consisting of all rotations about L
and reflections in all planes in which L lies. Furthermore, if the molecule is
also invariant with respect to the reflection ¢ in a plane perpendicular to L
then the symmetry group is D.., = C.., x {E, a}. This occurs if the molecule
is symmetric about its center of mass.

If L is the z axis then C., is generated by the rotations C(gp) and the
reflection o, in the xz plane. It is easy to verify that this group has a 2 x 2
matrix realization

o) — e'r U) _{}1)
'F_(n oo ‘T“_(| 0

Note that C(g)o, =0 ,C(—¢) and g, =E,. The rotations C(4-¢) form a con-
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jugacy class and every reflection is conjugate to ¢,. Let T be a unitary irred
rep of C.., on V. Then T|C., splits into a direct sum of irred reps y'™(p) =
e of C... Suppose the nonzero vector f,, in V transforms according to y"':
T(C(@))f,, = e™*f,,. Then T(C(p))T(c )f,, = T(a,)T(C(—p)f,, = e ™ T(o ).
Thus T(es,)f, = f_,, is a nonzero vector transforming according to y'~™ and
T(o )f_, = T*(o,)f, =f,. Since V is irred under C., it follows that f.,
generate V. If m = 0 then V is two-dimensional and with respect to the
basis {f.,,} we obtain the matrix reps E,:

img

(6.14) T{C(rp})z( i ) T{aﬂ)=(” ')= m=1,2,3...
(0, =" 1 0

The characters are y"'(¢) = 2cos mp, y'"™(g,) =0. If m =0, then the
irreducibility of T and the property T?*(g,) = E imply V' is one-dimensional,
T(C(p)) = 1 and T(e,) = +1. Thus, we get two one-dimensional reps

6.15) A,: T(Clp) =1, Ta,)=1, A, TC)=1, T(o,)= —1l.
The E,, A,, A, are a complete set of irred reps of C..,. The character table is
C... Clep) g,

(6.16) A, | 1
A, | 21
E 2cosmp O

Now suppose the eigenspace W, of a Hamiltonian with spherical sym-
metry transforms according to D, and introduce a perturbing potential
with symmetry C.,. Then the character of DY’|C., becomes x(p) =
sin(! + 4)p/sin (¢/2) and x(o,) = x(x) = (—1)". Clearly,

(6.17) DY|C.,=EDE @ - DE DA,

where k = 1 if [ is even and k = 2 if / is odd. Thus, the (2/ 4 1)-degenerate
eigenvalue A splits into / eigenvalues with multiplicity two and one single
eigenvalue. Similarly if W, transforms according to D' a simple computation
yields

(6.18) nglcmw:Ef@EI—l(:—B”'@Ei@A,H

where j = 1 if / is odd and j = 2 if / is even. In the case where our system
contains only one particle the parity is (—1), so we always get the identity
rep A, in (6.17) and (6.18).

We can achieve C.., symmetry by introducing into a spherically symmetric
system a perturbing potential which transforms like the z component of a
polar vector in xyz space, e.g., an electron in a uniform electric field parallel
to the z axis. The splitting of the energy levels due to this perturbation is called
the Stark effect.
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The group D.., can be written as the direct product D, = C..,, X {E, I}.
Thus, the irred reps can be obtained almost immediately from (6.16). The
conjugacy classes are determined by the elements C(4-¢), g,, I, C(4-0)I,
o . If T 1s an irred rep of D._, then T(I) = 4-E. The character table is

D..; Clp) o, 1 G ()] S|
A ] ] 1 1 i
Ay l 1 —1 —1 —1
(6.19) A, z —1 1 1 =
A" I —1 —1 —1 l
E.* 2cosmp 0 | 2 cos mg 0
E,~ 2cosmp 0 —1 —2cosmp O

Here D., has four one-dimensional reps and two infinite families E,,* of
two-dimensional reps. The determination of the splitting of D | D.., is left
to the reader.

The use of irred reps of symmetry groups to label the state vectors is of
much more importance than perturbation theory alone would indicate.
Suppose a quantum mechanical system is in the state ¥ € 3C at time t = 0.
Then at any other time ¢ the system is in the state W(¢), where W¥(?) is the
unique solution of the (time-dependent) Schrédinger equation

(6.20) i ¥ (r)/dr = HY(1), Q) —W.

Formally, the solution i1s Y¥(r) = [exp (—itH)]¥. Since exp (—itH) is a
unitary operator, the norm ||%¥(¢)|| is independent of . To make precise
sense out of these statements we would have to employ some sophisticated
techniques from functional analysis. (In particular we would need Stone’s
theorem; see Riesz—Sz.-Nagy [1].) Expression (6.20) is not always well-
defined since there exist vectors ¥ € JC such that H¥Y has no meaning.
Nevertheless, one can show that for the usual Hamiltonians of quantum
mechanics there is a dense subspace of JC on which (6.20) does make sense
and on which the formal computations to follow can be rigorously justified.

Suppose T 1s a unitary rep of SO(3) on I such that T(4)H = HT(A)
for all A € SO(3). Let W be an invariant subspace of 3C such that T|W
transforms according to the irred rep D’. Then there is an ON basis {¥!]
for W such that T(A)¥YY =3, D, (A)¥YY", where {D,,.(4)} is a unitary
matrix realization of D), Let W%'(z) be solutions of (6.20) such that ¥(0) =
Y. Since H commutes with the operators T(A) it follows that T(A)¥Y(z)
— 3 D, (AYY() = ®(r) is a solution of (6.20) with initial condition
®(0) = 0. Thus, @(z) = 0 and the vectors {¥(¢)} form an ON basis for the
rep D¥ at any time ¢. We conclude that / and m are good quantum numbers
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for the system. A state ¥¥(¢) which transforms like the mth basis vector in a
realization of D% at one instant of time transforms like the mth basis vector
in D at any time. Physicists refer to this as the conservation of angular
momentum. Although this analysis applies only to SO(3), similar results can
be easily obtained for any compact symmetry group of H.

It is worthwhile to point out the connection between the time-dependent
and time-independent Schrodinger equations. Suppose ¥ € 3C is a nonzero
solution of the Schraodinger equation H¥Y = A¥. (We assume H is indepen-
dent of t.) Then ¥ is an eigenvector of H with eigenvalue 4. Furthermore, the
one-parameter family ¥(7) = e ¥ is the unique solution of the Schrodinger
equation

i 0W(r)/dt = HY(2), ¥Y0) =Y
Since the vectors e” ¥ belong to the same ray in 3C for all ¢, it follows that
any eigenstate of H remains fixed with passage of time.

As a final application we investigate the quantum mechanical interpreta-

tion of the Lie algebra so(3) = su(2). As usual we consider the unitary rep
T, (6.2), of SO(3) on 3. Then T induces a rep (also called T) of so(3) on JC:

(6.21) T(@) = (d/dt)T(exp (&) |, @ € so(3).
In particular, the operators T(£,) = £, are

ke
£; = Z (J’fa% — X %)’ X, = (X, ¥; Z)),

where the £, are given by (1.2) and (1.3). As the reader can easily verify, the
L, satisfy the commutation relations (1.5) of so(3) and they form a basis for
tha Lie algebra of operators T(®). Proceeding formally by differentiating the
identity

(6.22)

(T(exp @)Y, T(exp 1@)®) = (¥, @), ¥, o e IC,
with respect to ¢ we obtain
(6.23) (T(@)¥, @) + (¥, T(@)®) =0

at t = 0. Thus T*(@) = —T(®@) and the operators iT(®), i = ./ —1, are
symmetric. In particular the operators L, = i£; are symmetric and satisfy
the commutation relations

(628) 9 gy Bl vo il o] = g 1 [ L] = il

The L, are called the angular momentum operators. If the Hamiltonian H
cnmmutes with the operators T(4), 4 € SO(3), then by differentiating the
identity T(exp t@)H = HT(exp (@) at t = 0 we find T(@)H = HT(@) for all
@ € so(3). In particular the angular momentum operators commute with
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H. Conversely, if the angular momentum operators commute with H then the
operators T(A4), A £ SO(3), commute with H.

Unfortunately the above computations are merely formal. The operators
L, and H are not defined on all of . For instance if H is given formally by
(6.1) then H¥(x) makes sense only if ¥(x) can be differentiated twice in
each variable. Furthermore the function H¥(x) must belong to IC, i.e.,
|HY || < oo. Since many functions in JC are not differentiable it is clear that
Dy cannot be all of 3C. The problem of defining explicitly the domain of H,
or any unbounded operator in quantum mechanics, is outside the scope of
this book (see Helwig [1]). It can be shown that each of these operators can
be defined on a dense (not necessarily closed) subspace of JC. However, the
subspace varies with the operator. The angular momentum operators make
sense only when applied to differentiable functions ¥(x) such that L ;¥ (x)
is square-integrable. Furthermore, the meaning of a commutation relation
such as [L,, L,] = iL; is not completely clear since the domains of the left-
and right-hand sides may not be the same.

However, it can be shown (Helgason [1, p. 440]) that there exists a dense
subspace D of 3 which is contained in the domains of all the operators H
and L;. Furthermore D is invariant under the restrictions of H, L, T(4)
to D and has the property that all of the above formal computations are
rigorously correct for these restricted operators. Thus, the relation

(6.25) T(exp al)¥ = i;] (“ff)" P

is valid for ¥  D. If we accept the fact that D exists we can use Lie algebra
computations to derive results about infinite-dimensional Lie group reps.
Note that the unitary operators T(4), 4 € SO(3), are uniquely determined
by the symmetric operators L,. Indeed T(4) is uniquely defined on D by
(6.25). Since D is dense in JC and T(A) is bounded it follows from a standard
Hilbert-space argument that T(A) is uniquely determined on 3C (Naimark
[2, p. 100]). With these remarks in mind we shall henceforth ignore problems
concerning the domains of unbounded operators.

The angular momentum operators can be used to compute the matrix
elements of H with respect to an ON basis of 3C. Consider again the unitary
rep T of SO(3) on J. From the results of Section 6.3 we know that T =
S @ aD?, ie., 3 can be decomposed into a direct sum of subspaces irred
under T. (In general the multiplicities @, will be infinite.) Thus, there is an
ON basis {W$)]} for 3 such that T(4)¥Y), = > DE(AYS) and | <j < a,.
We have shown in Section 6.3 how such a basis can be constructed without
any knowledge of the Hamiltonian H.

Since H commutes with the T(A) it also commutes with the operators
Lt =418, i€, and L* = —iL,. Here (L")* =L  and (L3)* = L3.
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The ON basis vectors W', can be chosen such that

(6.26)
L3Wh =m0, LYY = [ £ m + D) F m)]2 ¥,
3

L EW8 =11+ 1)¥5., L:L=L'L +LL'—L*= -3 £&£,.

=1
Now

(HL?YW P {H LR TE= (LEH\P?;L: {H 1Y = (H‘]‘” an‘{_{‘},)

jm»

so (m — m)(HPY, ¥4)) =0 and the matrix element is zero unless

jmy

m = m’. Similarly the relation
(HL - LY®,, W%9)) = (HY),, L « L¥5,,
shows that the matrix element is zero unless / = /'. The identity
(HL*YS),, ¥9..0) = Y, L-YE..)
yields (H¥Y,,,, ¥Y%,.,) = (HYY,, ¥§,), ie, the matrix elements are
independent of m. Thus

(6.27) (HP),, WYo) = Op O ML, Jo J')s

where A(/, j, j') is independent of m and m’. In Section 7.8 this result will be
generalized to obtain information about the matrix elements of operators
which do not necessarily commute with the action of SO(3) on IC.

7.7 The Clebsch-Gordan Coefficients

In Section 7.2 we derived the Clebsch-Gordan series

(? l) D{HJ @ Dfm = _ﬁi l (_T__) D{wi

for the tensor product of two irred reps of SU(2). Recall that we also used the
symbol D* to denote the (2u + 1)-dimensional irred rep of SL(2). Since there
is a 1-1 relationship between complex reps of s/(2) and su(2) it follows that
expression (7.1) is also valid for SL(2). Furthermore, this same argument
shows that any finite-dimensional analytic rep of SL(2) as a complex Lie
oroup can be decomposed into a direct sum of irred reps.

In the following we shall consider (7.1) as a rep of SL(2), but all our
results will remain valid on restriction to SU(2). If D, D"’ are defined on
inner product spaces V', ¥ then D* (¥) D' is defined on the (2u -+ 1)(2v
+ 1)-dimensional space V™ & V. As a convenient ON basis for the rep
space we choose {f @fY: —u<=m<u, —v=n= v}, where {f{¥'} is a
basis for ¥ such that

(12) A9 =mf®, TP = [(ut m A+ D F m) 0,
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and {f;"’} is defined similarly. [In the future we will call any ON basis {f,}
satisfying (7.2) a canonical basis.] Though {f &) £} is well adapted to show
the tensor product character of our rep, it does not clearly exhibit the
decomposition of D™ (X) D into irred reps. From the right-hand side of
(7.1) it follows that V' (X) V' contains an ON basis of the form

h:w=u+vutv—1...,lu—v, —w<k<w}
such that
(7.3)  JPhy = kb, J=hP = [(w + k + 1)(w F k)]'/2h§?,,

where the J-operators are now those determined by the action of SL(2)
on V'™ (x) V. For fixed w the vectors {h{*’} are determined up to a phase
factor by (7.3). They form an ON basis for the invariant subspace which
transforms according to D*’. The two sets of basis vectors are related by the
Clebsch—-Gordan (CG) coefficients:

(7.4) hi = 3. Clu, m; v, n|w, K)f @ £,
lu —v|<w<utv, —w<k<w,
(7.3) Clu,m;v,n|w, k) = (h{”, £ & ),

where (-, -) is the inner product on ¥ &) V™. Since {h{"'} and {f% & f*}
are ON, the matrix formed by the CG coefficients is unitary. Indeed from
(7.5)

(7.6) i QI = 3, C(w, k|u, m; v, n)hy",
W,k

where

(7.7) Clw, k|u, m; v, n) = Clu, m; v, n|w, k).

Later we shall see that it is possible to choose {h{*'} such that the CG coeffi-
cients are real.

The matrix elements of D* (X) D™ with respect to the {f% & f®] basis
are 175, (A)T,.(A), where A & SL(2) and the T ,.(A) are the matrix elements
of D" with respect to {f¥}. On the other hand, the matrix elements with
respect to the {hy*’} basis are T},.(A4). The matrix of T X T®(A) in one basis
IS unitary equivalent to the matrix in the other basis. A straightforward
computation yields the identity

(7.8)  Ton AT A) = 35 Clu, m3 o, n|w, k)Clu, m'; v, | w, k') T1,(A),

‘expressing the product of two matrix elements as a sum of matrix elements.
Since in appropriate parameters 7,.(A) is essentially a Jacobi polynomial,
(7.8) can be viewed as an identity expanding the product of two Jacobi poly-
‘nomials as a sum of Jacobi polynomials. If we restrict 4 to the subgroup
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SU(2) then the matrix elements are given by (2.13) and (2.14). Applying the
orthogonality relations (2.21), we find

2w + 1 ]
(7.9) et memm-{A)T AATLAA) dA

— C(u, m; v, n|w, k)YClu, m';v,n" |w, k')

This expression can be used to explicitly compute the CG coefficients (Wigner

[2]). However, we shall adopt another approach which leads to a generating

function for the coefficients and yields an independent proof of (7.1).
Consider the model of D™ on the vector space V™ with ON basis

(110 S = T U SMSU

[see (2.10)]. The action of SL(2) on V™ is

[N = bz + dyf(EEE):  fev®, 4 SLQ)

The matrix elements of T(A4) with respect to this basis are

TA)f, = 3 04(Af,

p==u

or

m)!

u - (H T )!{ = P)‘ Hd __1yp—m
me(A) — [{H + i)! (11: - jl Du+p.u+m(‘4){ !)

where D, (A) is given by (10.22) of Section 5.10. The matrix elements have
the symmetric generating function

(711 (2u)[6z + d) + Yaz + O = 3 [l D)o A)f2).

In this model the action of the generalized Lie derivatives J*, J? on the basis
is described by (7.2).

We can realize D™ (X) D® on the (2u 4 1)(2v + 1)-dimensional space
V@ &® V™ with ON basis

(?12) fﬁ:’ @ f:rﬂ(za- .]”') [(H + m}] [H(-" i} lméﬂ _P:);;'Il (av TE ﬂ)!]l."z

—u<m<iu, —-uv=n<?.
The action of SL(2) is defined by operators S(A) such that

(113) SNz, y) = (bz + dys(ey + dy*f(F5 §2E5)
for f € V™ & V.
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The generalized Lie derivatives J*, J* corresponding to (7.13) are easily
compuied to be

= I 0 | Jd
=19 d d 0 0
H e £ i ol Y B T = — e i
J* = —2uz — 2wy + z &z—|—y % 3 TR T

We will decompose V™ X) U into irred subspaces by explicitly computing
the ON bases {A{"'], (7.3), of these subspaces. The lowest weight vectors
h™) satisfy J-h™) = 0, J3h™) = —wh"). We will use this property to compute
the A™) explicitly and then use relations (7.3) to obtain a set of vectors
A, —w<k<w, |lu—v|<w<u+ v By showing that these vectors
form an ON basis in V® ) V¥ we can verify (7.1) independently. More-
over, our explicit expressions for the 4{*(z, y) will enable us to compute the
CG coefficients.
The general solution of J f = —(d8/dz + d/dy)f(z,y) =0 is f(z,y) =
2¢ g (z — y)’, where the a, are arbitrary constants and ¢ = min(x, v). .
A basis for the g-dimensional solution space is given by the vectors.

h")(z, y) = N (z — yy ™, lu—v|<w<u-+w
where the N, are nonzero constants. Indeed
(7.15) J3h™ = —wh*), Jh =0

Let (—, ) be the inner product on V* ) V™ with respect to which the
basis { £ & £} is ON. It is easy to check that (J3)* =J% and (J*)* =J~

for this inner product. We will choose the constants N,, such that || A% || = 1.
Thus,
(W) 12 — R b § k) w2 = I g
I = (NS v — e B DR R R .
Making use of the identity
(7.16)
Em+k—NA+)_m+Binl o g T
eS| It B 0 i b I G
_mlnlm+n+ k+ 1!
- k'(n + m -+ 1)!
(see Lebedev [1, p. 243] for a proof), we obtain
N, = (—1] (2w + 1)! T
" uwt+v—wlu—v+wlw—ut+wu+v+w+1)

where the phase factor has been added to conform to convention.
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Now we define vectors

(717)  h(z, y) = (w — k)! ”z{_f+)w+kh[w}{ ) i
: R _[{w + k}!{Zw}!] Lt e
where J* is given by (7.14). It follows immediately that J*h} =
[((w 4+ k& + D(w— k)]2hY), in agreement with (7.3). Also, from the proof of
relations (3.3) we see that (J*)**1h™ = J*hi" = 0. Each Ay*'(z,y) 1s a
homogeneous polynomial of order u + v + k in z and y, and there are a
total of (2u + 1)(2v + 1) such polynomials. We will show that the {A}"}
form an ON basis for V™ () V¥,

Lemma 7.1. (a) J'AY =[(w+ k+ D)(w— K)]V2h¥,; (b)) JhY =
[((w — &k + D(w + K))'2he2, 5 (¢) JPh = khi?.

Proof. ldentity (a) follows directly from (7.17). Identity (c) follows from
J3h™) = —wh'™) and the fact that J3(J*'f) = (kK + 1)(J*f) if J3f =kf. We
prove (b) by induction on k. Since J A") = 0 the equation holds for k = —w.
Assume (b) is valid for k << / where —w < | << w. Then

I~y = [(w + 1 + DYw — D72 TR
from (a). Since J°J" =J"J™ — 2J° we have
JI R = (I — 200 = (w + 1 + D)(w — DA™
by the induction hypotheses. Therefore, (b) follows for k =74+ 1. Q.E.D.

Thus, for fixed w the vectors {4/} form a basis for a subspace of V" X)
V" which transforms irreducibly under the rep D*’. Furthermore, by com-
putations analogous to (2.7)—(2.10) we see that the {#}*'} are ON. The Casimir
operator C = J*J~ + J3J? — J3 is symmetric since J? is symmetric and
JJf,e) = f,J g =([f,J'J g). Since Ch{*’ = w(w + 1)h*" we obtain

wOw -+ 1A, he) = (CH, ) = (Y, ChE) = w'(w' -+ 1A, Ai"),

so (AL, h") = 8, Opr, 1.€., the [AP']} form an ON set. Since the cardinality
of this set is equal to the dimension of V™ X V* we conclude that {A{*]
is an ON basis. This proves the validity of the Clebsch-Gordan series (7.1)
from a Lie-algebraic viewpoint.

We can use our model to obtain an explicit expression for the coefficients.
Since the {A}"} for fixed w form a basis for D™ we have the identity

(7.18) TARY = 3 Qo DRY, A € SL(2),

where the matrix elements are given by (7.11). In the case where 4 =
exp(—bd*) and m = —w, (7.18) is especially easy to evaluate. Indeed A™)(z, y)
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— N,(z — y)*"and 0}, _,(4) = (—b)7**{(2w) Y[(w -+ p)!(w — p)!]}"/>. Thus

(7.19)
N (bz + 1) (by + 1)ytou(z — yyptow
= % 2w)! -
= pgwmz.n[(w +p)lw —p)(u+m)!(u—m)! (v + n)! (v — n)!]

X Clu, m; v, n|w, p) X (—z)**™(—y)y*»(—b)*>,

where we have used (7.4) and (7.10). Since A}"'(z, y) is homogeneous of order
u-+ v+ pin z and y it follows that C(u, m; v, n|w, p) is nonzero only if
m-n=p.

Expression (7.19) is a generating function for the CG coefficients. We can
write this expression in a more symmetric form by choosing b = x3' and
introducing the 3-j coefficients

Jv J2 s (= o : " - - L
{?20) (ml mz ma) — (21.3 'l‘ 1}”1 C(jl! My Jzs mz“y ma).

In terms of these quantities, (7.19) becomes
{?21} [-IS . II)JL—J’:+JJ{I1 | xj)‘!ﬁh’rh{xl L xl)h*h—h

ulldy s — ddd — it )

X (—h +d i) Gy +da +Js + DIFV2

= Jz' {x{‘*’”’xé‘*“’x?*’"!("" Ja I3 )

mi==—Ji ml m?_ h’Ij

A [(.1"1 g ml)!{ji. s mz)*(.f 7D mi}!

X (jy — m) (jz — m)(Js — my)!] 72
(We have set z = —x,, y = —Xx, in this expression.) Since the left-hand side
is homogeneous of degree j, + j, + j, In x,, X5, X3, so is the right-hand
side. Thus, the 3-j coefficients are zero unless m, + m, + m, = 0. Further-
more, it follows from the CG series (7.1) that these coefficients are zero unless
Ji + J; + j; and j, -+ m, are integers, and —j, <m, <, i= 1,2, 3. The
3-j coefficients have a high degree of symmetry, as is evident from (7.21).

Indeed the left-hand side of (7.21) is fixed under an even permutation of the
integers 1, 2, 3. As a consequence

- (f. i J';) L (13 Ji fl) i (fz is )

m, m, m, my; m, m, m, ms; m,
The left-hand side changes by a phase factor under an odd permutation:
(7.23) (h f2 .fa) Z-{—I}-"”'*"”j*(h Ji J'z)

ny, M, M, M, m, M,
=(._I}jl|f1'j1(j] J3 J'J.)_
my My M,
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If we make the substitution x; — x;! and multiply by xj/'x3:x3’: the
generating function changes by the factor (—1)/+*/+*/:, There follows the
identity

it (.n Ji .fa) o (#I}j,ﬂ,m( A )
m, m, m, —m, —m, —m,
If we multiply both sides of (7.21) by
{jl +j2 I jg L I)IIEm—JH-J:+j:ﬁh—h+h};f|+it—h |
(=i F 5+ i — 4 F i)+ — )2
and sum over all j, for which (7.21) makes sense, we obtain the new generat-
ing function
(7.25)
explo(x, — x;) + flx; — x;) + y(x; — x,)]

e i

== .HE E {(jl ‘I‘j; ‘|‘_.r'3 L ])IIIm—h-}fﬁhﬁh—iﬁ.FaJ,JL+I=—J;

1+ f1=0 my=—fi

;Y x{|+m1x£1+mtx_£3+m=(jl J.lz- jﬂ- )

iy, m, M,

X [(_jl "|_j3 _|_J'-3)!(J;I — J2 +j3}! (.fl + Jz _.rfs}! (.-’l T ma)I

X (o + m)! (Js + m) (jy — m) (j, — my)! (js — m3)! 112
A still higher degree of symmetry can be obtained by making the replacements
X, — X[V, 00— Y, y3¢, f— y;¥,B8, ¥ — y,¥,» in (7.25). Then this expres-
sion takes the form

L]

j
(7.26) exp(det B) = >, i b( ., m)o~ It iatis Qli=ist ssyivtje=is

e+ Ji=0 mi=—Ji
5 il & 13),

g o Wlith 2 Ce S e L - chin
m, m, I,

where b(j,, m,) is completely symmetric under a permutation of the integers
1, 2, 3. Here B is the matrix

« B Y
OO TR ] |
Xy Yoo X3

It is now evident that the symmetries (7.22) and (7.23) correspond to per-
mutations of the columns of B. Under an even permutation det B remains
invariant, while under an odd permutation it changes sign. The identity
(7.24) follows from the fact that det B changes sign under a transposition
of the second and third rows of B. Note that a change in sign of det B is
equivalent to multiplication of the right-hand side of (7.26) by (—1)/+*/#%%.
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In addition to these symmetries we see that arbitrary permutations of
the rows of B lead to new symmetries. Furthermore, since det B* = det B
we can obtain a new symmetry by interchanging rows and columns of B.
The six column permutations, six row permutations, and the transpose
generate a group of 6 x 6 x 2 =72 symmetries of the 3-j coeflicients.
This symmetry group was discovered by Regge [1]. The symmetries (7.22)—
(7.24) generate a subgroup of order 12.

Substituting (7.20) in the above formulas we can obtain corresponding
formulas for the CG coefficients. The most frequently used CG coefficients
C(j,, my; j,» My |5, M) are those for which j, = 4 or 1. We can easily com-
pute these special cases from (7.21). For j, = 5 the coefficients are zero
unless j; = j, -+ 4+ and m; = m, 4 m,. The nonzero coefficients are given by

m, = —3% my, = %
e a o p i my AR [ —my 4 4

(T2 ST 1 s e T Ea
j :J’ i % _jl — my _I_ _2_'1,-'3 _jl _|_ n; e _i:llﬂ.-

A S T e L 2, + 1

For j, = | the coefficients are zero unless j, = j,, j, £ |, and m; =m, +
m,. The nonzero coefficients C(j,, m,; 1, m,| i, m,) are

(?23} my = —1 my =0 my = |

_ A e (fy + ms + 1 + may 12 _ U = may A mg R (g — ms)f — my + IH2
Ji=Jy—1 ( \ 3;?{1}, TE h ) { j,{ljr} -I] 1) } ( Ef:U: + 1)
o= (m — ma)j; +my + !})”1 1y _(ih + myhiy, — my+ 12
A 2/, + 1) G, + D12 2i 0, + 1D

e (jy — my)j, —my + )12 (j, — my + 1%, + my + 1\2 (g + my + my + DYV
Ji=i+1 ( 1[1;'. + 1)Zf; +2) ) (. 25, + D, + 1) ) ( (27, + |]:;2J-| +2) )

It is not difficult to obtain an explicit expression for an arbitrary CG
coefficient. Indeed one can expand one of the generating functions in powers
of the independent variables and equate coefficients of like powers. However,
the resulting expressions are very complicated (see Hamermesh [l]). For
practical (computer) computations it is usually more convenient to use
recurrence relations for the CG coefficients. Such relations can be easily
derived by differentiating the generating functions with respect to some of the_
independent variables (Bargmann [2]).

7.8 Applications of the Clebsch-Gordan Series

We return to the study of a k-particle quantum mechanical system as des-
cribed in Section 7.6. Suppose the Hamiltonian is given by

8.1) B— L o H,
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where
{82} Hj = _{lffzm_,r] ﬂ_{ ar VJ(K;): I i-’-_f ¥ kr

i.e.,, H is a sum of single-particle Hamiltonians. Furthermore, suppose
V,(Ax;) = V(x,) for all A € SO(3), so that each potential function V (x,)
is invariant under SO(3). This system admits the compact symmetry group
G = SO@3) x SO(3) x --- x SO(3) (k times). Indeed, we can define a
unitary rep S of G on JC by

8.3)  [S(Ars..., ADPUX,, ..., X)) = PA'X,, . . ., 47'%),
A, € S0(3), ¥ e i

[t is easy to check that these operators commute with H,

From Corollary 6.2 it follows that the irred unitary reps of G are products
of k unitary irred reps of SO(3). Indeed, the irred reps of G can be denoted
DU where

(8.4) D4 A) = DA - @ DW(A4,)

and DY is an irred rep of SO(3).

Suppose A is an eigenvalue of H and W, is the corresponding eigenspace.
If W, transforms irreducibly under G according to D"+~ the multiplicity
of A is g = dim D% = (21, + 1)(2/, + 1) - -+ (2], -+ 1). The functions
Wi (x,) - - Wh(x), —1, < m, <[, form an ON basis for W, where ¥} (x,)
for fixed j is a canonical ON basis for the rep DY and ¥}, is an eigenvector
of H;. As we have seen earlier W (x) = h,(r)Y (8, ¢) in spherical coordi-
nates, so the angular dependence of the wave functions is determined. The
radial dependence can be obtained only by solving the Schrddinger equation.

In the above system the k particles do not interact with one another.
We now consider an interacting system obtained by adding a perturbing
potential V' to H:

(8.5) H =H+ V(X5 ..., %)

We further assume that V' is invariant under the action T, (6.2), of SO(3) on
3C but not under the action S of G, i.e., the equality

VA X 58eXs) = W (R < i X

holds in general only if 4, = .-+ = A, = A & S0O(3). Thus the symmetry
group of the perturbed Hamiltonian H' will be the subgroup of G consisting
of all diagonal elements 4 X A4 x ... x A. This subgroup is obviously
isomorphic to SO(3). To determine the splitting of the eigenvalue 4 under the
perturbation we need only express D" | §0(3) as a direct sum of irred
reps of SO(3).
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From (8.4) it is clear that this restricted rep i1s isomorphic to the k-fold
tensor product

(8.6) DUk | SO(3) = DY () DY) (R) -+ + (X) DU,

We can use the CG series to decompose (8.6) into a direct sum of irred reps

and thereby obtain the splitting of the energy levels. For example we could use

the CG series to decompose D' (X) D2, tensor the resulting irred reps with

DY) and apply the CG series again, etc. (In case W, is not irred under G we

can decompose W, into a direct sum of G-irred reps and proceed as above.)
In the simplest case ¥ = 2 and

(8.7) D [SO(3) = DU @ DU = DUk @ D+hb @) - - @ DU-ted,

Here the (2/, + 1)(2/, + 1)-degenerate energy level A splits into 2min(/,, /,)
+ 1 levels and the energy level corresponding to D' is (2/ + 1)-degenerate.
We can use the CG coefficients to decompose W, into a direct sum of sub-
spaces transforming under the irred reps of SO(3) given by the right-hand
side of (8.7). Indeed a canonical basis for the subspace transforming according
to DY is given by

{88) hmf(xl » K;] - mz: C(Il s Py, -‘FI s 115 1 ";? m}‘l’f,;,(x,}‘{’{;,{xz),
—l<m< L

As we have shown in Section 7.6, the computation of matrix elements of H’
with respect to the canonical basis {4,'} is relatively simple because SO(3)
is a symmetry group of H'. This basis is far superior to {'¥}, ¥}:,} since it
explicitly exhibits the SO(3) symmetry. The matrix elements of H' are needed
in quantum mechanical perturbation theory to compute the perturbed
eigenvalues (Schiff [1], Landau and Lifshitz [2]).

The decomposition (8.7)-(8.8) is also of great importance in the study of
time-varying systems. We look for solutions W of the Schrodinger equation

{89} IdT(KI s Xay r)lfdf =S HF‘P(K1 » Xg, I}:

where W(x,, X,,?) € JC for each r. Suppose the functions ¥, /(x,, X,, 1)
are solutions of (8.9) such that ¥, '(x,,x,,0) = 4,/(x,, X;), expression
(8.8). Then at t =0 the ¥,!, —! << m < [, form a canonical basis for the
irred rep D%, According to the results of Section 7.6, the functions ¥ /(x,,
X, , 1) form a canonical basis for D at every time ¢, In particular

(8.10) LY ! = m¥ ! LL¥ ' =[l+1)¥,/

for all . Thus the quantum numbers / and m are conserved under the inter-
action.

To see the physical significance of this analysis we consider an (oversimpli-
fied) example. Suppose the perturbing potential is a function of time, V'
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= V'(X,, X,, t), such that for all ¢, V' is SO(3)-invariant but not necessarily
G-invariant. Furthermore suppose ¥’ =0for7f < 0and ¢t = 7 > 0, where 7
is some fixed time. Thus the perturbing potential acts only in the time interval
(0, 7). At all other times H' = H.

Let W, be the eigenspace of H corresponding to eigenvalue 4. The space
W, transforms irreducibly under G:

(8.11) S| W, = DUk
and has the ON basis
{TE.(KI}TEQ;‘:I:): —L<m; < ";}-

Now suppose ¥ is a solution of (8.9) such that W(x,, X5, 0) =
Wi (x,)Ph (x,) € W,, ie., the first particle has quantum numbers /,, m,
and the second has quantum numbers /,, m,. As t increases, the particles be-
gin to interact. We assume the interaction is elastic, i.e., we end up with the
same two particles and energy is conserved. No particles are created or
destroyed by the interaction.

After time t — 7 the particles are again noninteracting. By conservation
of energy, ¥(r) must have energy . Thus ¥(z) € W,, or
(8.12) V(X , Xz, T) = 2 Gpa Ti\(X1)F5(X2)

Mifsz

and we can describe the interaction by computing a,,,: | a,,., |* i the prob-
ability that a system in the state W W&, at + =0 ends up In the state
YLy at t = 7. Since SO(3) X SO(3) 1s not a symmetry group of H', m,
and m, are not conserved by the interaction. Thus, if particle one starts out
in the state ¥ there is no reason to assume that it will end up in this state.

On the other hand, SO(3) is a symmetry group of H'. If the system is in
the state A, ! at t = O then it must be in the state &, at t = 7. Note that the
vectors

8.13)  RUx,, %), |l —L|<I<l +1L, —I<m<l,

form an ON basis for W,. Thus, if ¥(0) = h,' then by conservation of
angular momentum

(8.14) ¥(z) = b, .

Since ¥(r) is a unit vector we must have |b,| = 1, or b, = %, 0 < 0, < 27
Just as in Section 7.6 we can easily show that @, is independent of m. The basis
{h 1} is clearly more convenient for W, than the basis {¥h ¥ }. On the
strength of conservation of angular momentum alone we have proved that
h.! is merely multiplied by a phase factor ¢®. The results of the scattering
experiment are determined by the scattering angles 8,, [/, — /| < <[ -+
l,, which must be computed from the dynamical equations.
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Now that we know how the {4/} transform we can use the CG coefficients
to determine how the basis {¥4 W4 ] transforms. A straightforward com-
putation yields
(8.15) Wh Wi — > 3 C(ly, my; Ly, my |l me®CUy, 15 Ly ny | L myFR W

fnymg
Thus the probability that a system in the state ¥3, ¥ at 1 =0 will be found
in the state YaWh at t =718

fi+ls 2
STy, my;ly, my |l m)e®C(ly, ny; by, ng|Lm)| -

1=t

(8.16)

If the system has k > 2 particles a similar but more complicated analysis
can be used to decompose W, into a direct sum of irred subspaces under
SO(3). The principal complications arise from the fact that a given irred rep
may occur with multiplicity greater than one. Then there is no unique way to
decompose W, and it may be necessary to relate the various possible decom-
positions by Racah coefficients (Liubarskil [1]).

In the preceding discussion we have ignored the possibility of spin.
However, for many particles such as the electron, the proton and the neutron,
physical observations do not agree with the predictions of our theory. To
obtain predictions in agreement with experiment it is necessary to postulate
more complicated transformation properties of the particle state functions.
Intuitively, one may think of a particle with spin, say an orbital electron
in an atom, as a billiard ball spinning about its own axis. In addition to
its orbital angular momentum the billiard ball possesses an intrinsic spin
angular momentum.

To make the discussion concrete we construct the state space of a single

nonrelativistic particle with spin s, 2s =0,1,2, .. .. The Hilbert space JC,
consists of vector valued functions

[ H(x) )

T.r— I(x}
(8.17) ¥(x).= ' = 3 Wix)e,,

\‘P_E{x))

where e, is the column vector with a one in row x and zeros everywhere
else. The vector W(x) € I, if

Wi(x)¥(x) dx =j 3| W) dx < oo

p==5

and the inner product Is

(8.18) (@, ¥) — L O'(x)¥(x) dx — j 3 0,x)F,x) dx.

pH=—3
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We define a unitary rep T of SU(2) on JC, by
[T(A)¥](x) = T(A)¥(R(A™)x),
Or in components

5

(8.19) [TA¥X) = 3 TLAYRAK), —s<u<s

==X

Here R(A) = SO(3) is defined by (1.12) and (1.20) and the matrix elements
T: (A) by (2.14). Since the matrices 7%(A4) are unitary and satisfy the homo-
morphism property T#(AB) = T*(A)T*(B), the operators T(4) are unitary in
3¢, and satisfy T(4B) = T(A)T(B). Any vector-valued function ¥(x) which
transforms under the action of SU(2) according to (8.19) is called a spinor
field of weight s. (A spinor field need not belong to JC,.) It follows from Sec-
tion 7.2 that if s is an integer, T defines a single-valued rep of SO(3), while if
s is half-integral, T is double-valued on SO(3).

In nonrelativistic quantum mechanics it is postulated that the state
vectors of the electron, proton, and neutron transform under rotations as
spinor fields of weight J. There are mesons and baryons with spins 0, 1,
and 3. The photon in relativistic quantum mechanics has spin one, while
the nuclei of various atoms can have spins greater than 1.

We have postulated that the state vectors of a particle with spin belong to
3¢, and transform under rotations of space by (8.19). If s 1s half-integral this
postulate seems ambiguous because T is a double-valued rep of SO(3).
Indeed if R € SO(3) there exists A € SU(2) such that R = R(+4) and
T(—A)¥ = —T(A)¥ for ¥ < 3C,. However -T(A)¥ both define the same
state (ray) in 3C,, so there is no physical contradiction.

In a manner similar to the above construction we can define state spaces
for systems containing several particles. As an example we construct the
state space for a system containing two electrons. The Hilbert space JC, ), 659
je,,, consists of all tensor-valued functions ¥(x,, x,) with components
¥, .(Xis X3), 4y, 4y = 3%, such that

J- IEE |‘P#1..!I:{KI » K1}|1 dx| dxl <. 09,

By pypur=—172

The inner product is

(820)  (©,%)= [ 3 0,,0x, x)F,. 0, %) dx, dxs.

Ry? oy
Here the spinor indices and spatial coordinates corresponding to particles
one and two are u,,X, and u,,X,, respectively. [Actually, by the Pauli
exclusion principle the state space is the proper closed subspace of C,,, X)
3¢.,, consisting of vectors ¥ such that ¥, ,.(X,, X5) + ¥,,.. (X2, X;) = 0.
Thus, not all elements of 3¢, ,, X 3¢, , have physical significance (see Section
9.8).] In a similar manner one can construct state spaces for systems contain-
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ing an arbitrary (finite) number of particles with arbitrary spin. A state vector
¥(x;,...,x,) In a k-particle system has components ¥ ... (X,,..., X).
If the jth particle has spin s, then the index y, takes values —s,, —s, 4 1,
..., §,. Under a rotation R(A4) the state vector ¥ is transformed to

(82]} [T'::A}‘F]m---m{xl HLOL B II:)

= 3 TuA) - Ta AP, (RATX, ..., R(AX,).

Hi=—a3

The rep T is single-valued on SO(3) if an even number of spins s, are half-
integral. Otherwise, T is double-valued.

The rep T of SU(2) induces a corresponding rep of su(2) defined by opera-
tors

g = @dNT(exptJ)|-o. & € su(2).

We choose the basis §,, 9, J;, (1.8), and compute the operators g,, 9,, 9,
in the case where T acts on JC, according to (8.19):

(3.22) QIZS_;—]FJ-};, j: ]32! 31
where §; is a (25 + 1) X (25 + 1) matrix

g; = (a’;'d:)T“'{exp Icq_,r) tr=n
acting on spinor components and £, 1s the differential operator (6.22), (k = 1).
[If s = 3 then T'*(4) = A and §;, = g,, see (1.8). These three matrices are
called the Pauli spin matrices.] The action of the spin matrices on the spinors
e, 1s given by

Se, = pe,, Ste,=[(s+ u+ D(sTF pl'%e,.,,
S« Se, = (8,8, + 8,8, + S;8:)e, = s(s + le,, —8- L R

where 8* = 4iS, + 8§, =F§, +i§, and 83 = —§, = —i§;. Since T
1s unitary the operators J, = /g, are symmetric on JC, and satisfy the usual
commutation relations

(8.24) [J,,d,] = id,, 3558 = il J,, J;] =id,.

[Compare with (6.24).] In quantum theory the J, are called total angular
momentum operators. Here J, = S, + L, where the self-adjoint matrices
S, = iy, are spin angular momentum operators and the symmetric operators
L, = i£, are orbital angular momentum operators. Note that the S; and
L, operators commute with one another since the first acts on the spinor in-
duces alone, while the second acts on the coordinates x alone.

In case T acts on a k-particle state space according to (8.21), an analogous
computation yields

k
(8.25) JJ: =— 2 (S}“ —|_ Lf;ﬂ): j — I: 21 3'.!
e=1

(8.23)
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where Si© is a (25, + 1) x (2s. + 1) matrix acting on the spinor indices u.
and L\ = i£! is the differential operator (6.22) acting on the coordinates
x.. The commutation relations are again (8.24).

To investigate some of the physical consequences of this formalism we
consider a system containing a single electron (s = }). Suppose the Hamil-
tonian K on IC,,, takes the form

(8.26) K‘P’—(H n)(m) ¥ c i
| —\o u/\w_,, = g

where H = (—1/2m)A + V(x), m is the mass of the electron, and V(x) is
rotationally invariant. We are assuming that K 1s spin-independent, 1.€.,
it does not depend on the spinor index u. Let A be an eigenvalue of H acting
on the Hilbert space 3¢ (no spin), and assume that the eigenspace i, in JC
transforms according to the (2/ - 1)-dimensional irred rep D’ of SO(3).
Here the action of SO(3) on 3¢ is given by ¥(x) — ¥(R 'x), R € SO(3).
An ON basis for W, is {j(r)Y;"(@, p): —I < m < I}, where j(r) is determined
from the solution of H¥ = AW. It is obvious from (8.26) that the eigenspace
W,' of 3C,,, corresponding to eigenvalue A is 2(2/ 4 1)-dimensional and
has an ON basis

(8.27) ;(r}( 2 "”)) j(r}( 5 ) —l<m<l.
Y™, p)

Thus the degeneracy of 4 is twice that in a spinless theory. It is easy to check
that both the spin operators S, and the angular momentum operators L
commute with K. Thus K admits the six-dimensional symmetry group SU(2)
% SU(2) obtained by letting SU(2) act on the spin indices and spatial co-
ordinates independently in (8.19). Clearly, W,’ transforms according to the
irred rep D/2P of SU(2) x SU(2).

Now we introduce a spin-dependent perturbing (matrix) potential V'
such that the perturbed Hamiltonian K’ = K -+ V' is still rotationally invari-
ant, i.e., such that K’ commutes with the operators (8.19). Then K’ will
no longer commute with all the spin operators S; and orbital angular mo-
mentum operators L, but will still commute with the operators J, =S, +
L,. The symmetry group of K’ is the diagonal subgroup of SU(2) X SU (2)
cnnsustmg of those elements (4, B) such that 4 = B. Clearly, this subgroup
is isomorphic to SU(2). Since

(8.28)

D20 |SUR) = DV? @ DY = 4DH+1 D DENEn, | 1 =1,2,.:4

D/ | =0,

as follows from (8.19) and the CG series, we see that for / > 1 the perturba-
tion splits the 2(2/ + 1)-degenerate eigenvalue 4 into two eigenvalues of
degeneracy 2/ + 2 and 2/, respectively. For I = 0 the twofold eigenvalue does
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not split. These predictions are dramatically different than the corresponding
predictions for spinless particles, and their experimental verification provides
a justification for the introduction of spinor fields into quantum theory.
We can use the CG coefficients to construct a canonical basis for IC, ,
corresponding to the decomposition (8.28). Indeed the vectors

h}:“ U/l = j{.‘") Zml C“r m, '%5 M ” | %& ”JYIm(&: ﬁ?)ep ]
By~ = j(r) 32 U ms 4, L — 3, mY/(6, 9)e,

form canonical bases for DU'11/20 and DY-11/2D respectively. This basis is
very important in scattering problems involving spin-dependent forces. In
such problems spin and orbital angular momentum are not separately
conserved but only total angular momentum. Thus s, g, [, m are not good
quantum numbers and only the eigenvalues of J® and J » J are conserved.

The decomposition of energy eigenstates of a system containing k par-
ticles with spins s,, ..., s, into eigenstates of total angular momentum is
analogous to that above.

7.9 Double-Valued Representations of the Crystallographic Groups

We have seen that in a physical system containing particles with spin
it is possible that an energy eigenspace W, of the rotationally invariant,
spin-dependent Hamiltonian H transforms under a half-integral irred rep
D™ of SU(2). For example, from (8.21) and the CG series, the eigenspaces
of systems containing an odd number of electrons transform under half-
integral reps. [Those with an even number of electrons transform under
integral (single-valued) reps of SO(3).]

Suppose W, is such an eigenspace of H in the Hilbert space 3C correspond-
ing to a k-particle system. Now suppose we embed our system in an infinite
crystal with crystallographic point symmetry group G (of the first kind).
That is, we add to H the perturbing potential V'(x,, .. ., x,) with symmetry
group G:

@1 H=H4 ¥ " VARX, R =V (%, . %), REG

We assume V' is spin-independent, i.e., V' is a function and does not affect
the spinor indices.

Let G' be the set of all 4 € SU(2) such that R(4A) € G, where R(A)
is defined by (1.20). Since R(—A4) = R(A), then 4 € G’ implies —4 € G'.
In particular I = —E, € G'. Clearly, G’ is a group. Since the mapping 4 —
R(A) is 2-1, the order of G’ is twice that of G. Furthermore, {£E,, I} is a
normal subgroup of G such that G'/{E;, I} = G. According to (9.1), T(4)V’
= V'T(A) for A € G' and T(A) given by (8.21). Thus T(4)H = H'T(A)
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for A € G’ and G’ is a symmetry group of H'. If G is the largest point group
fixing V', then G’ is the largest subgroup of SU(2) which i1s a symmetry group
of H'. -

To analyze the splitting of the (2u + 1)-degenerate energy level A under
the perturbing potential ¥’ we must decompose the restricted rep D*| G’
into a direct sum of irred reps of G'. If R(p, 0, w) = G has Euler coordinates
@, 0, w then the corresponding elements of G' are A(p, 8, w), (1.13), and"
—A = IA. Since I commutes with the elements of G" and I? = E, it follows
that Q(/) = +E for any unitary irred rep Q of G'. If Q(/) 1s the identity
operator then Q(A) = Q(— A) and the Q induces a single-valued irred rep of
the factor group G'/{E,, I} = G. We say Q is integral. On the other hand, if
Q(I) = —E then Q(—A) = —Q(A) and Q induces a double-valued rep of
G. We say Q 1s half-integral. The relationship between G and G’ 1s analogous
to that between SO(3) and SU(2).

If # 1s an integer then the operator T(/) corresponding to the rep D™
of SU(2) is the identity. Thus, D® |G’ splits into a direct sum of integral
irred reps of G'. We get the same splitting as by restricting the single-valued
rep D™ of SO(3) to G.

However, if u is half-integral (which is the case which concerns us here)
then T() = —E and D" |G’ splits into a direct sum of half-integral irred
reps of G’ (double-valued reps of G).

To determine this splitting we must find the character table for G'.
This is a straightforward computation. Given G of order n we express its
elements in terms of Euler angles and determine the group G’ of order 2n.
Then we use the techniques of Section 3.6 to compute the character table.
The integral characters are easy to find since there is a 1-1 relationship
between reps of G and integral reps of G'. If y is a simple character of G
then the corresponding integral simple character of G’ is y'(4) = y'(—4) =
¥(R(A)), A = G'. Thus it only remains to compute the half-integral charac-
ters of G'. Complete tables of these characters are presented by Hamermesh
[1] and Liubarskii [1]. Here, we present without proof the table of simple
half-integral characters for O” where O is the octahedral group.

If R € O with Euler angles ¢, #, w we denote by R" the corresponding
element in O’ with the same Euler angles and set R~ = —R'  O'. Now O
contains 24 elements in five conjugacy classes: E, €,%(3), €,(6), €,(6), C;(8).
On the other hand, O’ contains 48 elements in eight conjugacy classes:
E, I, (€(4), @)}, (€1 @), e, @)}, (€.'(3), eI (3} (C.'(6), €, (6)),
{@i*(3), €, (3)}, {€3*(3), €3 (3)}. Thus, O has eight irred reps of dimensions
n,,...,ng such that n,® 4+ --. 4 ny* = 48. However, in Section 3.6 we
already found five irred reps of O (the integral reps of O') with dimensions
1, 1,2, 3,3. Thus there are three half-integral reps of O' with dimensions
He, Ny, Hg, Where n,2 + n,2 + ng? = 24. The only solution with n, < n, <
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ng is ng = n, = 2, ny = 4. The character table can be shown to be

(9.2)

C,'(4) €3*(4) e.,(3) €i*(3) €i*(3) €,*(6)
o E I €4 ¢4 € (3 e (3 ei'(3) ¢

(') 2 -2 1 [ o ey S 0
()" 2 —2 1 —1 —/2 /2 0 0
(y')® 4 —4 ] 1 0 0 0 0

We can use this table to compute the splitting of a (2u + 1)-degenerate
eigenvalue A corresponding to the half-integral rep D* of SU(2) under a
perturbation with O’ symmetry. If A € SU(2) is similar to A(0, 0, 7) then
the character y“(A) = [sin(u + })7]/sin(z/2). Moreover, y"“(AI)=
— ¥"“(A). With this information we can easily compute the character of
D | 0";

(9.3)
C;'(4) ei'(4) e,/ (3) ei"(3) €i*(3) €,7(6)
E I €3(4 ¢4 e (3) €, (3) ci ) €
D it 2 =2 ] —1 2 =2 0 0
P 4 —4 —] I 0 0 0 0
P 6 L@ 0 0 L E W2 0 0
§'712) 8 _ 8 1 —1] 0 0 0 0
r il 10 —10 —1 I B =2 0 0

Writing ¥ | O as a linear combination of simple characters, we obtain
the results:

(9.4)
IH.-"EJIG" — (:{"}15,1, IH-"EJ[G" — (I’JﬂHJ! Itﬁ.-'ll |G"' M- {X")Wl _|_ {x')iﬁ}}
IET_-"E.JEG’ 3= (I"}{ﬁd _E__ [:X")W}' | {I")'IEI'? x'ﬁ?;"l]lO" — (I')Eﬁ} | Z{I")ﬂﬂ.ﬂl
foru = 4, ..., 3. For example, under the perturbation a sixfold eigenvalue

(u = 3) splits into one twofold and one fourfold eigenvalue. Notice that
x| 0" and y*¥/*'| 0" are simple, so twofold and fourfold eigenvalues do

not split.

7.10 The Wigner-Eckart Theorem and Its Applications

Let T be a unitary rep of SU(2) on the Hilbert space JC. The mapping

Q — T(A)QT '(A) defines a rep of SU(2) on the space ®(JC) of all bounded
linear operators Q on 3. We could introduce an inner product on ®(3C)
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with respect to which this rep is unitary and then decompose the rep into a
direct sum of irred reps D*. Rather than carry out such a decomposition we
shall merely investigate the irred subspaces of operators.

Let W™ be an irred subspace of ®(IC) transforming according to D™,
Then there exists a canonical basis {Q,,: —¥ <m < u} for W™ such that

(10.1) T(4)Q,T '(4) = X Tin(4)Q..

Operators with transformation properties (10.1) are called spherical tensors

of rank u. We shall compute the matrix elements (Q,f7, ur), where f'
and g* belong to canonical ON sets in ¥ transforming irreducibly under T:

(102) Ty = 3 TuAf, T = 3 TiAe

Our considerations will also apply to unbounded operators Q,, on ¢ provided
there is a dense subspace Z of JC such that (a) the domain of each of the Q,,
contains Z, (b) Z is invariant under the T(A4), and (c) (10.1) holds on Z.
The group rep (10.1) induces a Lie algebra rep of su(2). Indeed if J =
(d|d)T(exp t9)],-q» € su(2), then by setting A = exp ¢g in (10.1) and dif-
ferentiating with respect to t at t = 0 we obtain the Lie algebra rep

{10'3) Qm = [J! Qm] — JQm mn QmJ'

Since the Q,, form a canonical basis we find

104) [7%,Q,]=mQ,, [J%5 Q.= [w=xm+ DT ml'?Que,,
where

(10.5) Jt=4+J, +iJ,, T3 =—fd

Spherical tensors appear frequently in quantum mechanics. For example
2 Hamiltonian H which commutes with the T(A) is a spherical tensor of rank
zero. As another example we set 3¢ = L,(R;) and let [T(A)P](x) = ¥(4"'x)
for A € SO(3), ¥ < 3C. Then for fixed integer / the multiplicative operators

(10.6) Q. ¥(r,0,9) = rY;™0, )¥(r, 0, 9)

are spherical tensors of rank /. Here, the Y,"(0, ¢) are spherical harmonics
expressed in spherical coordinates. To verify this we will check the relations
(10.4). From (5.4), (5.6), and (10.5) we find

d

= o] 5
ﬂ—g—i—:c{}tﬂ—)= J¥= i=—

(10.7) J* = E*‘P(ZF 3o
Furthermore, from (3.7)

(10.8) JLYm=m¥[", JI=Y"=[l+m + D)UF M AY
Since the J operators are differential and Q,, = AY 7™ is multiplicative we find

(10.9) [/, Q¥ = J('Yi™¥) — FYim(J¥) = U Y)Y
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Together (10.8) and (10.9) yield (10.4) for ¥ = /. [Actually the above result
is valid for Q_ = f(r)Y;™(8, p), where f(r) is arbitrary.]
Let us consider the special case / = 1. The canonical basis vectors are

[,'=rY7'= (';E)m(-x — Iy), £,°=rY,"= (43—?:)]:23:
(10.10) 3 \1/2
Srfles toe g fledl d .
= (Sn) L

Multiplying all vectors by (4%/3)'/?, we see that the vectors

(10.11) (U 2)x — iy), 2z, —(1//2)(x + iy)
form a canonical basis for D"’. Note that x, y, z does not transform as a
canonical basis. Here, the multiplicative operators Q, = x, Q, =y, Q, =z
are the position operators of quantum theory.

A similar computation using the same J-operators shows that the differ-
ential operators :

. Lodid . @i . a 5¢ 1 [0 : 6‘)
(10.12) 6‘_ﬂ(6x ‘a‘;) do = 3 6'1_“ﬁ(ax+‘@
also transform as spherical tensors of rank one. Note that the d, are closely
related to the linear momentum operators in quantum theory:

P,=—id/dx, P,=—idldy, P,= —idld:.

We will compute the matrix elements (Q,f4', g&) for a set of spherical
tensors of rank 4. From (10.1) and (10.2) we obtain

(10.13)
(Qnf5, git) = (T(A)Q.f7, T(A)gi) = (T(4)Q,. T (AT(Afy, T(A)gh)
= % Tan(A)T (AT 5(ANQ,fY, 87°).

Multiplying the left- and right-hand sides of this equality by dA, integrating
over SU(2), and making use of the identity (7.9), we find

(10.14) (Q, £, @) = C(u, m: uy, j|uy, BN,
I . M1 g
N = 21{'2 ] E C{H: i, U, k‘ Uz, SJ{ank ’ g:,}‘

Theorem 7.1 (Wigner-Eckart). If {Q,} is a set of spherical tensors of rank u
then (10.14) holds where N depends on u, u,, 4, but not on m, j, and /.

The point of this theorem is that the dependence of the matrix element
on m, j, and h is completely determined by the CG coefficient. If for fixed
u, u,, and u, we are able to compute one of the nonzero matrix elements
(10.14) then we can solve for N and (10.14) will tell us the values of all the
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matrix elements. The constant N is sometimes called a reduced matrix
element. From the known properties of the CG coefficients we see that the
left-hand side of (10.14) will be zero unless m + j = h and u, = |u — u,|,
lu —u, |+ 1,...,u1 u,.

We have stated the Wigner—Eckart theorem for reps of SU(2), but actually
it holds for reps of any finite group or compact Lie group G. Indeed if we
denote by T a complete set of nonequivalent irred unitary reps of G then
we can define by (10.1) the operators of rank u where now A € G. Expression
(10.13) is unaltered by our generalization. We can integrate (10.13) over G
with respect to the invariant measure d4 if G is a Lie group or sum over the
group if G is finite. Similarly, expression (7.9) is valid for G provided the
factor (2w -~ 1)/167? is replaced by n,/V,, where n,, is the dimension of ] i
In particular we can define CG coefficients for G in analogy with those for
SU(2). (There is one possible complication here. It may be that T™ occurs
more than once in the decomposition of T® X T®. In this case the CG
coefficients will need an extra parameter to denote which of the T™-subspaces
is under consideration.)

We can get a better understanding of the Wigner-Eckart theorem by
recalling the discussion of invariant tensors in Section 3.8. Expression (10.13)
shows that the tensor a with components a,;, = (Q,f4, g¥) is an invariant in
a tensor space transforming under the rep

(10.15) T® R T R T

of G, where T® is the rep whose matrix elements are T%(4). Since a is in-
variant it must transform according to the identity rep T'*’. Let ¢ be the mul-
tiplicity of T' in (10.15) and let ¥‘*’ be the subspace of invariant tensors in
the tensor space V. Then g = dim V**’ and a € V'® is nonzero onlyifg = Q.
Furthermore, exactly ¢ parameters are needed to uniquely determine a. Let
¥,y ¥ be the characters of T®, T“’, T“?, respectively. Then 7“(A)
is the character of T®. Since the character of T'? is x'“(A4) =1 and the
character of (10.15) is y®™ y“’y™ we find from the orthogonality relations
that g is given by

(10.16)
g = J- Iiu}(A}Im”(A}W(AJ oA = <xtulxm1}fﬁmi 1> - <I{ulx{u|3! xﬂuz?>.
G

On the other hand, the right-hand side of (10.16) is just the multiplicity of
T%“ in the tensor product T% () T“’. Thus, we can obtain ¢ from a knowl-
edge of the CG series for irred reps of G. In particular, if T** does not appear
in the CG series for T™ ) T™" then ¢ = 0.

In the special case where G = SU(2) the series is

(1011?) Dfu:l ® D{Hj:l ~ Dfu+u|} EB D{u'i'm—ll {—BI 2 ki == (_E] DHH_HIIJI,
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sog =1ifu, =u-+u,,...,|u— u,|; otherwise g = 0. In the cases where
g = | the space of invariant tensors is one-dimensional and can be deter-
mined by specifying a single constant V.

We now give some applications of these results to quantum mechanics.
Let JC be the usual Hilbert space corresponding to a k-particle system
(without spin) and let the action of SO(3) on JC be given by (6.2). Consider
the position operators Q =x,;, s=1,2,3 [x;, = (x;, X, x3,) =
(x;, ¥, 2,)], of the jth particle. We will compute the matrix elements

[10]8} {QSJTLEIE? ‘P::::,} AT J. Ifjl}”rrln(xl Pl xk}ﬁ(xl SR T x.ﬁ:] d}(,
Rat

where the V. transform as canonical basis vectors under the representations
D“ of SO(3). According to (10.11) the operators Q' = 2-12(Q,, — iQ,,),

Q¥ =1Q,, Q" = -2"%Q,, + iQ,,) determine a spherical tensor of
rank one. We first compute the matrix elements
(10.19) (O W), s=10—1, —L<m<lI.

It 1s obvious that the matrix elements (10.18) can be determined immediately
from (10.19). Since D'V @ DY = D'V H D" HD" v if [, > 1 and
D'V ) D' = D'V, it follows from our above analysis that for /, = | the
matrix elements are nonzero only if /, =/, + 1,/,,or I, — 1, while for /, =
0 the matrix elements are zero unless /, = |. An explicit expression for the
matrix elements is given by (10.14).

If the system contains particles with half-integral spin we can form expres-
sions (10.19) where the /, take half-integral values. The above analysis is
unchanged except for the special case D' (X D'W/2 = D%/ @ DIV/2),
which implies that for /; = § the matrix elements are zero unless /, = 3 or 4.

Now suppose the group acting on 3C (no spins) is O(3). Recall that the
irred reps of O(3) are DY), where the sign denotes parity, (6.5), (6.6). The
Q' transform like polar vectors under O(3), hence like D', It is easy to
verify the CG series

]}E*”(—E‘ID%*@D{{'”, =1,
DY, il

(10.20) D ) D =~ {
The selection rules for the matrix elements follow immediately from (10.20).
Again the nonzero matrix elements are given explicitly by (10.14).

We see from these results that (10.19) is always zero if ¥ and P&,
have the same parity. An interesting special case of our analysis occurs
for one-particle systems (k = 1). In this case W% (x) = j(r)Y (0, ), where
the Y4(@, p) are spherical harmonics. Recall that {Y,} transforms according
to DY if /is even and DY if / is odd. Thus (Q*'¥% , W% ) is nonzero only if
l, = [, + 1. Parity considerations have eliminated the possibility /, =/, .
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In case the system contains particles of half-integral spin we have to
perform our analysis using the group SU(2) x {E, I} rather than O(3), but
this changes the above results in no essential manner.

In quantum theory the matrix elements (10.14) may have interpretations
other than those given here. For example, expressions of the form (10.19)
occur in the study of emission and absorption of light by atoms (Liubarskii
[1]). In this case these expressions are related to the lowest-order (dipole)
approximation of the transition probability from one state to another.
Our results stating that only certain special matrix elements are nonzero
are called selection rules in this theory. Similarly, the quadrapole approxima-
tion of quantum perturbation theory corresponds to the approximation of a
set of operators by spherical tensors of rank two and use of the Wigner-
Eckart theorem to simplify the matrix element computation.

7.11 Spinor Fields and Invariant Equations

The Euclidean group E*(3) frequently appears as a symmetry group in
classical and quantum physics. Suppose for example that 3C 1s the Hilbert
space of a k-particle system (Section 7.6). Then the operators T(a, O) given by

(1L.1) [T(a, O)FI(X,, - .., %) = ¥(O7'(x; — 2),...,07'(x, — 2)),
ac R,, 0  SO(3), ¥ e 4C,
define a unitary rep of E*(3) on JC. Note that the restriction of T to SO(3)

yields the usual action of SO(3) on JC, while the restriction of T to the
translation subgroup R, yields

(11.2) [T(a, EYENX; « s X)) ="H(x, —a,... ) % —8):

If E*(3) is a symmetry group of the system then the T-operators commute
with the Hamiltonian H:

(11.3) T(a, 0)H = HT(a, O).

For a = 0 we have seen that (11.3) signifies the conservation of angular
momentum. On the other hand, if we set O = E in (11.3), differentiate both
sides of the equation with respect to a,, and set a = 8 we find P,H = HP,
where, (10.18),

(11.4) P, = —i(ﬁ ajaxﬂ)s fr="1, 2.3,

is a linear momentum operator. Thus, E*(3) symmetry of a system implies
conservation of angular and linear momentum. Conversely, conservation of
angular and linear momentum implies E*(3) symmetry. (In the standard
quantum mechanics texts it is shown that conservation of linear momentum
implies the Schrédinger wave functions can be factored into two parts. One
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part describes the motion of the center of mass as a free particle and the other
describes the relative motion of the system with respect to the center of mass.)

If the system contains particles with spin the proper symmetry group is
&*(3), consisting of pairs {a, A}, a € R;, A € SU(2), such that

(11.3) {a,, 4, }{a,, A,} = {a, + R(4,)a,, A, A,},

where R(A4,) € SO(3) is given by (1.20). Here, &7(3) and E7(3) are six-dimen-
sional locally isomorphic groups (they have isomorphic Lie algebras). The
map

{a, A} —> {a, R(A)}

is a homomorphism of §(3) onto E*(3) which covers each element of £7(3)
exactly twice.

The elements of JC are spinor-valued functions ¥ = {¥(x,, ..., X))},
g =1,...,q. (If there are several spin indices we combine them into one in-
dex of larger domain.) The action of §"(3) on iC is
(11.6) [T(a, HY¥](x;,....%,)

i 2 Tﬁu[A)Tu{R{A_]}(xI =% H')! AR R{A I-I)(Kk L ﬂ})’

where the matrices T(A) define a unitary rep of SU(2), not necessarily irred.
It is straightforward to check that T is a unitary rep of &"(3) with respect to
the inner product

(¥, D) = L i L b X )D (X, . .. 5 X;) dX.

3 =1
As before, if the T(a, A) commute with H then total angular momentum and
linear momentum are conserved.

Although we have been led to expression (11.6) through Hilbert-space
considerations, this expression makes sense independent of Hilbert space.
In general any spinor-valued function which transforms under &*(3) by (11.6)
is called a spinor field. If the matrices 7(A) satisfy T(4) = T(—A) then the
operators T define a single-valued rep of £°(3). In this case the function ¥
is usually called a tensor field. Tensor fields abound in classical physics. For
example the electromagnetic field E(x), j = 1, 2, 3, transforms under E*(3)
as a tensor field of rank one, i.e., the matrices 7(A4) define a rep equivalent to
D", Similarly, magnetic fields, elasticity tensors, current tensors, and
moment-of-intertia tensors all transform as tensor fields under £7(3). True
spinor fields occur primarily in quantum mechanics and relativistic physics.
The best known example is the Dirac electron field where ¢ = 4 and T(A)
defines a rep equivalent to D''/2' (p D"'/%),

Let W, (x,7) be a spinor field transforming according to (11.6) with
k = 1. Suppose ¥ ,(x, 7) describes some physical quantity which is a solution
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of a system of g linear differential equations

] ﬂf"i'E'l"ﬁ-lﬂﬁ'P'{j:’ f)
Jsh 3 =
(11.7) . B F{x,r)a T3 o5k o7 =0,

Jshp

where the B/**# are g x g matrix functions, ¥(x, 7) is a 1 X ¢ column vector,
and 0 is the zero vector. Assuming the isotropy of space-time we see that
Eq. (11.7) can be physically meaningful only if they assume the same form in
every cartesian coordinate system: If we replace x by x' = R(4)x + a,
tby t' =t+ ¢, and ¥, (x,7) by ¥,/ (x',t") =2 T, (AY,(x,1) in (11.7),
then the resulting system of equations should be equivalent to (11.7), i.e.,
the primed equations should be linear combinations of the unprimed equa-
tions and conversely. We shall classify all such Euclidean invariant equations
(under certain restrictions). The dynamical equations of any physical theory
which admits &%(3) as a symmetry group, via the rep (11.6), will be found
in our classification. Qur analysis will provide a group-theoretic framework
within which all Euclidean invariant physical theories can be described and
compared.

Note first that Eq. (11.7) are invariant under all translations in space and
time if and only if the matrices B**# are independent of x and 7. Now we
dispense with translation invariance and restrict our attention to invariance
under the operators T(A4) = T(@, 4), which form a rep of SU(2). Further-
more, we can eliminate dependence on ¢ in (11.7) by considering only solu-
tions of the form W(x,r) = ¥(x)e'. Then d/dt is replaced by ic. (This
amounts to taking the Fourier transform in t.)

We can always write (11.7) as a system of first-order differential equa-
tions by introducing new components ¥ (x), u = ¢. This will be shown later
when we consider specific examples. Thus, we can reduce (11.7) to a system of

I equations
1 5,2 4 5,0 4 ¥ -
(11.8) (B,E-. Byg + By + C)¥(x) =6,
where B,, B,, B,, C are constant / X r matrices, ¥(x) = (¥ (x)) 1sa 1 X r
column vector and the action of SU(2) on ¥(x) 1s

(11.9)  [T(A)P](x) = z; SAAPRANDX),  p=1,...,r

Here r > g and S(A) is a matrix rep of SU(2).

For the present we assume C is a nonsingular r X r matrix. Then mul-
tiplying (11.8) on the left by C°' we see that this system of equations is
equivalent to a system of the form

(11.10) (Lj% | LE%-+- ng—z)‘i"(x}:x‘i‘{x},
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where the L, are r X r matrices and x = 0 is a constant. (We could take
x — —1 but it is convenient to leave it arbitrary.)

By passing to a new basis if necessary we can assume that the matrices
S(A) take the form

r(TH]J[A)‘ ‘Iu H
.TIHJ(A) z
(11.11)  S(4) = TOT~ 2 :
Z lT‘“}'(A}*

\ o,
where T%(A) is a matrix realization of D% and @, is the multiplicity of D"
in S(A4). In other words we have decomposed the action S of SU(2) on the
components of ¥ into a direct sum of irred reps. In this new basis we relabel
the components of ¥ as W7, the component of the mth canonical basis
vector in the nth occurrence of D* in (11.11). Here —u <<m < u and 1 <
n < a.. In terms of the new basis, the system of equations still takes the form
(11.10).

We can express the partial derivatives on the left-hand side of our equa-
tions as linear combinations of d,, d,, d_,, (10.12), which form a canonical
basis for D'*’. Thus. the left-hand side is a linear combination of terms
d,¥2  39,%¥7, d_, ¥~ For fixed v and n, and p ranging over —v, —v + 1,
..., v these 3(2v + 1) quantities transform according to D’ ) DY =
D@+ @ D® @ D% V. Thus the new basis functions

=Y C,j;v, plu’,m)d,¥y,
g

(11.12) v+ 1,0, v— 1, if a1
u' =134 TR gy & R
L]! if ‘EJ=U,

transform irreducibly under D*“’, Since the CG coefficients are unitary we
can express each of the terms d,%7, on the left-hand side in (11.10) as a linear
combination of the A7, and rewrite (11.10) as

(11.13) >, Bir bt = K,

Consider the subsystem of 2u + 1 equations (11.13) for which u and n
are fixed, and —u < m < u. Now W J(x') = 3 T4 .(A)¥5(x) and i .4
= 3 T4 (A)h),.(x) s0 this subsystem will be invariant under SU(2) if and
only if the left-hand side of the subsystem transforms like a canonical basis
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for D™, From (11.12) we see that any invariant system must take the form

(11.14) Y B YO, ;v m |u,m)d, ¥, = k¥,
u'n' pJ
where the sum is taken over ' =u 4+ l,u,u— 1 and ' =1, ..., &,.

The constants B“", are completely arbitrary and there is one equation for
each component ¥, of ¥. Note that integral values of u are never coupled
with half-integral values of u in (11.14). If both values occur, the system
breaks up into two independent subsystems, one coupling integral and the
other coupling half-integral values.

The case where the matrix C is singular or not square is more complicat-
ed. Suppose C = Z. Equations (11.14) with & = 0 clearly fall under this
case and in general all invariant equations take roughly this form. However,
it is not easy to decide if two systems of equations are equivalent, i.e., there
is no simple canonical form for such equations. For x = 0 this difficulty
does not occur: Two systems of equations for the Y7, are equivalent if and
only if the constants B, agree for the two systems.

If C is a singular matrix or is not square then the system of equations can
be put in the general form (11.14) where x = 0 for some equations and
k¥ = 0 for others. The number of equations is not necessarily equal to the
number of components of ¥ and there is no simple canonical form. For-
tunately, in the equations of mathematical physics it is usually true that C
is nonsingular.

Our analysis of invariant equations follows Liubarskii [1]. There 1s another
approach to this theory, due to Gel'fand and Shapiro, which is based on Lie
algebras. The Lie-algebraic method is much more complicated than that
given above but it extends rather easily to the case where the matrices L,,
L,,L, in (11.10) act on infinite-dimensional spaces (Gel'fand et al. [1],
Naimark [2]).

For equations invariant under the full orthogonal group O(3) these results
have to be slightly modified. The components of ¥ are labeled Y. , corre-
sponding to the reps D, »# an integer. The differential operators d.,,d,
form a canonical basis for D'V, It follows from the identities

(11.15) D& ® DY = D¢*! @ DY @ D"

that the invariant equations take the form (11.14) except that the components

of ¥ on the left- and right-hand sides of these equations have opposite parity.
We consider some examples. The simplest &*(3)-invariant equations

are those in which the components of ¥ transform according to the single

irred rep D™. Denoting the 2u |+ 1 components of ¥ by ¥,” we obtain the

system of equations

(11.16) H: Z C(l,j;u,m |u,myd,¥,” = x¥,”, —u < m=u.

There is a single arbitrary constant a. This system is not E(3)-invariant since
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the parity of the left-hand side is opposite that on the right. For E(3)-
invariant equations the action of O(3) on the indices of ¥ must be reducible.
Consider the manifestly E(3)-invariant equation

2
(11.17) (a‘?xz " ;}}E L ; )V{x) — xV(x),

where V(x) is a scalar D", We shall write (11.17) as a system of first-order
equations by introducing three new components V;(x) = d,V(x),j = +1, 0.
Clearly the V(x) form a canonical basis for D', The system (11.17) 1s
equivalent to

(11.18) —o,V_;, + 0V, —0d_,V, =KV, &,V =¥, j==xL0.
Without loss of generality we can assume x = 1. The indices of the column
vector (V, V,, V,, V_,) transform according to D'» @ D'". By our theory
the most general E(3)-invariant system with these transformation properties
1S
1
(11.19) a Y C(,j;1,—jl0,00dV_; =V, bC(1,1;0,0[1,H)aV =V,
==t
[ =0, 4+1.

It follows from the table (7.28) that (11.19) is identical with (11.18) provided
a=—/3,b=1

Another important example is given by two of Maxwell’s equations for
an electromagnetic field in a vacuum:

lﬁ'H 1 JE
ot

=0, vah_ﬁ 0.

Here E(x, 1) = (E,, E,, E,] is a vector field transforming according to the rep
D" of O(3) and H(x, 1) is a vector field transforming according to DY". We
are using Gaussian units. If we consider solutions of frequency w, E(x, 1) =
E(x)e", H(x, 1) = H(x)e'**, then the equations become

(11.20) VXE+ —

(11.21) (ic/w)V x E = H, —(icjw)V x H = E.

Expressed in terms of canonical basis vectors d.,, 0, E.y = 27" (L E,

— iE), E, = E,, H., = 2"Y*(4+H, — iH,), and Hy = H,, (11.21) reads
(c/@)0E, — 0,E,) = H,, —(clw)d,H, — d,H,) = E

(11.22) (c¢/w)(@d_,E, — 0,E_,) = H,, —(clw)d_H, —d,H_.,)=E
(c/o)@-\E, — 0,E_) =H_,, —(c/o)d_Hy— 0d,H_,)=E._

By our theory the most general O(3)-invariant system of equations with
C nonsingular and indices transforming according to D" @ DY" is

a Y C(L,jil,m—j|1,m)d,E, , = H,,
(1123 T
b3 €, j;1,m—j|l,m)ydH,. ,=E, m=10—1.

Fu=—1
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It follows from (7.28) that (11.22) is the special case of (11.23) such that
a=—a/2clw, b =./2c/w. The other two Maxwell equations V + E =0,
V « H = 0, correspond to the case where C is singular.

Problems

7.1 Compute the Clebsch-Gordan coefficients for all tensor products of irred reps of
Caue

7.2 Determine how the energy levels of an SO(3)-symmetric quantum mechanical
system split under the influence of a perturbation with Ds symmetry.

7.3  Compute the level splitting of an O(3)-symmetric system under a perturbation with
D3z symmetry.

7.4 Prove identity (7.16).

7.5 Determine the double-valued irred reps of the point groups C3 and D3.

7.6 Compute the double-valued irred reps of Ds.

7.7 Compute the splitting of levels transforming according to double-valued irred reps
of $O(3) under a perturbation with D3 symmetry.

7.8 Show that the prescription R(t,u) = exp(ru - L) & SO(3) defines a system of
coordinates on SO(3) and determine the geometrical significance of these coordinates. Here
u is a unit vectorandu-L = L, + uzL3 -+ wsL3, Compute the invariant measure in
(7,u) coordinates and verify explicitly that the simple characters of SO(3) form an or-
thogonal set.

7.9  Consider a spherical tensor of rank one which transforms as a polar vector under
0(3). Determine the selection rules for matrix elements of the tensor between states trans-
forming as irred reps of Dyy.

7.10 Repeat the previous problem for a tensor transforming as an axial vector under 0(3).



