Kaweichel, an Extension of Blowfish for 64-Bit
Architectures

Dieter Schmidt*
September 30, 2006

Abstract

In this article the block cipher Kaweichel is presented. It is an
extension of Blowfish for 64-bit architectures. Its aim is to present
a cipher for modern 64-Bit processors which utilizes commonplace
instructions. A main objective of the development was to harden
the cipher against known attacks on Blowfish. The author does not
claim intellectual property on Kaweichel and the cipher will remain
unpatented. A C reference implementation is available on the web.

1 Introduction

Measures to protect privacy are today virtually erveryone’s business.!

Since the mid-seventies, when open research in cryptography began,
numerous encryption methods have been published. For connections
with low error rates or for fault-tolerant protocols, like the Internet
Protocol, so called block ciphers are the first choice for encryption
routines. Block ciphers encrypt a given number (typically a power
of 2 and 64 or higher) of bits simulteaneously under the control of a
key. Opposite to stream ciphers, where under the control of a key a
pseudorandom sequence is generated and XORed (addition modulo 2)
with the plaintext, the ciphertext of a block cipher depends on all the
bits of the plaintext. As a result, in general the breaking of a block
cipher is more difficult than the breaking of a stream cipher with the
same key length This is called diffusion, i.e. the spreading of one bit
of the plaintext to all the bits of the ciphertext and was first proposed
by Shannon [9]. Shannon also proposed the so called confusion, i.e.

*Denkmalstrasse 16, D-57567 Daaden, Germany, dieterschmidt@usa.com
1This article is the edited English translation of [4]

a bit of the ciphertext should depend in a complex manner on the
bits of the plaintext and the key. Modern block ciphers realize these
demands as a neccessary, but by no means sufficent condition for a
secure encryption. Given the development by open cryptography since
1975, additional criteria have been developed, such as immunity from
differential [2] or linear cryptanalysis [5] or the slide attack [3].

This paper is an attempt to develop a software-efficient and secure
block cipher with the instrutions typical for a modern 64-bit micro-
processor (possible candidates are Alpha, G5, Hammer and Itanium
and others). The starting point of the development is the block ci-
pher Blowfish [8], which is free of claims of intellectual property. The
typical instructions of a 64-bit microprocessor, that are used, are the
loading of a register, addition, XOR, AND, rotation to the right and
shift to the right. Given favourable circumstances, that is a level-1
cache hit for program code and data, these instructions are carried
within one or two clock cycles.

2 Definitions

Let denote: A additon modulo 2%, @ addition modulo 2 (XOR) of two
64-bit words, rotr e the rotation of a 64-bit word by e positions to the
right. This rotation can be written as multiplication 264—¢mod264 — 1
if the values of the 64-bit word is less then 24 — 1. S-box denotes a
8-bit to 64-bit substitutions-box, which can be expressed as indexed
addressing of 8-bit values into a table of 64-bit values.

3 Description of the block cipher

Kaweichel is a generalized Feistel cipher. The first Feistel cipher pub-
lished was the Data Encryption Standard (DES) of the U.S. govern-
ment, which was based on work by IBM. It is published in [1, 2].
When using a Feistel cipher the plaintext is first divided into two
equal halves. The size of the plaintext block is typically 64 bit or 128
bit, i.e. it is a power of 2. The left half of the plaintext block is used as
the input for a so called round function (F-function), which modifies
the input under the control of the round key. The output of the round
function is added modulo 2 (XORed) to the right half of the plaintext
block. After that, the two halves are exchanged and the procedure is
repeated, until the defined number of iterations (rounds) is reached.
After the last iteration, the two halves of the ciphertext block are
not exchangend. Thus the whole construction is self-inverse except
for the order of the round keys. This means that for encryption and

decryption the same hard- and software can be used, only the order
of the round keys has to be inverted for decryption.

For the construction of the round function one choses usually par-
allel substitutions (s-boxes). The output bits of these s-boxes are
permuted in order to achive diffusion. For the derivation of the round
keys from the userkey one has to choose a key schedule.

The basic idea behind this construction is that a weak, iterated
encryption function will result in a cryptographically strong cipher.
But there minimum requirements for the round function (F-function).
It should, for example, offer sufficient resistance againt differential [2]
and linear cryptanalysis [5].

The construction of Kaweichel (see figures 1 and 2) differs in several
points from that of a classical Feistel ciphers.

e Before the left data block is used as input for round function, a
key P; is added modulo 2%* to that data block.

e Rather then using a round key for the round function, the s-boxes
are key dependant. This method got first widely known with the
block cipher Blowfish [8]. The advantage is, that differential [2]
and linear cryptanalysis [5] are not applicable, since they require
the knowledge of the s-boxes.

e After the output of the round function is added modulo 2 (XORed)
to the right data block, the bits of the right block are rotated to
the right by a fixed amount.

e The right and left halves are exchanged after the last iteration.

o After the last iteration a pair of keys Pso, P33 is added modulo
264 to both halves (final transformation).

Each of the points 1 and 3 to 5 causes the cipher not to be self-
inverse, i.e. for encryption and decryption separate hard- and software
needs to be implemented.

Kaweichel works with a block size of 128 bit, thus each half is 64
bit long. The 64 bit input to the round function is first divided into
eight equal units of eight bit (one byte). Each of these units is used as
an index into a table of 256 = 2% values (s-box) in such a manner, that
the least significant byte is used as input for s-box 0, the next byte for
s-box 1, and so on, and the most significant byte is used as input for
s-box 7. The 64 bit results of two adjacent s-boxes are added modulo
264 e.g. the outputs of s-box 0 and s-box 1. This leaves four values.
Two adjacent of these four values are added modulo 2(XORed). This
leaves two 64 bit values. They are added modulo 2%* to form the

Pi A
] S-Box 0
H
— S—-Box 1—
D
S-Box 2
-
S-Box 3
mm
S-Box 4
H
S-Box 5
/4R
NI
S-Box 6 rotrll
H
S-Box 7

Figure 1: One iteration of the block cipher Kaweichel

P32 P33—H

Figure 2: The final transformation

output of the round function. If one denotes the output of the s-boxes
by Sy to S7, the output of the round function becomes:

roundoutput = ((So H S1) & (So H S3)) H ((S4 H S5) @ (Se B S7))
The combination of the output of the s-boxes was changed compared
to Blowfish [8] to allow for a better parallelization in both hard- and
software and to make Rijmen’s attack [6] more difficult.

For the number of rounds the author recommends for the time
being N = 32. The maximum key length is thus 30 (i.e. N —2) words
of 64 bits or 1920 bits. Shorter keys are appended with zeros to reach
1920 bit, but the length of key should not fall below 256 bits.

For the rotation the value 11 is used.

For the derivation of the round keys, the keys for the final transfor-
mation and the s-boxes, the following holds: Fisrt the round keys and
the keys for the final transformation are assigned random or pseudo-
random values. After that the s-boxes are assigned random or pseu-
dorandom values, beginning with s-box 0 and Index (for details, see
the function init_cipher in the reference implementation). In the ref-
erence implementation (see [7]) the binary digits of 7 (less the initial
3) are used for that purpose. After that, the 1920 bit long userkey
is added modulo 2 (XORed) to the first 30 roundkeys P;,i =0...29.
This limitation of the userkey ensures that in the following encryp-
tions all outputbits depend on all the bits of the userkey. After that
the plaintext block is assigned the all-zero string and encrypted once.
The round keys Py and P, are then assigned the right half and the left
half of the ciphertext block. The cipher is then employed in Output
Feedback Mode (OFB) and the values generated are assigned the next
round keys P, and Ps. This is repeated, until all the round keys, the
keys of the final transformation and the s-boxes have been assigned
new values (see function expand key of the reference implementation).

4 Security

The individual output bits of a s-box can be described as Boolean
function of the eight input bits. Since the s-box entries depend on
the key and the initial values they are random. Thus a certain output
bit of a s-box can be described as a random Boolean function of the
eight input variables. If one selects a Boolean function with eight
arguments, there are 2256 possibilities with 256=28. The share of affine
Boolean functions, which are especially unsuitable for cryptographic
purposes, decreases rapidly as the number of arguments increases. On
the other hand, wider input sizes of the s-boxes mean an increase in
memory requirements, so that a satisfactory compromise had to be
reached. The followingg table gives the share A of affine Boolean

functions and the memory requirement S of the round function as a
function of the input width m of the s-boxes.

m/bit | A | S/kbyte

2 2-1 1
4 o-11 2
8 Q—247 16

16 265519 2048

Given the limited size of the level-1 data cache in modern 64-bit
processors the choice of m=8 is deemed feasible as well as sufficiently
secure.

Another point of interest is the probability that a certain output
bit of the round function is a constant (The possibity that a carry
occurs in the five additions modulo 2% is neglected). To this end
consider the algebraic normal form (ANF) of a Boolean function. A
Boolean function with eight arguments has 256=2% coefficients in the
ANF, which all can take the values 0 or 1.For an output bit of the
round function to be a constant, the Boolean functions of two s-boxes
must correspond in the last 255 coeflicients of the ANF. This means,
that for four s-boxes the coefficients of the ANF are free while the last
255 coeflicients of the other four s-boxes are fixed. Thus the proba-
bility that a certain output bit of the round function is a constant is
w = (22%%)* = 21920 Tf one compares this to the key length of 1920 bit,
the value seems to high. For this reason the rotation was introduced.
Now each bit of one of the halves is combined modulo 2 (XORed) with
16 different output bits of the round function. The probability that
any 16 output bits of the round function are constant is:

W = (161) 71 + 64 % 271020 4 63 x 271020 & | 5 49 5 271020

914 4 6416 4 (27102016 — 952 4 9—16320 _ 916268

Another important point that must be considered when designing a
modern block cipher is security from differential and linear cryptanal-
ysis. Both methodes are not applicable to Kaweichel, since the s-boxes
are newly determined with each key.

Vincent Rijmen published in [6] an analysis of Blowfish with sec-
ond order differentials, that breaks four of the 16 rounds. His attack is
not applicable to Kaweichel, since it requires that the operations per-
formed on the two halves commutate. This is not the case, because
additon modulo 25 and XOR do not commutate. In addition to that,
his attack calculates the s-boxes by approximating the addition in the
round function by XOR. In Kaweichel for each s-box two additions
have to be approximated by XOR, making the attack more difficult.

Another analysis of Bowfish can be found in the article by Serge
Vaudenay [10]. His attacks are not applicable to Kaweichel, since

6

the rotation distributes the input difference to other s-boxes then the
intended one.

5 Miscellaneous

The block cipher presented in this article is suitable for 64-bit proces-
sors with level-1 data cache larger then 16kbyte. For computers with
limited resources like smartcard it is not recommended. The main
area of use is bulk enryption of data. The key agility is rather poor.
If one Megabyte of data is encrypted, the key expansion will use 1,5
% of the total time.

The author claims no intellectual property on Kaweichel and the
cipher will remain unpatented. A C reference implementation is avail-
able from [7].

6 Acknowledgements

The author thanks Claus Grupen of Siegen University for continued
encouragement and support.

References

[1] Anonymus: FIPS PUB 46-3, Federal Information Process-
ing Standard Publication 46-3, Data FEncryption Standard,
National Institute of Standards and Technology, Gaithers-
burg, USA, Dezember 1999, als PDF-Datei erhltlich unter:
http//csrc.nist.gov/publications/fips/fips/46-3/fips46-3/fips46-3.pdf

[2] Biham, Eli and Adi Shamir: Differential Cryptanalysis of the
Data Encryption Standard, Springer Verlag, Berlin, Heidelberg,
New York, 1993

3] Biryukov, Alex nd David Wagner: Slide Attacks, in Knudsen Lars
y
(Ed.): Fast Software Encryption, 6th International Workshop,
Proceedings, Springer Verlag, Berlin, Heidelberg, New York, 1999

[4] Grupen, Claus and Dieter Schmidt: Beschreibung einer
Blockchiffre -Kaweichel- (in German), available from:
http://www.infoserversecurity.org/itsec_infoserver_v0.5/
sections/science/docs/1095771791/kaweichel. pdf

[6] Matsui, Mitsuru: Linear Cryptanalysis Method for DES Cipher,
in Helleseth, Tor (Ed.): Advances in Cryptology - EUROCRYPT
’93, Springer Verlag, Berlin, Heidelberg, New York, 1993

[6]

[7]

(8]

[9]

[10]

Rijmen, Vincent: Cryptanalysis and design of iterated block ci-
phers, Doctoral Dissertation, Catholic University Leuven, Bel-
gium, October 1997

Schmidt, Dieter: Reference Implementation of the Block Cipher
Kaweichel in C, available from:
http://www.infoserversecurity.org/itsec_infoserver_v0.5/
sections/science/docs/1095771918/kaweichel.zip

Schneier, Bruce: Description of a New Variable-Length-Key, 64-
Bit Block Cipher (Blowfish), in Anderson, Ross (Ed.): Fast Soft-
ware Encryption - Cambridge Security Workshop, Proceedings,,
Springer Verlag, Berlin, Heidelberg, New York, 1994

Shannon, Claude Elwood: Communication theory of secrecy sys-
tems, Bell Systems Technical Journal, Volume 28, Number 4,
1949, pages 646-715, Reprint in: Sloane N.J.A. und A. Wyner
(Ed.): Claude Elwood Shannon: Collected Papers, IEEE Press,
Piscataway, USA, 1993

Vaudenay, Serge: On the Weak Keys of Blowfish, in Gollmann,
Dieter (Ed.): Fast Software Encryption - Third International
Workshop, Proceedings, Springer Verlag, Berlin, Heidelberg, New
York, 1996

