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Abstract

We study two-person extensive form games, or “matches,” in which the only possible out-

comes (if the game terminates) are that one player or the other is declared the winner. The

winner of the match is determined by the winning of points, in “point games.” We call these

matches binary Markov games. We show that if a simple monotonicity condition is satisfied,

then (a) it is a Nash equilibrium of the match for the players, at each point, to play a Nash

equilibrium of the point game; (b) it is a minimax behavior strategy in the match for a player to

play minimax in each point game; and (c) when the point games all have unique Nash equilibria,

the only Nash equilibrium of the binary Markov game consists of minimax play at each point.

An application to tennis is provided.
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1 Introduction

In many games, players are advised to play the same way regardless of the score. In

tennis, for example, players are often advised by their coaches to play each point the

same, whether the point is a match point or the opening point of the match. In poker it

is a common belief that a player should play the same whether he is winning or losing1.

This notion that one should play in a way that ignores the score stands in sharp contrast

to the alternative view, also commonly espoused, that one should play differently on “big

points,” i.e., in situations that are “more important.” We establish in this paper that for

a certain class of games, which we call binary Markov games, equilibrium play is indeed

independent of the game’s score.

We consider two-player games — we call them “matches” — which are composed of

points, and in which (a) the history of points won can be summarized by a score, or state

variable; (b) when the players compete with one another to win points, they do so via a

“point game” which may depend upon the current score or state of the match; and (c)

each player cares only about whether he wins or loses the match — i.e., about whether

the match terminates in a winning state for himself (and thus a loss for his opponent),

or vice versa. We use the terminology “match” and “point game” in order to distinguish

the overall game from the games in which the players compete for points.

Many real-life games, such as tennis, fit the description we have just given. It is useful,

however, to begin by describing a much simpler example: two players play “matching

pennies” repeatedly against one another; the winner of each matching pennies game wins

a point; and the first player to be ahead by two points wins the overall game, or match.

This game has only five potential scores, −2,−1, 0, +1, and +2, where the score +2 means

Player A is ahead by two points (and has thus won the game, i.e., the match), the score

−2 means Player A has lost the match, the score 0 means the match is tied (this is the

score when the match begins), and the scores +1 and −1 mean, respectively, that Player

A is ahead by one point and that Player A is behind by one point. In this game, like all

the games we consider, the players are interested in winning points only as a means to

winning the match.

Now let’s change the example slightly. Suppose that, as before, when the score is tied

(i.e., when the match is in state 0) the players play the conventional matching pennies

game: let’s say Row wins the point when the coins match, and Column wins the point

when the coins don’t match, as depicted in Figure 1a. But when the score is not tied, and

1But only in cash games, not in tournaments.
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the match has not yet ended (i.e., when the state is “odd,” either +1 or −1), a slightly

different matching-pennies game determines which player wins the current point, namely

the game depicted in Figure 1b. In this game the players still choose Heads or Tails, and

Row still wins if their coins match. But if the coins don’t match, then Nature randomly

determines which player wins the point, and the player who chose Heads has a 2/3 chance

of winning, the player who chose Tails only a 1/3 chance.

There are several things worth noting in this new match. First, just as in the conven-

tional matching pennies game, the new “odd-state” point game has a unique equilibrium,

which is in mixed strategies. But the equilibrium (and minimax) mixtures are different

in the odd-state point game than in the conventional game: here the Row player plays

Heads with mixture probability 2/3 instead of 1/2, and the Column player plays Heads

with mixture probability 1/3. The value of the odd-state point game to the Row player is

7/9 (Row’s probability of winning the point), and the game’s value to the Column player

is 2/9. Thus, by always playing his minimax mixture in the current point game, the Row

player can assure himself a probability 1/2 of winning any point played when the score

is even, and a 7/9 probability of winning any point played when the score is not even.

Similarly, the Column player, by always playing his point-game minimax strategy, can

assure himself a 1/2 probability of winning even points and a 2/9 probability of winning

odd points.

It is easy to verify that if the players always play their minimax mixtures in each point

game, then the Row player will win the match with probability 7/9 if the match is tied,

with probability 77/81 if he is ahead by a point, and with probability 49/81 if he is behind

by a point. Indeed, the Row player can assure himself of at least these probabilities of

winning, no matter what his opponent does, by always playing his minimax mixture, and

the parallel statement can be made for the Column player. Note that this “minimax

play” prescription says that one’s play should not depend on the match’s score, except to

the extent that the point game depends on the score: each player should play the same

whether he is ahead in the match or behind (viz., Row should mix 2/3 on Heads, Column

should mix 1/3 on Heads).

It seems clear, at least intuitively, that such play is a Nash equilibrium in the match,

and that a minimax strategy for playing the match is to play one’s minimax mixture in

every state of the match — and perhaps even that this is the only equilibrium in the

match. Proving these propositions in general for binary Markov games, however, turns

out to be non-trivial. This is largely because the match is not a game with a finite horizon:

for example, if neither player in the example we have just described is ever ahead by two
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points, the match continues indefinitely.

We will identify a general class of games like the one above, in which we will show

that equilibrium play at any moment is dictated only by the point game currently being

played — play is otherwise independent of the history of points that have been won or

actions that have been taken, and in particular it is independent of the score, except to

the extent that the current point game depends on the score.

The results we obtain are for matches in which every point game is a strictly compet-

itive win-loss game (i.e., in each point game either one player or the other wins a single

point).2 Our first result, an Equilibrium Theorem, establishes that if the overall game

satisfies a simple monotonicity condition, then there is an equilibrium of the match in

which play is the same whenever the same point game arises (i.e., play does not otherwise

depend upon the score, or upon the history of points won or actions taken). Moreover, the

equilibrium has a simple structure: at each score the players play the Nash equilibrium

of the associated point game, in which winning the point is assigned a utility of one and

losing the point is assigned a utility of zero.

Our second result, a Minimax Theorem, establishes that it is a minimax behavior

strategy in the match for a player to play a minimax strategy in each point game: the

match has a value for each player (viz., his probability of winning the match under equi-

librium play) and a player can unilaterally assure himself of at least this probability of

winning the match, no matter how his opponent plays, by simply playing a minimax

strategy in each point game. This result provides a rationale for the players to play mini-

max (and Nash equilibrium) in each point game, even if the usual behavioral assumptions

underlying Nash equilibrium are not satisfied.

Our third result, a Uniqueness Theorem, establishes that if each point game has a

unique minimax strategy for each player, as in the example above, then the only equilib-

rium in the match is for each player to always play his minimax strategy in each point

game.

Our results apply to many real life games in which players compete for points and

2Wooders and Shachat (2001) also obtain results on equilibrium and minimax play in sequential play

of stage games where at each stage one player wins and the other loses. Their stage games can thus be

interpreted as contests for points. But in Wooders and Shachat (a) it is always strictly better for a player

to win more points, and (b) the “match” has a known, finite length. In contrast, we assume here that

(a) each player cares only about whether he wins or loses the match, and (b) the length of the match is

allowed to be indefinite and infinite.
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in which, at each score, either one player or the other wins the next point. We consider

one application: in Section 8 we develop a model of a tennis match, in which there may

be many different point games, or only a few. For example, which of the point games is

currently in force may depend upon which player has the serve and upon which court —

ad or deuce — he is serving from, but otherwise be independent of the score. We show that

our game-theoretic model of tennis satisfies our monotonicity condition and hence that our

results apply to tennis. Thus, despite the fact that tennis has an extremely complicated

scoring rule,3 equilibrium (and indeed minimax) play in a tennis match consists simply

of Nash equilibrium play of the point game associated with the current score. This result

provides the theoretical foundations for using field data from actual tennis matches to

test the theory of mixed-strategy Nash equilibrium, as was done in Walker and Wooders

(2001).

The remainder of the paper is organized as follows: In Section 2 we provide a formal

definition of binary Markov games and three examples. In Section 3 we describe the

relation between binary Markov games and previous research. In Sections 4, 5, and 6 we

present the Equilibrium, Minimax, and Uniqueness Theorems for binary Markov games.

In Section 7 we provide examples which show how our results depend upon both the

monotonicity condition and the “binary” character of the point games (i.e., that each has

only two outcomes). Section 8 shows how our results apply to the game of tennis.

2 Binary Markov Games

We begin by formalizing the kind of matches we will study — a special class of stochastic

games that we refer to as binary Markov games. A binary Markov game has two elements,

a binary scoring rule, and a collection of point games. We first describe the scoring rule,

and then the point games. We will continue to use the term “match” as an informal

synonym for a binary Markov game.

Binary Scoring Rule

A binary scoring rule consists of a finite set S of states and two transition

functions, each of which maps S into S. The states represent, in a generalized sense,

the possible scores in the match.4 From every state, only two transitions to other states

are possible: if the current state is s and Player A wins the current point, then we say

3The scoring rule is described in Section 8.
4In order to interpret a particular game or sport as a binary Markov game, it is often necessary that

the set S distinguish scoring histories more finely than in the “score” as usually understood. For example,
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the subsequent state is s+; if instead A loses the point, the next state is s−. The set

S is assumed to include two absorbing states, ωA (interpreted as the state in which

A has won the match) and ωB (the state in which B has won). Thus, we assume that

(ωA)+ = (ωA)− = ωA and (ωB)+ = (ωB)− = ωB.

Example 1 (A best-two-out-of-three series of contests, such as a three-game playoff series:

the winner of the match is the first player to win two contests). If we treat each contest

as a point, then we can say that the winner of the match is the first player to win two

points. In addition to the states ωA and ωB, there are four other states:

0: the initial state, in which no points have yet been played;

A: Player A is ahead — he has won the first point;

B: Player B is ahead — he has won the first point;

T : the score is tied (two points have been played,

and each player has won one of the points).

The transition functions s+ and s− are given by 0+ = A, 0− = B, A− = B+ = T ,

A+ = T+ = ωA, and B− = T− = ωB.

Example 2 (A simplified version of tennis: the winner of the match is the first player to

be ahead by two points.) The score is said to be “deuce” when both players have won the

same number of points; the deuce state is denoted 0, and it is the state in which the game

begins. The player who wins a point played at deuce is then said to “have the advantage”

until the subsequent point is completed. Let A and B denote the states in which Player A

or Player B has the advantage. Clearly, if a player who has the advantage wins the next

point then he wins the match, and if he loses the point then the score reverts to deuce.

Thus, there are five states in all — ωA, ωB, 0, A, and B — and the transition functions

are given by 0+ = A, 0− = B, A+ = ωA, B− = ωB, and A− = B+ = 0. This is exactly

the same scoring rule as the one described above, in the Introduction.

Note that there is an important difference between Examples 1 and 2. The game in

Example 1 can last at most three points and then it will be finished: after three points

have been played, it will be in either the state ωA or the state ωB. But the game in

Example 2 can continue for an indefinite number of points, and there is the possibility

that it never ends — i.e., that it never enters either of the states ωA or ωB.

Example 3 (A single “game” in a tennis match: the winner is the first player to win at

least four points and to simultaneously have won at least two points more than his oppo-

in sports such as squash and volleyball, it is necessary that the state include, in addition to the numerical

score, a specification of which player has the serve.
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nent.) The states are the five states in Example 2, as well as the additional “transitory”

states that correspond to the possible scores when neither player has yet won four points.

(These states are transitory in the sense that once the game enters such a state, it must

immediately exit from the state, never to return to that state.) It is easy to verify that

there are twelve such transitory states; see Figure 2. If the game has not terminated by

the time six points have been played (in which case each player has won exactly three

points), then the situation is exactly equivalent to a score of 2-2, referred to as “deuce,”

and from that point forward the game is identical to the game in Example 2.

The binary scoring rule describes how the various possible states, or situations in the

match, are linked to one another — i.e., it tells us what will happen if Player A or Player

B wins a given point — but it tells us nothing about how the points are won or lost, i.e.,

about how the players’ actions determine the winning or losing of points. We assume that

the winner of each point is determined by the outcome of a normal form game between

the two players, and we assume that the details of this point game depend only upon the

current state of the match.

Thus, for each state s ∈ S, we define the point game associated with s to be a

normal form game Gs, with finite action sets A(s) and B(s) for players A and B, and

with point game payoff functions πsi : A(s)×B(s) → [0, 1] for each player i ∈ {A, B}.
The payoff πsi(a, b) is the probability, when actions a and b are chosen while in state s,

that player i will win the point. (Thus, the functions πsi are payoff functions in name

only and are not directly related to the payoffs in the match: they merely determine,

along with the functions s+ and s−, the transitions between states.) We require that

every point be won by one of the players, i.e., that πsA(·) + πsB(·) ≡ 1. Each game Gs is

therefore a constant-sum game and hence has a value, which we denote by vA(s) for player

A and vB(s) for player B. For completeness we assume that πωAA(·, ·) ≡ πωBB(·, ·) ≡ 1

and πωAB(·, ·) ≡ πωBA(·, ·) ≡ 0.

If each player plays a minimax strategy when in state s, then vA(s) and vB(s) are the

transition probabilities, i.e., the probabilities of moving to state s+ or s−. Of course, the

players need not play their minimax strategies. For any actions a and b that they choose,

the payoff numbers πsA(a, b) and πsB(a, b) are the respective transition probabilities of

moving from state s to state s+ or state s−. In general, when actions a and b are chosen,

we denote the probability of moving from state s to any other state s′ by Pss′(a, b). In
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other words,

Pss′(a, b) =


πsA(a, b), if s′ = s+

πsB(a, b), if s′ = s−

0, otherwise.

Note that the functions πsi are not the payoff functions for the binary Markov game

— i.e., for the match. Rather, the scoring rule and the point games (including their

payoff functions) merely specify how the players’ actions determine the transitions from

state to state. Thus, the functions Pss′(a, b) are the transition functions of a stochastic

game.5 It may be of interest to point out that one could equivalently treat the scoring

rule and the point games together as a game form that describes how sequences of actions

(stochastically) determine outcomes, i.e., sequences of states.

Strategies and Payoffs in Binary Markov Games

It remains to define the players’ payoff functions for the match. A match has three

possible outcomes: it can end in either of the two terminal states ωA or ωB, or it can

continue forever, never entering either of the terminal states. We assume that a player

receives a positive payoff (normalized to 1) for winning, and a zero payoff otherwise.6

In order to define the players’ payoff functions for the match, we need to establish

what we mean by a strategy for playing the match: we define a behavior strategy for a

player, which specifies what action the player will take after any possible history of play

in the match. We say that a history at time t consists of the current state, st, as well

as all states and actions that have occurred prior to t. In other words, a history at t is

a (3t + 1)-tuple ht = (s0, . . . , st; a0, . . . , at−1; b0, . . . , bt−1), where, for each k ≤ t, sk is the

state at time k, and where (for k < t) ak ∈ A(sk) and bk ∈ B(sk) are the actions the

players chose at time k. Denote by Ht the set of all possible histories7 at time t, and let

5The stochastic games literature often adds the assumption that from every state s there is a positive

probability that the next transition will end the game — i.e., will be to a terminal state. This is clearly

not the case for binary Markov games, where the binary nature of the transitions rules this out.
6If we instead define Player A’s payoff as 1 in state ωA, −1 in state ωB , and zero if the game never

terminates, and the opposite for Player B, then the match is a zero-sum recursive game, exactly the

case studied by Everett (1957). However, in that case the payoffs are not binary, and therefore it is not

included in the definition of a binary Markov game. Also see footnote 9 below.
7We include only histories that are consistent with the scoring rule, i.e., for which sk+1 is always

either (sk)+ or (sk)−. Note, however, that we allow s0 to be any s ∈ S; i.e., H0 = S, so that formally

the match can begin in any state. This is important for the dynamic programming arguments we will

employ.
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H denote the set of all possible histories: H = ∪∞t=0Ht. A behavior strategy for Player

A is a function α which, for every history ht ∈ H, prescribes a probability distribution

(i.e., a mixture) over the action set A(st). The mixture probability that α assigns to

an action a ∈ A(st) is denoted by α(a|ht). A behavior strategy α is stationary if its

prescription depends only upon the current state — i.e., if whenever two histories ht and

ht′ satisfy st = st′ , then α(ht) = α(ht′). When α is a stationary strategy, we often write

α(st) instead of α(ht), and α(a|st) instead of α(a|ht). Behavior strategies β for Player

B, and the notations β(ht), β(b|ht), β(st) and β(b|st), are defined analogously. If ht is a

history at time t, and if a and b are actions in A(st) and B(st), then ht + (st+1, a, b) will

denote the history at t+1 in which the actions a and b were taken at t and then the state

st+1 occurred.

For every pair (α, β) of behavior strategies, we denote by pα,β
s (ht) the probability that

the history at time t will be ht if the initial state is s and Players A and B follow the

behavior strategies α and β. This probability is defined recursively:

pα,β
s (h0) :=

{
1 if s = s0

0 if s 6= s0,

and for ht+1 = ht + (st+1, at, bt),

pα,β
s (ht+1) := pα,β

s (ht)α(at|ht)β(bt|ht)Pstst+1(at, bt).

The payoff a player receives when the players employ strategies α and β is simply

the resulting probability the player will win the match. We will generally denote these

“winning probabilities” by WA and WB. Evaluating how these probabilities depend on

the players’ strategies α and β will require dynamic programming arguments in which we

will also have to consider how the probabilities depend upon the current state s. Thus,

let WA(s, α, β) denote the probability (at t = 0) that Player A will eventually win the

match if the initial state is s and if the players follow the behavior strategies α and β;

i.e.,

∀s ∈ S : WA(s, α, β) = lim
t→∞

∑
{ht∈Ht|st=ωA}

pα,β
s (ht).

(Note that the limit in the above expression exists, because the sequence is increasing in

t and is bounded above by 1.) The function WB(s, α, β) is defined similarly. We will use

the function WA(·) to analyze Player A’s best response function; we will rarely need to

make explicit use of the function WB(·), because the analysis for Player A can be applied

directly to Player B.
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For non-terminating histories — those in which play never enters the absorbing class

{ωA, ωB} — there is no winner of the match, and each player’s payoff according to the

above limit is zero. Consequently the game is not a constant-sum game, even though for

all histories that enter the absorbing class {ωA, ωB} the sum of the players’ payoffs is 1.8,9

3 Stochastic and Recursive Games

Binary Markov games are related to several kinds of dynamic, multi-stage games that

have been studied extensively. Shapley (1953) introduced stochastic games, describing

them as games in which “play proceeds by steps from position to position, according to

transition probabilities controlled jointly by the two players.” Everett (1957) introduced

recursive games — stochastic games that have absorbing states and in which payoffs occur

only when an absorbing state is reached. A binary Markov game is thus a recursive game

in which both the state transitions and the payoffs are binary.10

For undiscounted stochastic games with finite state and action spaces, Mertens and

Neyman (1981) established the existence of a value and of ε-minimax strategies in the

zero-sum case, and Vieille (2000a,b) established the existence of an ε-equilibrium in the

nonzero-sum case. In each case, the strategies may be history-dependent. Blackwell and

Ferguson’s (1968) insightful Big Match, a zero-sum game, shows that in general neither

the history dependence nor the ε-character of the strategies can be improved upon: the

Big Match has neither an exact equilibrium nor a stationary ε-equilibrium.

A binary Markov game is a special case of the two settings in Vielle (2000a,b). There-

fore the existence of an ε-equilibrium in history-dependent strategies follows directly from

his work. But we wish to obtain substantially sharper results than this, results that

emerge from the added structure of the binary transitions and payoffs of binary Markov

games. We will establish that a specific strategy, one that is intuitively appealing and

theoretically important — namely, the stationary strategy of playing minimax at each

8If a binary Markov game satisfies a monotonicity condition to be introduced below, and if both players

play minimax strategies in every point game, then play will enter the absorbing class with probability one,

as shown in Lemma 2, below. A referee has suggested that these games are therefore “almost zero-sum.”
9It is an open question whether our results go through if a binary Markov game is altered to make it

a constant-sum game, as described for example in footnote 6. Because the payoffs are no longer binary,

the proof we provide below for Lemma 1 no longer goes through. We have been unable to establish a

proof or a counterexample for this case.
10Surveys of stochastic games can be found in Mertens (2002), Vieille (2002), and Neyman and Sorin

(2003).
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stage of the game, independently of history — is a minimax strategy and an equilibrium

strategy (with no ε-qualification) in any binary Markov game, even though these are not,

strictly speaking, zero-sum games. Moreover, if the point games have unique equilibria,

then the unique equilibrium of the binary Markov game is for each player to play this

strategy. Note that the minimax result provides a rationale for the simple strategy of al-

ways playing minimax in every point game, without the stronger assumptions often used

to justify Nash equilibrium.

Some research has focused on the existence of ε-equilibrium in Markov-stationary

strategies for undiscounted stochastic games.11 Existence has been established in several

classes of games, but the results suggest that the scope for stationary ε-equilibria in

general undiscounted stochastic games is quite limited.

Milnor and Shapley (1957) introduced games of survival, a special class of recursive

games in which the state space is linearly ordered, transitions are governed by a single

matrix game in which each of the outcomes is a shift operator on the state space, and the

largest and smallest states are the absorbing states; in one of the absorbing states Player

A is the winner and in the other Player B is the winner. Unlike binary Markov games,

the only stochastic feature of a game of survival is not in the game itself, but arises from

the mixed strategies employed by the players. While binary Markov games are similar to

games of survival, neither is a special case of the other: transitions need not be binary in

a game of survival, and transition games (the point games) in a binary Markov game need

not be the same in each state, nor are the states necessarily linearly ordered. Clearly,

however, a game of survival in which the transitions are binary is a binary Markov game,

and our results therefore apply to such games. These distinctions can be seen in the three

examples in Section 2. In Example 2 the transition function is a binary shift operator on

the linearly ordered state space. Thus, if the transitions in the three non-absorbing states

are all determined by the same point game, then the example is a typical (albeit simple)

game of survival. If the point games differ, the example remains a binary Markov game,

and could be called a generalized game of survival. By contrast, in Examples 1 and 3 the

state space is not linearly ordered, so these examples cannot be games of survival for any

point games.

11See, for example, Tijs and Vrieze (1986), Thuijsman and Vrieze (1991), and Flesch, Thuijsman, and

Vrieze (1996).
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4 The Equilibrium Theorem

Our aim is to establish that equilibrium strategies for playing the match have certain

characteristics. We begin by identifying an Optimality Equation which must be satisfied

for any strategy that maximizes a player’s state-contingent probabilities of winning the

match. A dynamic programming argument establishes Lemma 1, which states that if a

stationary strategy satisfies the Optimality Equation, then that strategy is a best response.

It will then be straightforward to use Lemma 1 to establish the Equilibrium Theorem,

which states that a strategy which prescribes minimax play in each state is a best response

to such a strategy by the opposing player.

In Section 2 we defined Wi(s, α, β) as the probability that Player i will eventually win

the match if the initial state is s and if the players follow the (not necessarily stationary)

behavior strategies α and β. But when α and β are stationary, the winning probability

must be the same from a given state whenever it is reached. Therefore, in the case of

stationary α and β, the probabilities Wi(s, α, β) are not merely the probabilities Player i

will win if the initial state is s, but they are Player i’s continuation payoffs, the probability

he will ultimately win the continuation game defined by having reached the state s.

When Player B is playing a stationary strategy β, we will use the notation P̄ss′(a, β)

for the transition probabilities available to Player A — i.e., when the current state is s

and Player A chooses action a ∈ A(s), then P̄ss′(a, β) is the probability that the next

state will be s′:

∀s, s′ ∈ S, a ∈ A(s) : P̄ss′(a, β) =
∑

b∈B(s)

β(b|s)Pss′(a, b).

In Lemma 1 we establish a sufficient condition for a stationary strategy α to be a best

response to a stationary strategy β. Clearly, a necessary condition that the probabilities

WA(s, α, β) must satisfy if α and β are both stationary and if α is a best response to β is

the following Optimality Equation:

∀s ∈ S : WA(s, α, β) = max
a∈A(s)

∑
s′∈S

P̄ss′(a, β)WA(s′, α, β). (1)

Lemma 1 tells us that the necessary condition is sufficient as well: if β is a stationary

strategy for Player B, and if a stationary strategy α for Player A generates a configuration

of winning probabilities WA(s, α, β) that satisfies the Optimality Equation, then α is a

best response (among all of Player A’s possible behavior strategies) to β.

Lemma 1: Let α and β be stationary behavior strategies. If the probabilities WA(s, α, β)

11



satisfy the Optimality Equation, then α is a best response to β. That is, if

∀s ∈ S : WA(s, α, β) = max
a∈A(s)

∑
s′∈S

P̄ss′(a, β)WA(s′, α, β), (2)

then WA(s, α, β) ≥ WA(s, α′, β) for each state s ∈ S and for every one of Player A’s (not

necessarily stationary) behavior strategies α′.

Proof: Assume that the probabilities WA(s, α, β) satisfy the Optimality Equation,

and let α′ be an arbitrary strategy (not necessarily stationary) for Player A. By (2), for

any time t and any history h ∈ Ht we have

WA(st, α, β) = maxa∈A(st)

∑
s′∈S

∑
b∈B(st)

β(b|st)Psts′(a, b)WA(s′, α, β)

≥
∑

a∈A(st)

α′(a|h)
∑
s′∈S

∑
b∈B(st)

β(b|st)Psts′(a, b)WA(s′, α, β).

=
∑
s′∈S

∑
a∈A(st)

∑
b∈B(st)

α′(a|h)β(b|st)Psts′(a, b)WA(s′, α, β).

(3)

From any current state s, the next state will certainly satisfy either s′ = ωA or s′ 6= ωA,

and we can therefore rewrite (3) as

WA(st, α, β) ≥
∑

a∈A(st)

∑
b∈B(st)

α′(a|h)β(b|st)PstωA
(a, b)

+
∑

s′ 6=ωA

∑
a∈A(st)

∑
b∈B(st)

α′(a|ht)β(b|st)Psts′(a, b)WA(s′, α, β).
(4)

Let W (s, α′; t, α; β) denote the probability (at time zero, the beginning of the match)

that Player A will eventually win the match, if the initial state is s, and if he follows α′

through time t − 1 and he then follows α (which is stationary) subsequently. For every

t ≥ 1 we of course have

W (s, α′; t, α; β) =
∑

{h∈Ht|st=ωA}

pα′,β
s (h) +

∑
{h∈Ht|st 6=ωA}

pα′,β
s (h)WA(st, α, β). (5)

For t = 1, equation (5) is

W (s, α′; 1, α; β) =
∑

a∈A(s)

∑
b∈B(s)

α′(a|s)β(b|s)PsωA
(a, b)

+
∑

s′ 6=ωA

∑
a∈A(s)

∑
b∈B(s)

α′(a|s)β(b|s)Pss′(a, b)WA(s′, α, β),

and therefore, according to (4), we have WA(s, α, β) ≥ W (s, α′; 1, α; β), for each s ∈ S

— i.e., the probability that Player A will eventually win if the initial state is s and he

follows α is at least as great as the probability he would win if he instead followed α′ for

one period and then followed α subsequently.
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We now show that W (s, α′; t, α; β) ≥ W (s, α′; t + 1, α; β) for every t ≥ 1 . Replacing

WA(st, α, β) in (5) with the right hand side of (4) we have

W (s, α′; t, α; β) ≥
∑

{h∈Ht|st=ωA}
pα′,β

s (h) +
∑

{h∈Ht|st 6=ωA}
pα′,β

s (h)

×


∑

a∈A(st)

∑
b∈B(st)

α′(a|h)β(b|st)PstωA
(a, b)

+
∑

st+1 6=ωA

∑
a∈A(st)

∑
b∈B(st)

α′(a|st)β(b|st)Pstst+1(a, b)WA(st+1, α, β).

 (6)

The right hand side of (6) can be rewritten as∑
{h∈Ht|st=ωA}

pα′,β
s (h)

+
∑

{h∈Ht|st 6=ωA}
pα′,β

s (h)
∑

a∈A(st)

∑
b∈B(st)

α′(a|h)β(b|st)PstωA
(a, b)

+
∑

{h∈Ht|st 6=ωA}
pα′,β

s (h)
∑

st+1 6=ωA

∑
a∈A(st)

∑
b∈B(st)

α′(a|st)β(b|st)Pstst+1(a, b)WA(st+1, α, β).

The first term in this sum is the probability, at time 0, that Player A will win by time t

(i.e., that st = ωA); the second term is the probability at time 0 that Player A will win

at time t + 1 (i.e., that st 6= ωA and st+1 = ωA); and the last term is the probability at

time 0 that Player A will win, but at a time later than t + 1. Hence we have

W (s, α′; t, α; β) ≥
∑

{h∈Ht+1|st+1=ωA}

pα′,β
s (h) +

∑
{h∈Ht+1|st+1 6=ωA}

pα′,β
s (h)WA(st+1, α, β)

= W (s, α′; t + 1, α; β)

We have shown for an arbitrary behavior strategy α′ that WA(s, α, β) ≥ W (s, α′; 1, α; β)

and that W (s, α′; t, α; β) ≥ W (s, α′; t + 1, α; β) for every t. Consequently, WA(s, α, β) ≥
W (s, α′; t, α; β), for every t ≥ 1. When combined with (5) this implies that for each t we

have

WA(s, α, β) ≥
∑

{h∈Ht|st=ωA}

pα′,β
s (h). (7)

Since WA(s, α′, β) is the limit of the right hand side of (7) as t grows large, we have

WA(s, α, β) ≥ WA(s, α′, β). And since α′ was an arbitrary behavior strategy and s an

arbitrary initial state, α is therefore a best response to β. �

Lemma 1 provides a sufficient condition for ensuring that a stationary strategy α is a

best response to a given stationary strategy β, but it does not exhibit a best response to

any particular β, nor does it ensure that a best response even exists for any particular β.

In the following Equilibrium Theorem we show that if β is a stationary strategy in which

Player B always (in every state s) plays a minimax strategy in the point game Gs, then it
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is a best response for Player A to do the same. Thus, it is an equilibrium for each player

to follow such a strategy.

We first reproduce the standard definition of a minimax strategy in a finite game,

where for any finite set X we use ∆X to denote the set of probability distributions over

X:

Definition: For each state s ∈ S, a maximin strategy for player A in the point game

Gs is a mixture αs ∈ ∆A(s) that satisfies

αs ∈ arg max
α′

s∈∆A(s)
min

βs∈∆B(s)

∑
a∈A(s)

∑
b∈B(s)

α′
s(a)βs(b)πsA(a, b).

Because each game Gs is a finite constant-sum game, a maximin strategy is also a mini-

max strategy, i.e.,

αs ∈ arg min
α′

s∈∆A(s)
max

βs∈∆B(s)

∑
a∈A(s)

∑
b∈B(s)

α′
s(a)βs(b)πsB(a, b).

We refer to a behavior strategy which prescribes minimax play in each state s as a

minimax-stationary strategy.12 Recall that for each state s, the value of the point

game Gs to Player A is vA(s) and to Player B it is vB(s). Thus, if each player plays a

minimax-stationary strategy, then the transition probabilities from a state s to the states

s+ and s− are simply vA(s) and vB(s). For each state s, let W v
i (s) denote the probability

that Player i will eventually win if these are the transition probabilities and if s is the

current state. Then

∀s ∈ S : W v
A(s) = vA(s)W v

A(s+) + vB(s)W v
A(s−). (8)

Note that W v
A(ωA) = 1 and W v

A(ωB) = 0.

In order to establish the Equilibrium Theorem, which states that it is an equilibrium

in a binary Markov game for each player to play a minimax-stationary strategy, we must

restrict slightly the class of binary Markov games we will consider. Consider a game, for

example, in which, in some state s, a player’s probability of winning the match is reduced

if he wins the point game Gs. In such a game, the player will typically not, as part of a

12If a point game has more than one minimax strategy for a player, this definition allows for playing

different minimax strategies in the same state at different times. Such a strategy is not, strictly speaking,

stationary. Clearly this will not affect any of the arguments, and we will not explicitly make a distinction

between minimax-stationary strategies and truly stationary strategies in which a player always plays

minimax.
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best response, play to win the point game Gs, and therefore he will not play a minimax

strategy in Gs. The following straightforward condition rules out such pathologies.

Definition: A binary Markov game satisfies the Monotonicity Condition if for each

non-terminal state s ∈ S, W v
A(s+) > W v

A(s−) and W v
B(s−) > W v

B(s+).

This is an appealing condition that is likely to be satisfied by most binary Markov

games one will encounter. It is satisfied in all the examples in this paper and for general-

izations of the examples. As demonstrated in the application in Section 8, the condition

can be verified in a given game via a system of linear equations that requires knowing

only the values of the point games and how the states are linked to one another by the

transition law.

Equilibrium Theorem: If a binary Markov game satisfies the Monotonicity Condition,

then against a minimax-stationary strategy β for Player B, any minimax-stationary strat-

egy α is a best response for Player A; and against a minimax-stationary strategy α for

Player A, any minimax-stationary strategy β is a best response for Player B. Thus, any

pair of minimax-stationary strategies is a Nash equilibrium of the binary Markov game.

Proof: According to Lemma 1, it will be sufficient to establish that the winning

probabilities WA(s, α, β) satisfy the Optimality Equation. Let W ∗(·) be the function

defined by the right-hand side of the Optimality Equation and by the function WA(s, α, β),

i.e.,

∀s ∈ S : W ∗(s) := max
a∈A(s)

∑
s′∈S

∑
b∈B(s)

β(b|s)Pss′(a, b)WA(s′, α, β).

We must show that the two functions W ∗(·) and WA(·, α, β) are identical. For each s ∈ S

we have

W ∗(s) = maxa∈A(s)

∑
b∈B(s)

β(b|s) [πsA(a, b)WA(s+, α, β) + πsB(a, b)WA(s−, α, β)]

= maxa∈A(s)

[
WA(s+, α, β)

∑
b∈B(s)

β(b|s)πsA(a, b) + WA(s−, α, β)
∑

b∈B(s)

β(b|s)πsB(a, b)

]
.

The Monotonicity Condition ensures that WA(s+, α, β) > WA(s−, α, β) for each state s,

and therefore, since πsA(a, b) + πsB(a, b) ≡ 1, an action a maximizes the expression in

brackets above if and only if a maximizes∑
b∈B(s)

β(b|s)πsA(a, b). (9)

Since for each s the mixtures α(·|s) and β(·|s) are minimax strategies in the point game

Gs, every action in the support of the mixture α(·|s) must maximize (9). Thus, for each
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a ∈ supp α(·|s),

W ∗(s) = WA(s+, α, β)
∑

b∈B(s)

β(b|s)πsA(a, b) + WA(s−, α, β)
∑

b∈B(s)

β(b|s)πsB(a, b),

and therefore also

W ∗(s) = WA(s+, α, β)
∑

a∈A(s)

α(a|s)
∑

b∈B(s)

β(b|s) πsA(a, b)

+WA(s−, α, β)
∑

a∈A(s)

α(a|s)
∑

b∈B(s)

β(b|s) πsB(a, b)

= WA(s+, α, β)vA(s) + WA(s−, α, β)vB(s)

= W v
A(s), according to (8)

= WA(s, α, β). �

5 The Minimax Theorem

The Equilibrium Theorem tells us that “always playing minimax” is a best way to play

in the match if one’s opponent is playing that way. We show here that it is actually a

minimax behavior strategy in the match to always play minimax: by playing minimax

for every point, a player assures himself that his probability of winning the match will be

at least as great as in equilibrium, no matter how his opponent plays.

We first provide definitions of maximin and minimax behavior strategies for playing

the match.

Definition: A behavior strategy α̂ is a maximin behavior strategy for Player A in

the binary Markov game if

α̂ ∈ arg max
α

min
β

WA(s, α, β), for every s ∈ S, (10)

and α̂ is a minimax behavior strategy for Player A if

α̂ ∈ arg min
α

max
β

WB(s, α, β), for every s ∈ S. (11)

We prove a Minimax Theorem for binary Markov games, which establishes that

maxα minβ WA(s, α, β) and minβ maxα WA(s, α, β) both exist and that they are both equal

to W v
A(s), i.e., to Player A’s probability of winning the match from state s when both

players play (any) minimax-stationary strategies. Thus, W v
A(s) is the value of the binary

Markov game for Player A, if the game is begun in state s. Furthermore, every minimax-

stationary strategy is shown to be a minimax behavior strategy. The parallel results hold
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for Player B, of course, and the value of the game to him, starting from state s, is W v
B(s).

Thus, by simply adopting a minimax-stationary behavior strategy, a player can guarantee

himself a probability of at least W v
A(s) or W v

B(s) of winning the match, starting from a

given state s.

Minimax Theorem for Binary Markov Games: Suppose that a binary Markov

game satisfies the Monotonicity Condition and that, for each nonterminal state s, we

have 0 < vA(s) < 1. Then for every s ∈ S, W v
A(s) is the value of the game to Player A

when the game is begun in state s, i.e.,

max
α

min
β

WA(s, α, β) = min
β

max
α

WA(s, α, β) = W v
A(s),

and similarly for Player B. Moreover, every minimax-stationary strategy for either player

is both a minimax behavior strategy and a maximin behavior strategy.

The theorem’s proof is a straightforward application of the following lemma.

Lemma 2: Suppose that a binary Markov game satisfies the Monotonicity Condition, and

suppose that at each nonterminal state s the value of the point game to Player A is strictly

positive: vA(s) > 0. If α̂ is a minimax-stationary strategy for Player A, then for any initial

state s and for any behavior strategy β for Player B we have WA(s, α̂, β)+WB(s, α̂, β) = 1,

i.e., Pr(st ∈ {ωA, ωB} for some t) = 1.

Proof of Lemma 2: Let K denote the number of non-terminal states, i.e., K :=

|S\{ωA, ωB}|; and for any state s and any nonnegative integer k, let sk denote the state

reached when Player A wins k consecutive points beginning at state s — i.e., sk :=

s+ · · ·+︸ ︷︷ ︸
k times

. We establish first that if Player A wins K consecutive points (beginning from

any nonterminal state s) then he wins the match (the binary Markov game) — i.e.,

sK = ωA. Suppose to the contrary that sK 6= ωA for some nonterminal state s. Then,

since the state ωA is absorbing, it cannot be the case that sk = ωA for some k < K. Nor

can it be the case that sk = ωB for some k ≤ K, for then there would have to be a first

state among s, s1, . . . , sK which is ωB, say sk, and the Monotonicity Condition would then

yield W v
A(sk−1) < W v

A(ωB) = 0, which is impossible. Hence, since none of the states sk is

terminal for k ≤ K, the Monotonicity Condition yields

W v
A(s) < W v

A(s1) < . . . < W v
A(sK),

and therefore, in the course of winning K consecutive points without winning the match,

Player A must visit K +1 distinct nonterminal states. This is a contradiction, since there

are only K nonterminal states; hence, A wins the match if he wins K consecutive points.
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In order to complete the proof, assume that the initial state, s0, is a nonterminal state

(otherwise the Lemma is trivially true). Let q = min{vA(s) | s ∈ S\{ωA, ωB}} > 0. Then

the probability Player A will have won by period K is Pr(sK = ωA) ≥ qK since, when

following a minimax-stationary strategy, Player A’s probability of winning is at least q on

each point, and since Player A wins the match if he wins K consecutive points. Clearly,

Pr(sK ∈ {ωA, ωB}) ≥ qK as well. Hence Pr(sK /∈ {ωA, ωB}) ≤ 1 − qK . Furthermore, for

each positive integer n, Pr(snK /∈ {ωA, ωB}) ≤ (1 − qK)n. It follows that Pr(∀n : snK /∈
{ωA, ωB}) = limn→∞(1− qK)n = 0. �

Proof of the BMG Minimax Theorem: Let α̂ and β̂ be minimax-stationary strategies

for Players A and B. The Equilibrium Theorem guarantees that α̂ is a best response to

β̂, so we have WA(s, α, β̂) ≤ WA(s, α̂, β̂) for every behavior strategy α. Similarly, β̂ is a

best response to α̂, so we have WB(s, α̂, β) ≤ WB(s, α̂, β̂) for every β, and Lemma 2 thus

yields WA(s, α̂, β̂) ≤ WA(s, α̂, β) for every β. Combining the inequalities, we have

∀α, β : WA(s, α, β̂) ≤ WA(s, α̂, β̂) ≤ WA(s, α̂, β),

from which it clearly follows that

min
β

max
α

WA(s, α, β) ≤ WA(s, α̂, β̂) ≤ max
α

min
β

WA(s, α, β). (12)

Since maxx miny f(x, y) ≤ miny maxx f(x, y) is always true for any real-valued function

f , it follows from (12) that

max
α

min
β

WA(s, α, β) = min
β

max
α

WA(s, α, β) = WA(s, α̂, β̂) = W v
A(s).

In order to establish that every minimax-stationary strategy α̂ for Player A satisfies

α̂ ∈ arg minα maxβ WB(s, α, β), suppose to the contrary that for some minimax-stationary

α̂ there is an α′ that satisfies maxβ WB(s, α′, β) < maxβ WB(s, α̂, β). Since β̂ is a best

response to α̂ we have that maxβ WB(s, α̂, β) = WB(s, α̂, β̂). Hence maxβ WB(s, α′, β) <

WB(s, α̂, β̂), and so minα maxβ WB(s, α, β) < WB(s, α̂, β̂), which is a contradiction.

In order to establish that every minimax-stationary strategy α̂ for Player A satisfies

α̂ ∈ arg maxα minβ WA(s, α, β), suppose to the contrary that for some minimax-stationary

α̂ there is an α′ that satisfies minβ WA(s, α′, β) > minβ WA(s, α̂, β). Since we have shown

above that minβ WA(s, α̂, β) ≥ WA(s, α̂, β̂) and that WA(s, α̂, β̂) = maxα minβ WA(s, α, β),

we clearly have a contradiction. �

The BMG Minimax Theorem establishes that by simply adopting a minimax-stationary

behavior strategy, a player can guarantee himself a probability of at least W v
A(s) or W v

B(s)

of winning the match, from whatever state s the match begins in. The following corollary
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establishes that after any history of play in the match (for example, even if the players

have not so far been playing minimax-stationary strategies), a player can still guarantee

himself a probability of at least W v
A(s) or W v

B(s) of winning the match, if the current state

is s, by adopting a minimax-stationary strategy for the continuation game. The corollary,

and the Uniqueness Theorem in the following section, will require some notation:

Let WA(ht, α, β) denote the probability that Player A will eventually win the match

if the history is ht and the players are following the behavior strategies α and β. (We do

not require that ht be consistent with α and β – i.e., that the strategies α and β could

yield ht.) Let ht = (s0, a0, b0, . . . , at−1, bt−1, st) and h′u = (s′0, a
′
0, b

′
0, . . . , a

′
u−1, b

′
u−1, s

′
u) be

histories such that st = s′0. Then we write ht + h′u for the history

(s0, a0, b0, . . . , at−1, bt−1, st, a
′
0, b

′
0, . . . , a

′
u−1, b

′
u−1, s

′
u).

Corollary: Let ht = (s0, a0, b0, . . . , at−1, bt−1, st) be an arbitrary history. If Player A

plays a minimax-stationary strategy after ht, then his probability of winning the match

is at least as great as his value when the state is st — i.e., if α̂ is a minimax-stationary

strategy for Player A, then WA(ht, α̂, β) ≥ W v
A(st) for every (not necessarily stationary)

behavior strategy β for Player B.

Proof: By the BMG Minimax Theorem we know the corollary is true for t = 0, i.e.,

for every history h0. Thus, let t > 0; let ht = (s0, a0, b0, . . . , at−1, bt−1, st); let α̂ be a

minimax-stationary strategy for Player A; and let β be a behavior strategy β for Player B

that is consistent with ht. Define a strategy β′ as follows: β′(h′u) = β(ht + h′u) if s′0 = st;

and β′(h′u) is arbitrary for histories h′u in which s′0 6= st. Since α̂ is a minimax-stationary

strategy, we have WA(ht, α̂, β) = WA(st, α̂, β′) = W v
A(st), where the inequality follows

from the BMG Minimax Theorem. �

6 The Uniqueness Theorem

We now establish a converse to the previous results: not only is it an equilibrium for

both players to play minimax point-game strategies in every state, but this is the only

equilibrium of the BMG if the point games themselves have unique equilibria.

Uniqueness Theorem: Suppose that a binary Markov game satisfies the Monotonicity

Condition and that, for each nonterminal state s, the associated point game Gs has

a unique Nash equilibrium (σ∗A(s), σ∗B(s)) and 0 < vA(s) < 1. If (α∗, β∗) is a Nash

equilibrium of the binary Markov game, then for each t and each equilibrium-path history

ht ∈ Ht, we have α∗(ht) = σ∗A(st) and β∗(ht) = σ∗B(st).
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Corollary: If each point game has a unique Nash equilibrium in which each player’s

strategy is completely mixed (i.e., every one of his pure strategies has positive mixture

probability), then the binary Markov game has a unique Nash equilibrium.

Proof of the Theorem: Let (α∗, β∗) be a Nash equilibrium of the binary Markov

game. By the BMG Minimax Theorem, if the initial state is s, then every Nash equilibrium

has the same value W v
A(s). The proof proceeds in three steps.

Step 1: We first establish that for every history ht which is consistent with (α∗, β∗)

(i.e., which is on the (α∗, β∗)-equilibrium path), each player’s probability of winning the

match is W v
i (st), the value to him of the BMG if it were to begin in state st. Suppose

to the contrary that for some history consistent with (α∗, β∗), one of the players does

not obtain his value. Let t the first time at which there is an (α∗, β∗)-consistent history

ht = (s0, a0, b0, . . . , at−1, bt−1, st) such that W i(ht, α
∗, β∗) 6= W v

i (s) for one of the players.

By Lemma 2, we have W v
A(s) + W v

B(s) = 1, hence either WA(ht, α
∗, β∗) < W v

A(s), or

WB(ht, α
∗, β∗) < W v

B(s), or both. Suppose WA(ht, α
∗, β∗) < WA(st, α̂, β̂), and consider

the strategy α′ which coincides with α∗ except that, for history ht and all of its continua-

tions, it plays a minimax strategy of the current state’s point game. This deviation from

α∗ to α′ is improving for Player A, i.e., WA(s0, α
′, β∗) > WA(s0, α

∗, β∗) where s0 is the

initial state. This contradicts that (α∗, β∗) is a Nash equilibrium.

Step 2: We now establish that for every history ht which is consistent with (α∗, β∗),

Player A’s probability of winning the current (period-t) point given (α∗, β∗) is vA(st). To

lighten notation, we write s for the current state, st. We have

WA(ht, α
∗, β∗) =

∑
a∈A(s)

∑
b∈B(s)

α∗(a|ht)β
∗(b|ht)πsA(a, b)WA(ht + (a, b, s+), α∗, β∗)

+
∑

a∈A(s)

∑
b∈B(s)

α∗(a|ht)β
∗(b|ht)πsB(a, b)WA(ht + (a, b, s−), α∗, β∗).

By Step 1, since ht is consistent with (α∗, β∗), we have WA(ht, α
∗, β∗) = W v

A(s). Also by

Step 1, if ht + (a, b, s+) is consistent with (α∗, β∗), i.e., if α∗(a|ht)β
∗(b|ht)πsA(a, b) > 0,

then WA(ht +(a, b, s+), α∗, β∗) = W v
A(s+) and similarly if ht +(a, b, s−) is consistent with

(α∗, β∗), then WA(ht + (a, b, s−), α∗, β∗) = W v
A(s−). Hence we can write

W v
A(s) = W v

A(s+)
∑

a∈A(s)

∑
b∈B(s)

α∗(a|ht)β
∗(b|ht)πsA(a, b) (1)

+W v
A(s−)

∑
a∈A(s)

∑
b∈B(s)

α∗(a|ht)β
∗(b|ht)πsB(a, b).

Equation (13), together with the inequality W v
A(s+) > W v

A(s−) (the Monotonicity Condi-
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tion) and the equation

W v
A(s) = vA(s)W v

A(s+) + vB(s)W v
A(s−)

imply that ∑
a∈A(s)

∑
b∈B(s)

α∗(a|ht)β
∗(b|ht)πsA(a, b) = vA(s).

We have shown that if (α∗, β∗) is a Nash equilibrium, then for every history consistent

with (α∗, β∗), the transitions from one state to the next must occur according to the value

of the associated state. This completes Step 2.

Step 3: Continuing to write s for the state st attained via history ht, we now establish

that for every (α∗, β∗)-consistent history ht ∈ Ht, we must have α∗(ht) = σ∗A(s) and

β∗(ht) = σ∗B(s), where (σ∗A(s), σ∗B(s)) is the unique Nash equilibrium of Gs. Suppose

there is an equilibrium path history ht such that (α∗(ht), β
∗(ht)) 6= (σ∗A(s), σ∗B(s)). Then

Player A, say, has a mixed strategy σ′A ∈ 4A(s) such that∑
a∈A(s)

∑
b∈B(s)

σ′A(a)β∗(b|ht)πsA(a, b) > vA(s).

Consider the strategy α′ which is the same as α∗ except at history ht and its continuations,

where we have α′(ht) = σ′A and, for all continuations of ht – i.e., for histories of the form

hu = ht + (s, at, bt, . . . , au−1, bu−1, su) – α′ satisfies α′(hu) = σ∗A(su). Then we have

WA(ht, α
′, β∗) ≥ W v

A(s+)
∑

a∈A(s)

∑
b∈B(s)

σ′A(a)β∗(b|ht)πsA(a, b)

+W v
A(s−)

∑
a∈A(s)

∑
b∈B(s)

σ′A(a)β∗(b|ht)πsB(a, b)

> vA(s)W v
A(s+) + vB(s)W v

A(s−)

= WA(ht, α
∗, β∗).

The weak inequality follows from the Corollary to the Minimax Theorem; the strict in-

equality is implied by the Monotonicity Condition and the fact that Player A wins the

point at history ht with probability greater than vA(s); and the equation follows from

Step 2.

We have shown that WA(ht, α
′, β∗) > WA(ht, α

∗, β∗). This implies that WA(s0, α
′, β∗) >

WA(s0, α
∗, β∗), since Player A’s probability of winning the match is the same when fol-

lowing α′ as when following α∗ if history ht is not reached, but is greater when following

α′ if ht is reached (which occurs with positive probability, since it is an equilibrium path

history). This contradicts that (α∗, β∗) is a Nash equilibrium. �
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7 Examples

The first example is a parametric class of binary Markov games, in which the Monotonicity

Condition holds for some parameter values and not for others. When the Monotonicity

Condition fails in these games, it is not a Nash equilibrium of the binary Markov game

(the match) for each player to always (i.e., in each state) play the minimax equilibrium of

the state’s point game. This class of games demonstrates that the Monotonicity Condition

cannot be dispensed with in either the Equilibrium Theorem or the Minimax Theorem.

Example 4 Consider the binary scoring rule illustrated in Figure 3 below, in which the

state space is S = {0, X, Y, ωA, ωB}, the initial state is 0, and the two transition functions

are given by 0+ = X, 0− = Y , X+ = Y+ = ωA, and X− = Y− = ωB.

Figure 3 goes here.

For each state s the matrix Gs below gives Player A’s payoff function πsA, where x and y

are parameters satisfying 0 < x, y ≤ 1
2
.

L R

T 1 0 0

M 3/4 1/2 .8

B 0 1 .2

.4 .6

L R

T 0 2x .5

B 2x 0 .5

.5 .5

L R

T 0 2y .5

B 2y 0 .5

.5 .5

G0 GX(x) GY (y)

Player A’s (B’s) minimax mixture is given to the right (on the bottom) of the payoff

matrix. We have vA(0) = .6, vA(X) = x, and vA(Y ) = y.

For each state s, writing as before W v
A(s) for the probability that Player A wins the

match when the transition at each state occurs according to the point game’s value, we

have that W v
A(0) = .6x + .4y, W v

A(X) = x, and W v
A(Y ) = y. The monotonicity condition

holds if W v
A(X+) > W v

A(X−), W v
A(Y+) > W v

A(Y−), and W v
A(0+) > W v

A(0−) (and similarly

for Player B). The first two inequalities always hold since 1 = W v
A(ωA) > W v

A(ωB) = 0.

The third holds if and only if x > y. If x > y, then by the Equilibrium Theorem is it a

Nash equilibrium for each player to player minimax (and Nash) at each state, i.e., (α∗, β∗)

is a Nash equilibrium where α∗(0) = (0, .8, .2), α∗(X) = α∗(Y ) = (.5, .5), β∗(0) = (.8, .2)

and β∗(X) = β∗(Y ) = (.5, .5). Since each point game has a unique Nash equilibrium, by

the Uniqueness Theorem (α∗, β∗) is the unique Nash equilibrium of the BMG.

If y > x, and so the monotonicity condition fails, then (α∗, β∗) is not a Nash equi-

librium: Consider the strategy α′ which is the same as α∗, except that at the initial
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state Player A chooses T for sure, i.e., α′(0) = (1, 0, 0). Employing α′ against β∗ Player

A wins the match with probability .6y + .4x, whereas if he employs α∗ he wins with

only probability .6x + .4y. Hence α∗ is not a best response to β∗. (When y > x then

α̂(0) = (1
2
, 0, 1

2
), α̂(X) = α̂(Y ) = (.5, .5), and β̂(0) = β̂(X) = β̂(Y ) = (.5, .5) is the unique

Nash equilibrium.)

The next example shows that if, at some state, the associated point game has more

than two outcomes, then equilibrium play in the point game may depend upon the values

of the point games at other states. In contrast, in binary Markov games, so long as the

Monotonicity Condition is satisfied, equilibrium play at every point game is independent

of the values of the point games at other states.

Example 5 Consider the family of games illustrated below, for values of x satisfying

0 < x ≤ 1
2
. The state space is S = {0, D, ωA, ωB}, where 0 is the initial state. At the

initial state the point game has three possible outcomes: Player A wins the point, Player

B wins the point, or neither player wins the point (i.e., the outcome is a “draw”). The

transition function is given by 0+ = D+ = ωA, 0− = D− = ωB, and the match transits

to state D if the outcome at the initial state is a draw. The first player to win a point

wins the match. This is not a binary Markov game: the point game at the initial state

has more than two outcomes.

Figure 4 goes here.

The entries in the matrices G0 and GD(x) below give the players’ probabilities of winning

the point. Note that neither player wins the point at the initial state if the action profile

is (B, R).

L R

T 1, 0 0, 1

B 0, 1 0, 0

L R

T 2x, 1− 2x 0, 1 .5

B 0, 1 2x, 1− 2x .5

.5 .5

G0 GD(x)

The point game at state D has value x to the Row player and 1 − x to the Column

player. Replacing the zero probabilities in the (B, R) cell of G0 with x and 1− x makes

it easy to see that the overall game has a unique Nash equilibrium (α∗, β∗) in which

α∗(0) = β∗(0) = ( x
1+x

, 1
1+x

) and α∗(D) = β∗(D) = (.5, .5). In a binary Markov game,

Nash equilibrium play at the initial state depends only on the probabilities of the players

winning the initial point, but in this game Nash equilibrium play at the initial state also

depends upon the players’ values of the point game at state D.
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8 An Application: The Game of Tennis13

We describe here a model of a tennis match as a binary Markov game,14 and we show

that the game satisfies the Monotonicity Condition. Therefore all of our results apply: it

is a Nash equilibrium in our model of a tennis match for each player to play a minimax

strategy at each point; moreover, it is a minimax behavior strategy in the match for a

player to play in this way; and, since each point game in our tennis model has a unique

equilibrium, the Uniqueness Theorem guarantees that the only equilibrium in the match

— i.e., in the binary Markov game — is for each player to play his unique minimax

strategy in every point game that arises in the match.

Each point in a tennis match is begun by one of the players placing the ball in play,

or “serving.” Our model of a tennis match focuses on the decisions by the server and the

receiver on the serve. We assume that the two actions available to the server are to serve

either to the receiver’s Left (L) or to the receiver’s Right (R). Simultaneously with the

server’s decision, the receiver is assumed to guess whether the serve will be delivered to

his Left or to his Right. Thus, for every state s (we will describe the states shortly), we

have A(s) = B(s) = {L, R}.
After the players have made their Left-or-Right choices for the serve, many subsequent

strokes may be required (in an actual tennis match) to determine which player is the

winner of the current point. We leave this after-the-serve part of the point unmodeled,

and instead adopt a reduced-form model of the point, as depicted in Figure 5: each player’s

payoffs in the four cells of the game matrix are the respective probabilities that he will

ultimately win the point at hand, conditional on the Left-or-Right choices each of the

players has made on the serve. Player A’s payoffs, πsA(a, b), are shown in Figure 5; Player

B’s payoff in each cell is 1− πsA(a, b). For each state s in which Player i is the server, we

13This section of the paper forms the theoretical foundation for Walker and Wooders (2001).
14The binary Markov game model of tennis assumes that the probabilities of A or B winning a given

point depend only on the current score. This score, or state variable, need not correspond precisely to

the score as it is usually understood, but might also include such factors as whether the game score is

”even” or ”odd” (i.e., a deuce-court or an ad-court point), which player is serving, which end of the

court the server is playing from (if sun or wind is a factor), and even whether it is early in the match or

late by distinguishing first-set points from second-set points, etc. But it assumes that only this current

score matters, which would not be the case if, for example, the actions a player chose earlier in the

match determine how much energy he has in reserve for later points – a plausible factor in an actual

tennis match. This is an interesting empirical question, and the results in this paper form the theoretical

foundation for such an empirical analysis.
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naturally assume that πsi(L, L) < πsi(L, R), πsi(R,R) < πsi(R,L), πsi(L, L) < πsi(R,L),

and πsi(R,R) < πsi(L, R). Hence, in every point game Gs, whichever player is serving,

each player has a unique minimax strategy, which is strictly mixed, and the value of the

point game to each player is strictly between 0 and 1.

The scoring of a tennis match is structured as follows. The match consists of a sequence

of “sets”: when a set is completed (i.e., when one of the players has won the set), then

the next set begins. The first player to win three sets is declared the winner of the match.

(In some matches it is the first player to win two sets.) Each set is in turn composed of

a sequence of “games”: a set is won by the first player to win at least six games and to

simultaneously have won two more games than his opponent. And each game is composed

of a sequence of points: a game is won by the first player to win at least four points and

to have won at least two more points than his opponent.15 The score at any juncture of

a match is thus given by specifying (a) the set score, i.e., how many sets each player has

won; (b) the game score, i.e., how many games each player has won in the current set, or,

if each has won at least four games, then simply whether the players have won the same

number of games, or whether Player A or Player B is ahead by one game; and (c) the

point score, i.e., how many points each player has won in the current game, or, if each

has won at least two points, then simply whether the players have won the same number

of points, or whether Player A or Player B is ahead by one point. This latter component

of the score, the point score in a “game,” is described in Example 3 in the Introduction,

and is depicted in Figure 6. (Figure 6 is identical to Figure 2, except that here in Figure 6

the “game” in tennis is not the entire match, or binary Markov game, so that the game’s

terminal states are not typically the terminal states ωA and ωB of the match. We instead

use the notation s for the state the match will be in if Player A wins the current game,

and s for the state the match will be in if Player A loses the game).

The set of all possible scores, as described in (a), (b), and (c) above, is finite and

comprises the set S of states in our binary Markov game model of a tennis match. The

transition functions are defined in the obvious way: for any state (i.e., score) s, the states

s+ and s− are the scores reached if Player A wins or loses the current point.

Our objective is to verify that the match satisfies the Monotonicity Condition, i.e.,

to show that a player’s probability of winning the match is always greater if he wins

the current point than if he loses the point, if the state transitions occur according to

the values of the point games. We begin by assuming (for the moment) that for every

15Which of the players is the server during the first game of the match is determined by lot, and then

the players reverse roles (server and receiver) at the beginning of each new game.
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possible set score and game score, a player’s probability of winning the match is always

greater if he wins the current game than if he loses it, and we show that the Monotonicity

Condition then follows.

The progression of scores in the current game is depicted in Figure 6. Each node

in the figure corresponds to one of the possible scores in the game16 and thus to one of

the possible states in the match (given the game score and the set score). The state

transitions in Figure 6 are assumed to occur according to the values of the point games at

the various nodes, or states — namely, vA(s) is the probability of moving to s+ and vB(s)

is the probability of moving to s−. Note that vA(s) + vB(s) = 1. To simplify notation, we

write vs for the probability of moving to state s+ and W (s) for the probability Player A

will win the match if the match is in state s; and we denote the various scores, or states

s, by 00, 10, 12, etc., in place of 0-0, 1-0, 1-2. For each state s, then, we have

0 < vs < 1 (14)

and

W (s) = vsW (s+) + (1− vs)W (s−), (15)

and we are (for the moment) assuming that

W (s) < W (s). (16)

The states s and s, while not absorbing states in the match, are absorbing states in

Figure 6. We refer to the rightmost column in Figure 6, which contains s and s, as the

“absorbing column.” It will be useful to write s < t when two non-absorbing states s

and t lie in the same column of Figure 6 (i.e., if the two states can be reached via the

same number of points) and if s lies below t in the column (i.e., if Player A has won more

points in state t than in state s). Notice that

s < t ⇒ [(s+ < t+ or t+ = s) and (s− < t− or s− = s)].

It is clear from (14) and (15) that the Monotonicity Condition is equivalent to the follow-

ing:

s < t ⇒ W (s) < W (t). (17)

Hence, we establish (17).

16It is a convention in tennis that a player’s score is said to be 15 (instead of 1) when he has won one

point; and to be 30, and then 40, when he has won two or three points. We express the score instead

simply in terms of the number of points each player has won.
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First, we verify that (17) is satisfied for the states s = (23) and t = (32) — i.e., for

the two states in the rightmost non-absorbing column of Figure 6. From (15), we have

the following system of three equations in the winning probabilities W (·):

W (32) = v32W (s) + (1− v32)W (22)

W (22) = v22W (32) + (1− v22)W (23)

W (23) = v23W (22) + (1− v23)W (s).

It clearly follows from (14), (16), and these three equations that

W (s) < W (23) < W (22) < W (32) < W (s),

which verifies (17) for the rightmost nonabsorbing column in Figure 6.

Now we show that if (17) holds for one of the columns in Figure 6, then it holds as

well for the column immediately to the left. Consider two adjacent columns, and let s

and t be two states that lie in the left one, with s < t; we must show that W (s) < W (t).

We have
W (t) = vtW (t+) + (1− vt)W (t−), and

W (s) = vsW (s+) + (1− vs)W (s−).
(18)

There are three cases to consider: (i) t+ 6= s and s− 6= s, (ii) t+ = s, and (iii) s− = s.

In the first case, s+, s−, t+ and t− all lie in the column immediately to the right of s and

t, and we have assumed that (17) holds in that column. We have s− < s+ ≤ t− < t+,

and therefore (14) and (18) yield W (s) < W (t). In case (ii) we have W (s+) ≤ W (t+) and

s− < t−, so that (14) and (18) again yield W (s) < W (t). Similarly, in case (iii) we have

W (s−) ≤ W (t−) and s+ < t+, so that (14) and (18) yield W (s) < W (t). Thus, we have

established that indeed, if (17) holds in a nonabsorbing column of Figure 6, then it also

holds for the next column to the left. Since we have also established that (17) holds in the

rightmost nonabsorbing column, it follows that it holds for every nonabsorbing column

of Figure 6, and therefore the match satisfies the Monotonicity Condition — under the

assumption that W (s) < W (s).

Now assume that each player always obtains a greater probability of winning the match

by winning the current set than by losing it. Since the winning of games now determines

who wins the set in exactly the same way that the winning of points determined who wins

the game (except that one must win six games to win the set, but only four points to

win the game), the same argument as above clearly establishes that a player will obtain

a greater probability of winning the match if he wins the current game than if he loses it

— i.e., that W (s) < W (s). Therefore the match satisfies the Monotonicity Condition if

each player’s probability of winning the match is always greater after winning a set than
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after losing it. And finally, it is easy to see that a player’s probability of winning the

match is indeed greater if he wins any given set than if he loses it, which (as we have

just described) ensures that W (s) < W (s), and therefore the Monotonicity Condition is

indeed satisfied for the match.
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Column Column
Row Row

H T Minimax H T Minimax

      Row H 1 0 1/2 Row H 1 2/3 2/3

T 0 1 1/2 T 1/3 1 1/3

Col Minimax: 1/2 1/2 Col Minimax: 1/3 2/3

Even Points

  Figure 1

                Outcomes (cell entries) are the probability that Row wins the point. 

Odd Points
(a) (b)

Value = 7/9 to Row
Value = 2/9 to Column

 Value = 1/2 to both



3-0 ωA    

2-0 3-1

1-0 2-1 3-2

0-0 1-1 2-2

0-1 1-2 2-3

0-2 1-3

0-3 ωB    

Figure 2

The Scoring Rule
for a

"Game" in Tennis
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Figure 5

A Typical Point Game in Tennis

Player B

L R

L ππsA(L,L) ππsA(L,R)

R ππsA(R,L) ππsA(R,R)

if Player A chooses action a and Player B chooses action b

πsA(a,b) is the probability that Player A will win the point

       Player A



3-0 s

2-0 3-1

1-0 2-1 3-2

0-0 1-1 2-2

0-1 1-2 2-3

0-2 1-3

0-3 s

Figure 6

The Scoring Rule
for a

"Game" in Tennis
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