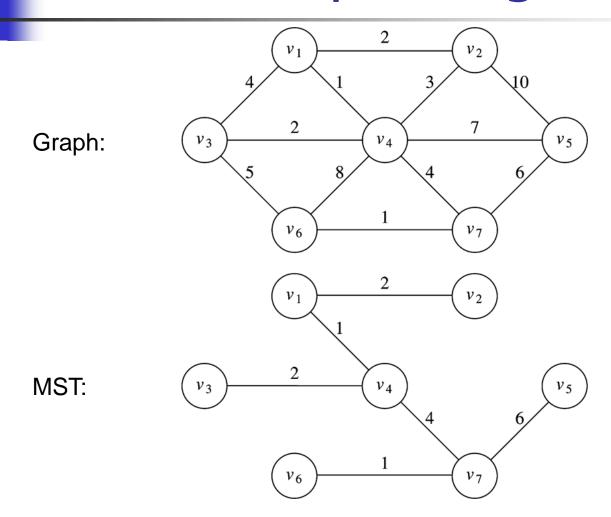
Graph Algorithms

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University

- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
 - Connecting "nodes" with a minimum of "wire"
 - Networking
 - Circuit design
 - Collecting nearby nodes
 - Clustering, taxonomy construction
 - Approximating graphs
 - Most graph algorithms are faster on trees

- A <u>tree</u> is an acyclic, undirected, connected graph
- A <u>spanning tree</u> of a graph is a tree containing all vertices from the graph
- A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal

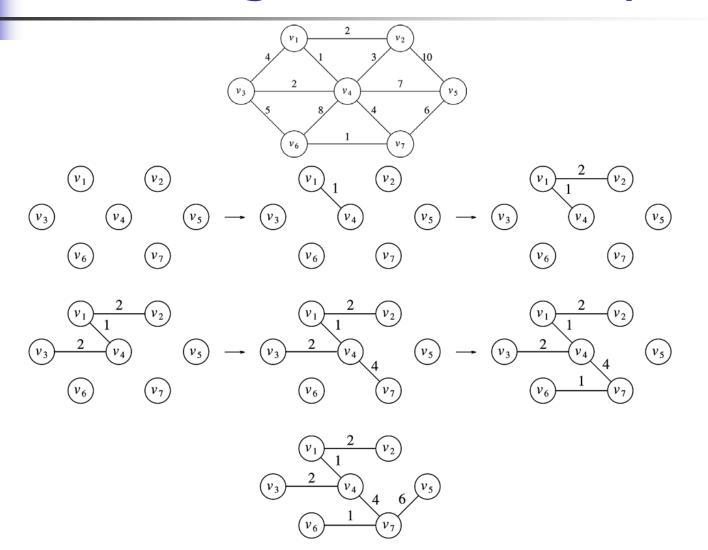


Problem

- Given an undirected, weighted graph G=(V,E) with weights w(u,v) for each (u,v)∈E
- Find an acyclic, connected graph G'=(V,E'), $E'\subseteq E$, that minimizes $\Sigma_{(u,v)\in E'}w(u,v)$
- G' is a minimum spanning tree
 - There can be more than one

- Solution #1
 - Start with an empty tree T
 - While T is not a spanning tree
 - Find the lowest-weight edge that connects a vertex in T to a vertex not in T
 - Add this edge to T
- T will be a minimum spanning tree
- Called Prim's algorithm (1957)

Prim's Algorithm: Example



- Similar to Dijkstra's shortestpath algorithm
- Except
 - v.known = v in T
 - v.dist = weight of lowest-weight edge connecting v to a known vertex in T
 - v.path = last neighboring vertex changing (lowering) v's dist value (same as before)

```
struct Vertex
{
    List adj;
    bool known;
    DistType dist;
    Vertex path;
    // Other data
};
```

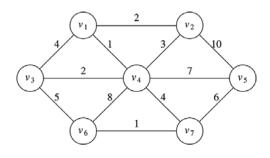
Prim's Algorithm

```
void Graph::dijkstra( Vertex s )
{
    for each Vertex v
    {
       v.dist = INFINITY;
       v.known = false;
    }
    s.dist = 0;
```

Running time same as Dijkstra: O(|E| log |V|) using binary heaps.

```
for(;;)
    Vertex v = smallest unknown distance vertex:
    if( v == NOT A VERTEX )
        break;
    v.known = true;
    for each Vertex w adjacent to v
        if(!w.known)
            if( v.dist + cvw < w.dist )
                // Update w
                decrease( w.dist to v.dist + cvw );
                w.path = v;
```

Prim's Algorithm: Example

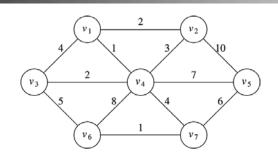


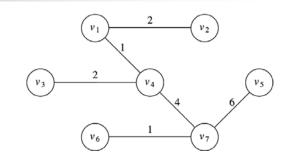
ν	known	d_{v}	p_{ν}
v_1	F	0	0
v_2	F	∞	0
v_3	F	∞	0
v_4	F	∞	0
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
v_3	F	4	v_1
v_4	F	1	v_1
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
v_3	F	2	v_4
v_4	T	1	v_1
v_5	F	7	v_4
v_6	F	8	v_4
v_7	F	4	v_4

Prim's Algorithm: Example





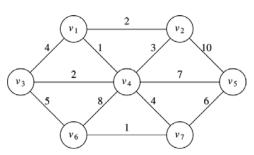
ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3	T	2	v_4
v_4	T	1	v_1
v_5	F	7	v_4
v_6	F	5	v_3
v_7	F	4	v_4

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
v_2	T	2	v_1
v_3	T	2	v_4
v_4	T	1	v_1
v_5	F	6	v_7
v_6	F	1	v_7
v_7	T	4	v_4

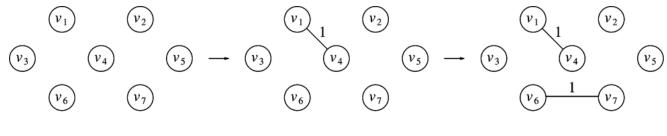
ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
v_2	T	2	v_1
v_3	T	2	v_4
v_4	T	1	v_1
v_5	T	6	v_7
v_6	T	1	v_7
v_7	T	4	v_4

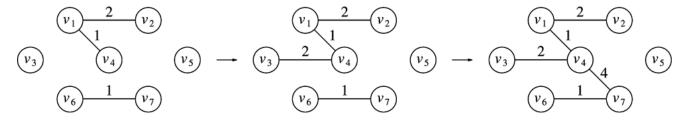
- Solution #2
 - Start with T = V (no edges)
 - For each edge in increasing order by weight
 - If adding edge to T does not create a cycle
 - Then add edge to T
- T will be a minimum spanning tree
- Called Kruskal's algorithm (1956)

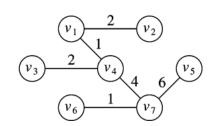
Kruskal's Algorithm: Example



Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted







Kruskal's Algorithm

```
void Graph::kruskal( )
    int edgesAccepted = 0;
    DisjSet ds( NUM VERTICES );
    PriorityQueue<Edge> pq( getEdges( ) );
    Edge e;
    Vertex u, v;
   while( edgesAccepted < NUM VERTICES - 1 )</pre>
        pq.deleteMin( e ); // Edge e = (u. v)
        SetType uset = ds.find( u );
        SetType vset = ds.find( v );
        if( uset != vset )
            // Accept the edge
            edgesAccepted++;
            ds.unionSets( uset, vset );
```

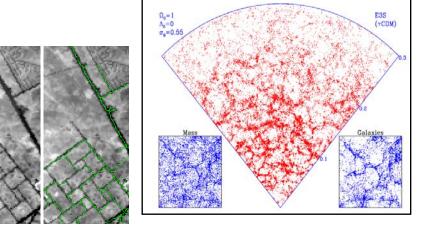
Uses Disjoint Set and Priority Queue data structures.

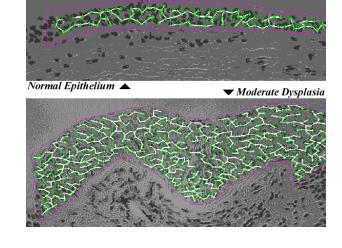
Kruskal's Algorithm: Analysis

- Worst case: O(|E| log |E|)
- Since |E| = O(|V|²), worst case also
 O(|E| log |V|)
 - Running time dominated by heap operations
- Typically terminates before considering all edges, so faster in practice

Minimum Spanning Tree: Applications

- Feature extraction from remote sensing images (e.g., roads, rivers, etc.)
- Cosmological structure formation
- Cancer imaging
 - Arrangement of cells in the epithelium (tissue surrounding organs)
- Approximate solution to traveling salesman problem
- Most of above use Euclidian MST
 - I.e., weights are Euclidean distances between vertices





- Finding set of edges that minimally connect all vertices
- Fast algorithm with many important applications
- Utilizes advanced data structures to achieve fast performance