Graph Algorithms

CptS 223 — Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University

i Minimum Spanning Trees

= Find @ minimum-cost set of edges that
connect all vertices of a graph

= Applications

= Connecting “nodes” with a minimum of “wire”
= Networking
= Circuit design

= Collecting nearby nodes
= Clustering, taxonomy construction
= Approximating graphs
= Most graph algorithms are faster on trees

i Minimum Spanning Tree

= A tree is an acyclic, undirected,
connected graph

= A spanning tree of a graph is a tree
containing all vertices from the graph

= A minimum spanning tree is a spanning
tree, where the sum of the weights on
the tree’s edges are minimal

i Minimum Spanning Tree

Graph:

MST:

i Minimum Spanning Tree

= Problem

= Given an undirected, weighted graph
G=(V,E) with weights w(u,v) for each
(u,v)eE
= Find an acyclic, connected graph G'=(V,E’),
E’ c E, that minimizes 2, ,y.e- W(U,V)
« G’ is @ minimum spanning tree
= There can be more than one

i Minimum Spanning Tree

= Solution #1

» Start with an empty tree T

= While T is not a spanning tree

= Find the lowest-weight edge that connects a
vertexin Ttoavertexnotin T

« Add thisedgeto T
= T will be a minimum spanning tree

= Called Prim’s algorithm (1957)

‘L Prim’s Algorithm: Example

O,
()

®
O O - 0w, ® 0w, ®
) D

i Prim’s Algorithm

= Similar to Dijkstra’s shortest-
path algorithm

= Except
= V.known=vinT

= v.dist = weight of lowest-weight
edge connecting v to a known
vertex in T

= V.path = last neighboring vertex
changing (lowering) v’s dist
value (same as before)

struct Vertex

{

f——
I -

List adj;
bool known;
DistType dist;
Vertex path;
// Other data

Prim’s Algorithm

void Graph::dijkstra(Vertex s)

{
for each Vertex v for(5 35)
{ {
v.dist = INFINITY; Vertex v = smallest unknown distance vertex;
v.known = false; if(v == NOT_A_VERTEX)
} break;

v.known = true;
s.dist = 0;
for each Vertex w adjacent to v
if(!'w.known)

. . if(v=dist— cvw < w.dist)
Running time same as (
Dijkstra: O(|E| log |V|) // Update w
using binary heaps. decrease(w.dist to v=dist— cvw);
w.path = v;
}

Example

's Algorithm

i Prim

Py

known d,

v

e S S A R S S =

Py

known d,

v

S S T S L I

Py

known d,

v

N O O - S S S S A

10

's Algorithm: Example

i Prim

v known d, pJl|v known d, p,| |V known d, p,
Vi T 0 0l vy T 0 0| vy T 0 0
%) T 2 Vil [va T 2 Vil Vo T 2 Vi
V3 T 2 Vgl V3 T 2 Vgl V3 T 2 V4
2 T 1 Vil [V T 1 Vil [V T 1 Vq
Vs F 7 Va| [Vs F 6 V7| Vs T 6 V7
Ve F 5 V3| Ve F 1 V7l Ve T 1 V7
' F 4 Vgl V7 T 4 Vgl V7 T 4 V4

11

i Minimum Spanning Tree

= Solution #2
« Start with T = V (no edges)

= For each edge in increasing order by
weight
= If adding edge to T does not create a cycle
= Thenadd edgeto T

= T will be a minimum spanning tree
= Called Kruskal’s algorithm (1956)

12

i Kruskal’s Algorithm: Example

®» ® ® ®
@0@@@@.\.@)
®» ® ®» ®

0@

Edge Weight Action @ @

(vy,v4) 1 Accepted

(ve, v7) 1 Accepted
(v1,v2) 2 Accepted

(v3,v4) 2 Accepted

(vy, vq) 3 Rejected

(v1, v3) 4 Rejected

(v4, v7) 4 Accepted

(v3, ve) 5 Rejected

(vs, v7) 6 Accepted

13

Kruskal’s Algorithm

void Graph::kruskal()

{

int edgesAccepted = 0; Uses Disjoint Set

DisjSet ds(NUM_VERTICES)s .o
PriorityQueue<Edge> pq(getEdges()); and P”O“ty Queue

Edge e; data structures.

Vertex u, v;

while(edgesAccepted < NUM_VERTICES - 1)
{
pq.deleteMin(e); // Edge e = (u. v)
SetType uset = ds.find(u);
SetType vset = ds.find(v);
if(uset != vset)
{
// Accept the edge
edgesAccepted++;
ds.unionSets(uset, vset);

14

i Kruskal’s Algorithm: Analysis

= Worst case: O(|E| log |E|)

= Since |E| = O(|V|2), worst case also
O(|E| log [V])

= Running time dominated by heap
operations

= Typically terminates before considering
all edges, so faster in practice

15

Minimum Spanning Tree:

ﬁ Applications

= Feature extraction from remote
sensing images (e.g., roads, [
rivers, etc.)

= Cosmological structure
formation

= Cancer imaging

= Arrangement of cells in the ==
epithelium (tissue surrounding
organs)
= Approximate solution to
traveling salesman problem

= Most of above use Euclidian
MST

= I.e., weights are Euclidean
distances between vertices

Normal Epithelium a W Moderate Dysplasia

16

Minimum Spanning Trees:
i Summary

= Finding set of edges that minimally
connect all vertices

= Fast algorithm with many important
applications

s Utilizes advanced data structures to
achieve fast performance

17

	Graph Algorithms
	Minimum Spanning Trees
	Minimum Spanning Tree
	Minimum Spanning Tree
	Minimum Spanning Tree
	Minimum Spanning Tree
	Prim’s Algorithm: Example
	Prim’s Algorithm
	Prim’s Algorithm
	Prim’s Algorithm: Example
	Prim’s Algorithm: Example
	Minimum Spanning Tree
	Kruskal’s Algorithm: Example
	Kruskal’s Algorithm
	Kruskal’s Algorithm: Analysis
	Minimum Spanning Tree: Applications
	Minimum Spanning Trees: Summary

