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Abstract

Faraday waves are described, under appropriate conditions, by a damped nonlocal parametrically driven nonlinear Schrö-
dinger equation. As the strength of the applied forcing increases this equation undergoes a sequence of transitions to chaotic
dynamics. The origin of these transitions is explained using a careful study of a two-mode Galerkin truncation and linked to
the presence of heteroclinic connections between the trivial state and spatially periodic standing waves. These connections
are associated with cascades of gluing and symmetry-switching bifurcations; such bifurcations are located in the partial
differential equations as well. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The effect of parametric forcing on continuous systems undergoing a Hopf bifurcation has received considerable
attention in the past few years [1–4]. In the absence of forcing, systems with only one extended dimension (hereafter
x) and reflection symmetry (i.e. invariance underx →−x) support both traveling and standing waves, at most one
of which can be stable. Parametric forcing is known to stabilize the latter even when these states would otherwise
be unstable to traveling wave disturbances [1]. Similar behavior occurs even in the absence of the primary Hopf
bifurcation. In this case both wave types decay but the standing waves can be maintained against decay by parametric
forcing. The Faraday system [5] provides perhaps the best known example of this setup. In this system standing
surface waves with frequency nearω0 are excited by vertical vibration of a container of liquid with frequency 2ω0.
In a narrow annular container the Faraday system becomes essentially one-dimensional, and near threshold of the
Faraday instability the physical variables can be written as a superposition of two counterpropagating waves:

u(x, t) = [A(x, t)eiω0t+ikx + B(x, t)eiω0t−ikx + c.c.]u0 + · · · . (1)
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Hereω0 is half the forcing frequency andk is the associated wavenumber. The complex amplitudes,A andB, are
assumed to be small and to depend slowly onx andt , i.e. |Axx| � |Ax | � |A|, |Bxx| � |Bx | � |B|, |At | � |A|
and|Bt | � |B|. When the dissipation is appropriately weak and the amplitude of the forcing correspondingly small
the amplitudesA andB satisfy a pair of evolution equations that are coupled to a two-dimensional Navier–Stokes
equation for a large-scale mean flow in the bulk [6]. This mean flow is driven by boundary conditions obtained by
matching the solutions in the oscillatory boundary layers near the bottom and the free surface to the bulk flow. While
complicated such equations already provide a simplified description of the Faraday system since the fast oscillation
frequency has been eliminated and the boundary conditions on the mean flow are imposed on the undisturbed
surface. Moreover, in particular regimes a further simplification is possible, as discussed in [6]. These depend on
the relative magnitude of the detuningν, dampingδ, and forcing amplitudeµ, and the inverse aspect ratioL−1 of
the domain. WhenL is large compared to the wavelength of the excited waves, andν ∼ δ ∼ µ ∼ L−1 the growth
of the instability occurs on the timescale corresponding to advection at the group velocitycg (hereafter scaled such
thatcg = 1), while the dispersive terms are of higher order, i.e. O(L−2). The slow evolution of the system is then
described by ahyperbolic system of partial differential equations forA andB. In contrast, in the regime of interest
here,ν ∼ δ ∼ µ ∼ L−2, advection at the group velocity isfast compared to the growth rate of the instability, and
the evolution equations are then written in terms of the characteristic variablesη = (t + x)/L andξ = (t − x)/L.
These take the form of a pair of damped parametrically driven nonlinear Schrödinger (NLS) equations with nonlocal
coupling [6,7],

Aτ = iαAηη − (δ + iν)A+ i(β|A|2 + γ 〈|B|2〉)A+ µ〈B̄〉, (2)

Bτ = iαBξξ − (δ + iν)B + i(β|B|2 + γ 〈|A|2〉)B + µ〈Ā〉, (3)

together with a decoupled equation that relates the spatial phase of the waves to the mean flow they generate
whenever|A| 
= |B|. Eqs. (2) and (3) are to be solved subject to the boundary conditions

A(η + 1, τ ) = A(η, τ), B(ξ + 1, τ ) = B(ξ, τ ) (4)

appropriate for a periodic (i.e. annular) domain of lengthL. Here 〈· · · 〉 ≡ ∫ 1
0 · · ·dη or

∫ 1
0 · · ·dξ , τ ≡ t/L2,

and α, δ, ν, β, γ, µ ∈ R, with α, β, and γ measuring the magnitude of the dispersion, self-interaction, and
cross-interaction terms, respectively.

The form of these equations relies on the presence of three timescales: a fast O(1) timescale determined by
the frequency of the applied forcing, a slow O(L−1) advective timescale determined by the group velocity and
the domain sizeL, and an even slower O(L−2) timescale over which the instability develops and equilibrates.
The nonlocal terms,〈· · · 〉, arise because under the current scaling assumptions the timescale on which the spa-
tial inhomogeneities are advected is fast relative to the slower timescale on which damping, dispersion, and
nonlinear terms act. This timescale separation is the reason why the wavetrains interact only via the average of
their amplitudes over the advective timescale. In generic systems the large-scale flow is damped rapidly, and the
resulting equations are those derived by Knobloch and De Luca [8]. In the present case, the assumed weak dis-
sipation is responsible for two additional features of the problem, the coupling of the spatial phase to the weakly
damped large-scale mean flow, and the presence of purely imaginary coefficients of the dispersive and nonlin-
ear terms. Real parts of these coefficients enter only at higher order in the theory. This is so also in nonlinear
optics, where related equations describe the propagation of electromagnetic waves along an optical fiber in a ring
geometry [9] and, under certain conditions, explain the subcritical bistable behavior of both front and pulse solu-
tions in degenerate optical parametric oscillators [10]. In these systems coupling to a large scale mode does not
arise.



M. Higuera et al. / Physica D 162 (2002) 155–187 157

Observe that Eqs. (2)–(4) have an invariant subspaceA(·, τ ) = B(·, τ ) (=C(·, τ ), say), in which the dynamics
are described by the following equations:

Cτ = iαCxx − (δ + iν)C + i(β|C|2 + γ 〈|C|2〉)C + µ〈C̄〉, (5)

C(x + 1, τ ) = C(x, τ). (6)

Hereafter the variablex stands for eitherη or ξ , depending on whetherC stands forA or B. Eqs. (5) and (6)
describestanding wave (hereafter SW) solutions of Eqs. (2)–(4); such solutions are a characteristic property of
systems that are invariant under spatial reflectionx →−x, and do not generate a mean flow. Martel et al. [7] show
that identical equations also describe standing waves in a system bounded by lateral walls, provided only that the
reflection coefficient at the walls is close to unity, i.e. provided the walls are almost perfectly reflecting. Although
this paper is devoted to the study of the simpler system defined by Eqs. (5) and (6) it must be emphasized that at
large enough forcing amplitude the SW may become unstable to perturbations transverse to the SW subspace; if
this is so the dynamics of Eqs. (2)–(4) and Eqs. (5)–(6) will differ (see Fig. 1). Such instabilities are associated with
the spontaneous generation of mean flows [11].

The dynamics of the systems (2)–(4) and (5)–(6) have been studied by Martel et al. [7]. In the following we refer
to solutions that are independent ofτ as steady; such solutions describe single frequency waves, oscillating at the
frequencyω. In both (2)–(4) and (5)–(6) the first instability produces uniform steady solutions (corresponding to peri-
odic standing waves in both space and time) and these subsequently lose stability in a steady-state symmetry-breaking
bifurcation that breaks translation invariance producing time-independent but spatially nonuniform states (i.e. stand-
ing waves with spatially varying amplitude). Both these bifurcations preserve the identityA = B and hence are
common to both sets of equations. As shown by Martel et al. [7] the subsequent behavior of these equations can be
divided into four broad classes, depending on the linear stability properties of the spatially uniform steady solutions.
These classes are therefore the same for both sets of equations. In the case shown in Fig. 1a and b the nonuniform
states soon undergo a Hopf bifurcation and produce a branch of oscillatory solutions. Shortly thereafter chaos sets in,
interspersed with nonuniform temporally periodic motion. Some of the observed transitions are the result of crises
while others appear to be due to period-doubling cascades. Observe that the details of this behavior differ in the two
figures, indicating that the invariant subspaceA = B does not remain attracting for all values ofµ. The present paper
is devoted to understanding of the origin of this more complicated dynamical behavior in the simpler of these two
systems, viz. (5)–(6).

Analysis of the system (5)–(6) is complicated by the absence of wavenumber-dependent dissipation: the damping
(measured by the coefficientδ) is identical for all modes. Although such damping implies the absence of wavenumber
selection through dissipative processes in the present problem this fact poses no problem since the wavenumber
is selected by the forcing frequency via the dispersion relation for gravity–capillary waves. However, the absence
of dissipation at leading order does result in a number of mathematical difficulties. For example, the theorem of
Duan et al. [12] establishing the existence of a finite-dimensional inertial manifold for a nonlocal Ginzburg–Landau
equation of the type (5)–(6) does not apply. Nonetheless, for the weakly damped NLS equation with direct external
forcing, Ghidaglia [13] was able to demonstrate the existence of a weak finite-dimensional attractor. This result was
improved upon by Wang [14] who used an energy equation to obtain strong convergence, showing that the attractor
is in fact a strong, finite-dimensional, global attractor. Subsequent work (see, e.g. [15,16]) has dealt with the task
of proving additional regularity properties of the attractor. In particular, Oliver and Titi [16] showed that the global
attractor for the weakly damped driven (but local) NLS equation with direct forcing is analytic, indicating that the
Fourier expansion of a solution on the attractor converges exponentially fast (as the number of terms is increased) to
the exact solution. We assume here that these properties continue to hold for the nonlocal equation with parametric
forcing, and construct a simple truncation of Eqs. (5) and (6) involving two complex mode amplitudes. We find that
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Fig. 1. Bifurcation diagrams for (a) the system (5)–(6), and (b) the system (2)–(4) withα = 0.1,δ = 1,ν = 0,β = 1.5, andγ = −0.5. Courtesy
C. Martel.
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in relatively large regions of parameter space this truncation describes the observed dynamics very well, and use it
to elucidate their origin and to locate additional solution types in the partial differential equations (PDEs) that were
missed by Martel et al.

The analysis of low-order models of PDEs is a commonly used technique which often provides considerable insight
into the dynamics of the PDEs. This technique was particularly successful in studies of doubly diffusive systems
(see [17] for a review), and more recently has been used with similar success to understand the behavior of both the
complex Ginzburg–Landau equation [18–20], and the dynamics in the weakly damped driven sine-Gordon equation
[21,22]. This last example is closest to the spirit of the present paper. After time-averaging, this system can be written
in the form of an autonomous weakly damped NLS equation with direct forcing. When the forcing is appropriately
small a two-mode description of this system can be written as a perturbed two-degree-of-freedom completely
integrable Hamiltonian system. Wiggins and co-workers [22–25] developed a general geometric theory for systems
of this type that describes the changes that occur under both Hamiltonian and non-Hamiltonian perturbations,
including the generation of multipulse orbits, and their progressive destruction as the damping increases. Since the
underlying Hamiltonian system for the problem under investigation is identical to that studied by these authors, we
expect that much of this behavior carries over to the non-Hamiltonian perturbation encountered in our problem,
provided only that it is sufficiently small. In our case, however, the presence of the symmetryC → −C and the
concomitant trivial stateC = 0 exert a profound effect on the behavior of the system. As a result in our system
much interesting dynamics occur ‘far’ from the Hamiltonian limit that would not be expected of the corresponding
system with direct forcing. It is this regime that is the subject of the present paper. By near-Hamiltonian we
mean thatδ, µ � O(L−2) while the term far-from-Hamiltonian refers toδ, µ = O(L−2). As shown below in
the latter regime the system (5)–(6) exhibits dynamics that resemble more closely those familiar from studies of
D2-symmetric dynamical systems, such as the shearing instability of convection or magnetoconvection [26,27],
rather than the damped nonlinear Schrödinger equation with direct forcing. We begin Section 2 by discussing the
symmetries of Eqs. (5) and (6), and summarizing the properties of their simplest solutions. We then introduce the
two-mode truncation of these equations and describe in Section 3 the results of a detailed numerical study of this
two-mode model. Much of the behavior is seen to be organized by a heteroclinic bifurcation involving the trivial
and the nontrivial but spatially uniform states. This bifurcation is associated with infinite cascades of gluing and
symmetry-switching bifurcations which themselves give rise to chaotic dynamics of Shil’nikov type. In Section 4 we
construct analytically Poincaré maps to investigate the properties of this heteroclinic bifurcation and to understand
the role of the symmetries of the PDEs in generating the dynamics that accompany it. In Section 5 the two-mode
model is used to locate solutions in the PDEs resembling the results from the ordinary differential equations (ODEs)
at identical parameter values, and its limitations for understanding the PDE results are examined. Implications of
our work for the Faraday problem are discussed in the concluding section.

2. The two-mode model

In this section we introduce the two-mode truncation of Eqs. (5) and (6) which we write in the simpler form

Cτ = −(1+ iν)C + iαCxx + i[ |C|2 + (Λ− 1)〈|C|2〉]C + µ〈C̄〉, (7)

C(x + 1, τ ) = C(x, τ), (8)

using the rescaling

τ → τ

δ
, C →

√
δ

|β|C , (α, ν, µ)→ δ (α, ν, µ). (9)
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If β < 0 the transformation(C, α, ν) → (C̄,−α,−ν) is performed first. Here the relative size of the nonlinear
terms is measured by the single real parameterΛ ≡ 1+ γ /β. In view of the above scaling all of the coefficients
appearing in Eq. (7) are formally O(1). Due to the periodic boundary conditionsC(x, τ) may be expanded in a
Fourier series,

C(x, τ) =
∞∑

n=−∞
Cn(τ)e

i2πn x, (10)

which, upon substitution into Eq. (7), yields an infinite set of ODEs:

Ċn = −(1+ iνn)Cn + µδn0C̄0 + i(Λ− 1)Cn

∞∑
k=−∞

|Ck|2 +
∑

k−l+m=n
CkC̄lCm. (11)

Here the dot denotes differentiation with respect toτ , δn0 is the Kronecker delta,νn ≡ ν + α(2πn)2, and the last
summation is a triple sum over integersk, l, andm with each variable ranging from−∞ to∞. Observe that due
to the spatial (i.e.x-) averaging, the forcing only couples to theuniform mode,C0. Consequently, the trivial state
is always stable with respect to nonuniform modes (n > 0) and the only primary bifurcation is to the nontrivial
uniform state (C0 
= 0,Cn = 0 if n 
= 0).

Eqs. (7) and (8) are equivariant under the actions of the following three symmetries:

Tχ : x → x + χ, R : x →−x, κ̂ : C →−C, (12)

which generate the groupΓ ≡ O(2) × Z2. The first two symmetries together generate the group O(2), while the
last symmetry,̂κ ∈ Z2, is a manifestation of the invariance of the original problem under translations through a half
period on the fast temporal scale (a full period of the forcing), and is a consequence of the parametric nature of the
forcing. These symmetries, when viewed within the expansion (11) are responsible for the existence of multiple
invariant subspaces. These include theuniform subspace corresponding to spatially uniform solutions (Cn = 0 if
n 
= 0), fixed by O(2); theeven subspace (Cn = 0 if n is odd), fixed byT1/2; the odd subspace (Cn = 0 if n is
even), fixed bŷκT1/2; thecosine subspace (Cn = C−n), fixed byR; and thesine subspace (Cn = −C−n), fixed by
κ̂R. In fact, the action ofTχ on either of the last two subspaces generates an entire circle of equivalent subspaces.

Since the first bifurcation from the trivial solution asµ increases is always aΓ -breaking pitchfork which produces
a pair of uniform states (related byκ̂) it is the secondary bifurcations which are of greatest interest. To study them
we write the uniform states in the formC0 = a eiϑ , where

Λa2 = ν ±
√
µ2 − 1, cos 2ϑ = 1

µ
. (13)

After linearizing Eqs. (11) about this solution we find that it is unstable to uniform perturbations whena2 < ν/Λ.
More precisely, ifνΛ > 0 the primary pitchfork is subcritical and the state (13) is unstable to uniform perturbations
until a saddle-node bifurcation atµ = 1. Stability with respect to modes withn > 0 is described by the dispersion
relations

(s + 1)2 + (νn −Λa2)2 + 2a2(Λa2 − νn) = 0. (14)

The corresponding neutral stability curves in the(Λ, a) plane are illustrated in Fig. 2a forα = 0.1 andν = 0. Note
that there are three distinct regions. IfΛ > 0 anda (equivalently,µ) is increased the uniform state repeatedly enters
and emerges from an infinite series of perhaps overlapping instability tongues. AsΛ→ 0+ the latter bifurcation
occurs at higher and higher amplitude (cf. Eq. (13)) with the amplitude becoming infinite in the limit asΛ→ 0+.
Within each tongue the uniform mode is unstable with respect to the corresponding mode. If−2 < Λ < 0 the
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Fig. 2. Neutral stability curves for (a)α = 0.1, ν = 0 and (b)α = 0.2, ν = −9.

uniform state enters (and does not leave) successively higher and higher instability tongues, accumulating instability
as it does so. Lastly, ifΛ < −2 there are no secondary bifurcations and the uniform state remains stable for allµ. For
other choices ofα andν this last situation may be modified, as seen in Fig. 2b forα = 0.2 andν = −9. Large detuning
has an especially visible effect on the shape of the instability tongues whenn is small but is less important for higher
modes. Neutral stability curves forα < 0 can be obtained from the transformation(α, ν,Λ) → −(α, ν,Λ + 2)
which leaves Eq. (14) invariant. This transformation, however, changes the amplitudea, and so is not a symmetry
of Eq. (7). As a result the properties of Eq. (7) forα > 0 andα < 0 are quite different (see Fig. 3). Fig. 3b indicates
that, forα = −0.1 and−2 < Λ < 0, the uniform state loses stability to each mode just once asµ increases, with
the amplitude at which it does so tending to infinity both with the mode number and asΛ→ 0− (cf. Eq. (13)).

Fig. 3. Neutral stability curves forν = 0: (a)α = 0.1; (b) α = −0.1. In (a) only four curves are shown but all curves (n ≥ 1) pass through
(µ,Λ) = (1,0).



162 M. Higuera et al. / Physica D 162 (2002) 155–187

WhenΛ = 0 the system (7)–(8) is highly degenerate, as can be seen by examining the subspace of spatially
uniform solutions:

Ċ0 = −(1+ iν)C0 + µC̄0. (15)

Due to the complete cancellation of the nonlinear terms forΛ = 0 the flow in this subspace is linear and, when
µ2 > 1+ ν2, unbounded. The branch of uniform states (plotted versusµ) is completely vertical; aline of such
states exists whenµ2 = 1+ ν2 but for no other values ofµ, cf. [28]. Despite this nongeneric behavior, we will see
in Section 3 that the limitΛ = 0 plays a crucial role in understanding the complex behavior exhibited by Eqs. (7)
and (8) for nonzero values ofΛ.

As already mentioned, we hope to gain insight into the properties of the full system (7)–(8) with the aid of
a low-dimensional model. To construct one, we observe that the primary bifurcation in Eqs. (7) and (8) is to a
nontrivial uniform state while the secondary bifurcation of this state produces a steady nonuniform state, both of
which are symmetric with respect to the reflectionR and hence lie in the invariant cosine subspace (or a translation
of it). Consequently, we focus on the class of reflection-invariant solutions to Eqs. (7) and (8), i.e. solutions of the
form

C(x, τ) = 1√
2
c0(τ )+

∞∑
n=1

cn(τ ) cos 2πnx, (16)

and retain only the first two terms:

C(x, τ) = 1√
2
c0(τ )+ c1(τ ) cos 2πx. (17)

Note the factor of
√

2 relatingc0 to C0. A similar procedure has been employed with success for the Kuramoto–
Sivashinsky [29] and complex Ginzburg–Landau equations [19,20]. Substituting the ansatz (17) into Eq. (7) yields
the following two-mode ODE model:

ċ0 = −(1+ iν )c0 + 1
2iΛ(|c0|2 + |c1|2)c0 + 1

2i(c̄0c1 + c̄1c0)c1 + µc̄0, (18)

ċ1 = −(1+ iν1)c1 + 1
2iΛ(|c0|2 + |c1|2)c1 + 1

2i(c̄0c1 + c̄1c0)c0 + 1
4i|c1|2c1. (19)

These equations, for which the action ofR is now trivial, are still equivariant under the actions ofT1/2 andκ̂ but
we choose instead to define the equivalent pair of operations:

R0 : (c0, c1)→ (−c0, c1), R1 : (c0, c1)→ (c0,−c1), (20)

whereR0 = κ̂T1/2 andR1 = T1/2. These actions generate the groupD2 (as didT1/2 andκ̂). As a result the equations
share many features common to other systems withD2 symmetry [26,27].

Eqs. (18) and (19) contain three types of fixed points whose properties are summarized below. In what follows
we writec0 ≡ x0+ iy0, c1 ≡ x1+ iy1, wherex0, x1, y0 andy1 are all real, and setν = 0. In general the presence of
detuning is a consequence of a slight mismatch between the wavenumber selected by the forcing frequency 2ω and
the domain lengthL. However, the passage through the different resonance tongues identified in the linear theory of
[7] does not depend on the exact value ofν adopted despite the fact that the initial pitchfork bifurcation to spatially
uniform states U becomes subcritical ifνΛ < 0. Moreover, under appropriate nondegeneracy conditions for the
eigenvalues involved, the global connections discussed in Sections 3 and 4 persist under the addition of (small)
detuning. Thus, the choiceν = 0 is made merely for simplicity and ease of comparison with [7].



M. Higuera et al. / Physica D 162 (2002) 155–187 163

2.1. Trivial state (O)

This solution has the full symmetryD2. Its stability is determined by the four eigenvalues±µ− 1 and−1± iω,
whereω ≡ 4π2α. The first two give the growth rate of perturbations within the invariant planec1 = 0, while
the complex conjugate pair describes perturbations within the invariant planec0 = 0. Whenµ = 1 there is a
supercritical pitchfork bifurcation giving rise to a branch of spatially uniform states U:c0 
= 0, c1 = 0; note that
there are no fixed points of the formc0 = 0, c1 
= 0.

2.2. Uniform steady states (U)

These solutions take the formc0 
= 0, c1 = 0, and are invariant underR1 but not underR0; when necessary we
distinguish between the twoR0-related branches using the notation U± (the± reflects the sign of thex0 coordinate).
From Eq. (13) we obtain

|Λ| |c0|2 = 2
√
µ2 − 1, cos 2ϑ = 1

µ
, (21)

whereϑ is again the phase ofc0. Sinceν = 0 (see above) these solutions are always stable to perturbations within
the planec1 = 0 with the corresponding eigenvalues,s, satisfying

(s + 1)2 − (5− 4µ2) = 0. (22)

Note that these eigenvalues are complex whenµ >
√

5/2. Stability with respect to the modec1 is described by the
characteristic equation (cf. Eq. (14))

(s + 1)2 + ω2 + µ2 − 1+ 2

Λ
(µ2 − 1)− 2ω

|Λ| (Λ+ 1)
√
µ2 − 1= 0, (23)

where againω = 4π2α. Thus, whens = 0, the uniform states U undergo a pitchfork bifurcation which breaks the
R1 symmetry and produces time-independent nonuniform states withn = 1 (NU). In the following we refer to this
bifurcation as a symmetry-breaking bifurcation (SB) since it produces states that break translation invariance. Note
that because of the form of Eqs. (22) and (23) Hopf bifurcations are not possible.

2.3. Nonuniform steady states (NU)

The fixed points NU have no symmetry; consequently, the NU solutions come in quartets, related by the actions
ofR0,R1, andR0R1. Depending on the value ofΛ, the NU states may become unstable, with increasingµ, at either
a saddle-node or a Hopf bifurcation. If a Hopf bifurcation occurs it generates four symmetry-related periodic orbits.
The fate of these and other time-dependent solutions is investigated in the following section.

Since Eqs. (18) and (19) are exact in the invariant uniform subspace of the PDE we may expect them to be
quantitatively correct only near the threshold predicted by Eq. (23), i.e. near the stability threshold for then = 1 mode
shown in Fig. 3. In fact, as discussed in detail in Section 5, their qualitative validity extends much beyond this region.
Consequently, we focus in the next section on the properties of these equations for general values of the parameterµ.

3. Numerical results

In this section we present the results of a careful numerical investigation of Eqs. (18) and (19) using a combination
of AUTO [30] and XPPAUT [31]. In addition to the simple bifurcations mentioned above these equations can exhibit
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Fig. 4. Local bifurcation sets withν = 0 andα = 0.1: symmetry-breaking bifurcation (SB) on the U branch, and Hopf and saddle-node (SN)
bifurcations on the NU branch.

extremely complicated dynamics. We find that over a large range of parameters this complex behavior is organized
by a codimension-one heteroclinic connection between the uniform and trivial states, a global bifurcation which
can be best understood in the context of a two-parameter study. We therefore setν = 0,α = 0.1 and varyΛ along
with the forcing amplitudeµ.

Fig. 4 shows the important local bifurcation sets in the(µ,Λ) plane: then = 1 neutral stability curve (labeled
SB) from Fig. 3a and the loci of Hopf and saddle-node (SN) bifurcations on the NU branch which bifurcates from
the U state along the neutral curve. Fig. 5 shows the bifurcation diagrams obtained on traversing this plane in the
direction of increasingµ at several different (but fixed) values ofΛ. Fig. 4 reveals the presence of two singularities.
There is, as discussed in Section 2, a degeneracy whenΛ = 0; at this value ofΛ spatially uniform states exist only
atµ = 1 and at no other value ofµ. It is thus not surprising that there are many bifurcation sets emanating from
the singular point(µ,Λ) = (1,0). The same type of singular behavior was observed in a model of the shearing
instability [27] in the limit of vanishing Prandtl number. In the present problem there is, in addition, evidence of
singular behavior atΛ � −1.1428, where the amplitude of the NU branch (but not the U branch) becomes infinite.
As Λ decreases toward this value the two saddle-node bifurcations on the NU branch (atµ ∼ 2.33 and 5.67)
occur at roughly constantµ values but at larger and larger amplitude (see Fig. 5g). WhenΛ < −1.1428 these two
saddle-node bifurcations no longer occur at all (see Fig. 5h).

The bifurcation diagrams of Fig. 5 show not only the U and NU branches, but also record the fate of the branches
of periodic orbits (when present) generated in Hopf bifurcations on the NU branch (Fig. 5a–f). For typical parameter
values the NU branch is S-shaped, with the Hopf bifurcations occurring on the lower part. For example, a cut (not
shown) atΛ = 1 barely crosses the locus of Hopf bifurcations but does so twice in quick succession indicating
the presence of two Hopf bifurcations back to back (see Fig. 4); connecting these bifurcations is a stable branch
of periodic orbits. WithΛ = 0.9 (Fig. 5a) there is a period-doubling bifurcation on this original branch but the
cascade (not shown) is incomplete (there are just two period-doublings followed by two reverse period-doublings).
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Fig. 5. Series of bifurcation diagrams,|c| ≡ (|c0|2+|c1|2)1/2 vs.µ, for different values ofΛ. Stable (unstable) solutions are rendered with thick
(thin) lines. Branches of periodic solutions originating in Hopf bifurcations are also shown.

Bifurcation “bubbles” of this type are familiar from problems related to the Shil’nikov bifurcation [32,33]. For
Λ = 2/3 (Fig. 5b), the value corresponding to Fig. 6, there is (presumably) a complete period-doubling cascade
and one can easily find a variety of periodic and chaotic attractors (see Fig. 6). Evidence that this cascade is not
the whole story, however, is provided in Fig. 5c. The figure shows that, forΛ = 0.645, the branch of periodic
orbits has split apart, each half terminating in a Shil’nikov-type homoclinic connection with the uniform state. The
abruptness of this transition suggests the presence of other periodic orbits with which the original periodic branch
is colliding. This interpretation is further supported by a second abrupt transition which occurs byΛ = 0.633
(Fig. 5d); the branch of periodic states produced in the second Hopf bifurcation (atµ � 4.8) now terminates in
a homoclinic bifurcation on the NU states rather than the U states. AsΛ is decreased even further (see Fig. 5e)
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Fig. 6. Attractors forν = 0,α = 0.1,Λ = 2/3 and (a)µ = 1.86, (b)µ = 2.2, and (c)µ = 2.5.

the first homoclinic bifurcation (with the U state) moves very close to the initial Hopf bifurcation, occurring
at µ � 1.112 whenΛ = 2/9, while the second homoclinic bifurcation (on the NU branch) moves closer to
the rightmost saddle-node bifurcation. The branch of periodic solutions corresponding to the former is almost
invisible on the scale of the figure. A comparison of Fig. 5e and f shows that whenΛ is small in magnitude
the bifurcation diagrams on either side ofΛ = 0 are qualitatively similar. The main differences are the change
in scale (largerµ values for negativeΛ) and the absence of the rightmost SB whenΛ < 0: although the NU
branch comes very close to the U branch for largeµ the two branches remain distinct, in contrast to the situation
for Λ > 0.

It turns out that the interesting periodic and chaotic behavior which one finds for values ofΛ such as those
used in Fig. 5b–f is associated with aheteroclinic bifurcation involving both O and U. The bifurcation sets for
this global connection, U→ O → U, are shown in Fig. 7. In this figure there are three curves of heteroclinic
bifurcations which emerge from(µ,Λ) = (1,0) into the regionΛ > 0 and three that emerge into the region
Λ < 0. ForΛ > 0 two of these connect up smoothly forming a loop while the third oscillates back and forth
an infinite number of times before terminating in a codimension-two heteroclinic bifurcation point at(µ,Λ) �
(2.5803,0.1877). The heteroclinic cycle at this point involves all three types of fixed points: O, U, and the NU
state between the two saddle-node bifurcations on the NU branch (see Section 4.2). ForΛ < 0 the three curves
of heteroclinic bifurcations remain separate (the upper two are almost indistinguishable on the scale of the figure).
Two of them continue out to large values ofµ (they have been followed toµ > 50) while the third wiggles back
and forth before terminating in another codimension-two heteroclinic cycle involving O, U, and NU. This point,
(µ,Λ) � (5.065,−0.159), is marked in Fig. 7 by a small circle; the wiggles are not visible on this scale. This point
differs from the previous codimension-two point forΛ > 0 in a fundamental way because it involves the small
amplitude NU state (after the first Hopf bifurcation) whose stable and unstable manifolds are each two-dimensional.
We defer the details until Section 4 but, to summarize, the codimension-two heteroclinic cycle forΛ > 0 involves
three points with one-dimensional unstable manifolds; the connection O→ U is structurally stable (due to the
invariance of the uniform plane) while the connections U→ NU and NU→ O areeach of codimension-one. For
Λ < 0 the connections O→ U and NU→ O, are both structurally stable but the third, U→ NU, is itself of
codimension-two.

Fig. 7 also shows the cutΛ = 2/9. This cut corresponds to the bifurcation diagram of Fig. 5e and crosses the
heteroclinic bifurcation set four times. We use thisΛ value to investigate further the dynamics associated with this
bifurcation. Along this path the first Hopf bifurcation (atµ � 1.106) occurs almost immediately after the birth of the
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Fig. 7. Heteroclinic (Het) bifurcation sets (solid lines) representing the cycle U→ O → U. The inset shows an enlargement of one of these
curves near its termination in the codimension-two heteroclinic cycle U→ NU → O → U. Note that the cutΛ = 2/9 passes through four
heteroclinic bifurcations.

NU branch (see Fig. 7). Between this Hopf bifurcation and the leftmost saddle-node bifurcation on the NU branch
atµ � 2.674 there are no stable fixed points; in this region one can easily find chaotic attractors, such as those
shown in Fig. 8, as well as a variety of interesting periodic solutions (see Fig. 9). Notice that the periodic orbits in
Fig. 9 haveZ2 symmetry, i.e. they are invariant under one of the reflections:R0,R1,R0R1. Although these particular

Fig. 8. Chaotic attractors forν = 0,α = 0.1,Λ = 2/9 and (a)µ = 1.51, (b)µ = 2.0, and (c)µ = 2.54.
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Fig. 9.Z2-symmetric periodic attractors forν = 0,α = 0.1,Λ = 2/9 and (a)µ = 1.41,R0R1-symmetry; (b)µ = 1.64,R1-symmetry; and (c)
µ = 1.875,R0-symmetry.

periodic orbits are somewhat exotic (in the sense that they do not belong to one of the basic families of periodic
solutions analyzed below but resemble something like the ‘multi-pulse’ orbits identified in perturbations of the
Hamiltonian problem) there are also sequences of simpler periodic orbits which come close to both O and U. These
orbits, characterized by their symmetry (or lack thereof) and by the number of oscillations they experience near O,
are related in a fundamental way to the heteroclinic connection U→ O → U. A bifurcation diagram obtained by
following many of these solutions numerically is displayed in Fig. 10, along with four representative orbits. This
figure shows the period (half-period for symmetric orbits) as a function ofµ. Two of the branches shown (the ones
with lowest period) close on themselves to form isolas but most of the solutions terminate in homoclinic (U± → U±)
gluing bifurcations or heteroclinic (U± → U∓) symmetry-switching bifurcations. This is evident from the dramatic
increase in period which occurs as the periodic orbits approach the fixed points. In the gluing bifurcations two
asymmetric periodic orbits come together (using U+ or U−) to create a singleR1-symmetric periodic orbit. In the
symmetry-switching bifurcations twoR0-symmetric periodic orbits transform (using both U+ and U−) into two
R0R1-symmetric periodic orbits. In this second case the symmetry neither increases nor decreases but switches
from oneZ2 symmetry to another. Under appropriate conditions each of these processes is associated, as in the
usual Shil’nikov scenario [33,34], with cascades of saddle-node and either period-doubling or symmetry-breaking
bifurcations; theZ2-symmetric branches undergo symmetry-breaking instead of period-doubling bifurcations since
Z2-symmetric periodic orbits do not (generically) have negative Floquet multipliers [35]. Note also that the way
the two branches (e.g. an asymmetric and anR1-symmetric branch) merge with increasing period differs from that
of the corresponding Shil’nikov problem in three dimensions with symmetry [36]. This is because the reflection
symmetry in the latter case must be a complete inversion [34,37], while in our case the relevant symmetryR1 is
not (see Eq. (20)); in particularR1 does not act on the swirling part of the flow near U± in the planec1 = 0. In
our case the two types of branches oscillate “in phase” around the homoclinic or heteroclinic points as their period
increases (cf. Fig. 10), while they oscillate “out of phase” in the three-dimensional case with inversion symmetry.
These differences between the standard situation and ours are a direct consequence of the fact that our two-mode
truncation is four-dimensional, allowing new types of connection that are not possible in three dimensions. Note
that in Fig. 10 we have only investigated the first two of the main heteroclinic bifurcations (recall that there are
four such bifurcations whenΛ = 2/9) and that there aremany periodic solutions (e.g. those of Fig. 9) which have
not been shown; these may form isolas or terminate at other, subsidiary, connections. In short, the full situation is
extremely complex.
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Fig. 10. Cascades of gluing (A+A↔ R1) and symmetry-switching (R0+R0 ↔ R0R1+R0R1) bifurcations forν = 0,α = 0.1 andΛ = 2/9.
These accumulate from opposite sides on the principal heteroclinic bifurcations, the first two of which, labeled (1) and (2), are shown (upper
panel). At point (3) there is a homoclinic connection to NU. The lower panel shows an enlargement of the region near point (1). The diagrams
show the period (half-period) of asymmetric (symmetric) periodic orbits as a function ofµ.
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4. Analysis

In this section we offer a geometric interpretation for the heteroclinic behavior observed in Eqs. (18) and (19) and
use Poincaré return maps (cf. [33,38]) to analyze the global bifurcations responsible for it. Since heteroclinic cycles
involve multiple connections they are in general difficult to observe unless the problem in question possesses a
symmetry which preserves some of these connections. In Eqs. (18) and (19), theD2 symmetry is responsible for the
existence of the two invariant planesc1 = 0 andc0 = 0. Since there are no nontrivial solutions of the formc0 = 0
this second invariant plane is of minimal consequence. The invariance of the space of spatially uniform solutions is,
however, a property not only of Eqs. (18) and (19) but of the PDEs (7) and (8) as well, and this fact has a substantial
influence on the dynamics of both systems. This is because once the trivial state O loses stability to U (forν = 0,
Λ 
= 0 in a supercritical pitchfork bifurcation) the one-dimensional unstable manifold of O, Wu(O), lies within the
uniform planec1 = 0 and is therefore contained in the stable manifold of U, Ws(U). This is because the states U±
are the only spatially uniform attractors of both the model and the PDEs. When U subsequently loses stability giving
rise to the NU branch it acquires a one-dimensional unstable manifold, Wu(U), which may, upon tuning a single
parameter, intersect the three-dimensional stable manifold of O, Ws(O). In this case there are structurally stable
connections O→ U± (related by the symmetryR0) which when combined with the structurally unstable connections
U± →O generate codimension-one heteroclinic cycles U→ O→ U. In this situation four symmetry-related cycles
(excluding cycles with more than two segments) are simultaneously present (see Fig. 11), each associated with one of
the four parts of Wu(U). We denote these by Wu±(Uκ), whereκ = ±,R0 takes Uκ to U−κ , andR1 relates Wu+(Uκ) to
Wu−(Uκ).

4.1. Heteroclinic bifurcation: U → O→ U

To understand what happens in the neighborhood of the heteroclinic cycles U→ O→ U it is useful to construct
Poincaré return maps and study the fixed point solutions which correspond to periodic solutions of the original
vector field. We proceed by first obtaining local maps from the linearized flow at O and U. Near O, the eigenvalues
in the c0 = 0 plane are complex and it is natural to use polar coordinates defined by(x1, y1) = r( cosθ, sinθ).

Fig. 11. Sketch of the codimension-one heteroclinic connection with the four cycles U± → O→ U±.
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We therefore write

ẋ0 = σx0, ẏ0 = −- y0, ṙ = −r, θ̇ = −ω, (24)

whereσ = µ − 1 > 0, - = µ + 1, andω = 4π2α (see Section 2). Next we define appropriate Poincaré
sections,

ΣO : {(x0, y0, r, θ)||x0| ≤ ε, |y0| ≤ ε, r = ε}, Σ±
O : {(x0, y0, r, θ)|x0 = ±ε, |y0| ≤ ε, r ≤ ε},

and obtain the mapTO : ΣO → Σ+
O ∪Σ−

O :

TO :



x0

y0

ε

θ


 �→




ε sign(x0)

y0

∣∣∣x0

ε

∣∣∣-/σ
ε

∣∣∣x0

ε

∣∣∣1/σ
θ − ω

σ
log

∣∣∣∣ εx0

∣∣∣∣



. (25)

Near the uniform fixed points U we assumeµ >
√

5/2 and therefore that the eigenvalues within thec0 plane are
complex conjugates,−1± iΩ. The other two eigenvalues,s1 > 0 and−s2 < 0, are taken to be real. One can then
choose normal coordinates which satisfy

Ṙ = −R, φ̇ = Ω, ż = s1z, ẇ = −s2w. (26)

Here we have again used a polar representation for two of the local variables (within the uniform plane) and, to
simplify notation, the reflectionR0 has been absorbed into the definition of these coordinates; a point(R, φ, z,w)

in the neighborhood of Uκ is mapped byR0 to a point in the neighborhood of U−κ with exactly the same local
coordinates. We next define the surfaces

ΣU : {(R, φ, z,w)|R = ε, |z| ≤ ε, |w| ≤ ε}, Σ±
U : {(R, φ, z,w)|R ≤ ε, z = ±ε, |w| ≤ ε},

and arrive at the local mapTU : ΣU → Σ+
U ∪Σ−

U :

TU :



ε

φ

z

w


 �→




ε

∣∣∣ z
ε

∣∣∣1/s1
φ + Ω

s1
log

∣∣∣∣εz
∣∣∣∣

ε sign(z)

w

∣∣∣ z
ε

∣∣∣s2/s1



. (27)

Note that, by construction, this map is independent ofκ.
The next step is to construct global maps by expanding about the exact heteroclinic cycle created when Wu(U) ⊂

Ws(O). For convenience we introduce a rescaled bifurcation parameterλ, satisfyingλ = 0 at the heteroclinic
bifurcation, and write Wu±(Uκ) ∩ΣO = (−κλ, κȳ0 + cκλ, ε, θ̄ + dλ± π/2); Wu(O) ∩ΣU = (ε, φ̄h + bλ,0,0).
Expanding to first order and taking into account the symmetriesR0 andR1 leads to the mapsTO→Uκ : ΣκO → ΣU
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andT ±Uκ→O : Σ±
U → ΣO:

TO→Uκ :



κε

y0

r

θ


 �→




ε

φ̄h + A1κy0 + bλ
A2r cos(θ2 + θ)
A3r cos(θ3 + θ)


 , (28)

T ±Uκ→O :



R

φ

±ε
w


 �→




κ(B1R cos(φ1 + φ)± B4w − λ)
κ(ȳ0 + B2R cos(φ2 + φ)± B5w + cλ)

ε

θ̄ ± π
2
+ B3R cos(φ3 + φ)± B6w + dλ


 . (29)

Here, the symmetryR1 is responsible for eliminating many of the terms inTO→Uκ while the form of each
map is also subject to requirements such asT +Uκ→O(R, φ, ε,w) = R1 ◦ T −Uκ→O(R, φ,−ε,−w); near the ori-
ginR1(x0, y0, r, θ) = (x0, y0, r, θ + π). These maps, in appropriate combinations, can be used to study the many
periodic solutions of Eqs. (18) and (19). We do not attempt to address all of the possibilities but concentrate on
the prominent gluing and symmetry-switching bifurcations observed in Section 3. To do this we note that the first
component (x0 = −κλ) of Wu±(Uκ)∩ΣO determines whether the next intersection is withΣ+

O orΣ−
O . Specifically,

if λ < 0, Wu (Uκ ) may intersectΣκO and return to a neighborhood of Uκ , but if λ > 0 (and small) then Wu(Uκ )
crossesΣ−κ

O and subsequently visits the neighborhood of U−κ . In other words, ifλ < 0 there is the possibility
of exact homoclinic connections, Uκ → (neighborhood of O)→ Uκ , while if λ > 0 there is potential for exact
heteroclinic connections, Uκ → (neighborhood of O)→ U−κ . In the first case homoclinic connections occur when
TO→Uκ ◦TO◦T ±Uκ→O (0, φ,±ε,0) ∈Ws(Uκ)∩ΣU while if λ > 0 the heteroclinic connections between Uκ and U−κ
requireTO→U−κ ◦TO ◦T ±Uκ→O (0, φ,±ε,0) ∈Ws(U−κ)∩ΣU. Each of these conditions leads to the same equation

sin
(
θ̃2 + dλ+ ω

σ
log|λ|

)
= 0, (30)

whereθ̃2 = θ2 + θ̄ − (ω/σ)logε. The solutions of Eq. (30) are easy to visualize (see Fig. 12). There is an infi-
nite cascade of homoclinic connections, Uκ → Uκ , for λ < 0 and an infinite cascade of heteroclinic connections,

Fig. 12. Intersections with the horizontal axis,λ̄n andλ̄m, give solutions to Eq. (30).
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Uκ → U−κ , for λ > 0. Both series of parameters,λ̄n < 0 andλ̄m > 0, accumulate geometrically atλ = 0 with
the scaling:

lim
n→∞

|λ̄n+1|
|λ̄n|

= lim
m→∞

λ̄m+1

λ̄m
= e−πσ/ω. (31)

Note that this accumulation rate depends on the eigenvalues at the origin, and hence is nonuniversal.
To understand what happens near thenth homoclinic connection (atλ = λ̄n < 0) one can perform a local analysis

by definingλ = λ̄n+ λ̃, where|λ̃| � |λ̄n|. With λ̃ small enough, the time spent near the origin, O, can be neglected
in comparison with the much larger amount of time spent near Uκ . This allows the compositionTO→Uκ ◦TO◦T ±Uκ→O

to be replaced by a single mapT ±Uκ→Uκ
: Σ±

U → ΣU which comes from linearizing about Wu±(Uκ ). Thus, after

defining Wu±(Uκ) ∩ΣU = (ε, φ̄ + eλ̃,±f λ̃,±w̄ ± gλ̃) we obtain

T ±Uκ→Uκ
:



R

φ

±ε
w


 �→




ε

φ̄ + eλ̃+D1R cos(φ̃1 + φ)±D4w

±(f λ̃+D2R cos(φ̃2 + φ)±D5w)

±(w̄ + gλ̃+D3R cos(φ̃3 + φ)±D6w)


 . (32)

The compositionT ±Uκ→Uκ
◦TU defines a return map fromΣU into itself. Fixed points of this map correspond to asym-

metric periodic orbits of Eqs. (18) and (19) whileR1-symmetric periodic orbits satisfyT ±Uκ→Uκ
◦ TU(ε, φ, z,w) =

(ε, φ,−z,−w). Both of these cases are described simultaneously by the equation

±|z| − f λ̃ = D̃2|z|1/s1 cos

(
Φ̃2 − Ω

s1
log|z|

)
± D̃5|z|s2/s1, (33)

where

D̃2 = ε1−1/s1D2, D̃5 = D5w̄ε
−s2/s1, Φ̃2 = φ̃2 + φ̄ + Ω

s1
logε.

In deriving this expression we assumed|z|, |λ̃| � ε. Eq. (33) is similar to the Shil’nikov equation [33,34] and
depends critically on the magnitude ofs1 ands2. In fact Eq. (23) implies thats2 = 2+ s1, indicating thats2/s1 >
1/s1 and hence that the last term in Eq. (33) becomes negligible compared with the first for sufficiently small
|z|. In this case the conditions1 > 1 guarantees that there are cascades of saddle-node, period-doubling, and
symmetry-breaking bifurcations centered atλ̃ = 0. For example, whenΛ = 2/9 this condition is satisfied in the
interval 1.123� µ � 3.960. We construct the solutions of Eq. (33) in Fig. 13 by plotting separately the left-hand
and right-hand sides of the equation. Intersections along the line with positive slope correspond to asymmetric

Fig. 13. Sketch of solutions to Eq. (33) indicating that both asymmetric andR1-symmetric periodic orbits are created in pairs. In case (a)λ̃ 
= 0
there is an even (and finite) number of both types, while in (b)λ̃ = 0 the numbers are infinite.
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Fig. 14. Enlargements of the two gluing and symmetry-switching cascades from Fig. 10 illustrating the geometric scaling of Eq. (30).

solutions while those along the line of negative slope indicateR1-symmetric solutions. Note that these solutions are
created, respectively, in quartets and pairs.

Whenλ > 0 one can concentrate on the neighborhood of the heteroclinic connections Uκ → U−κ and perform
the same type of analysis. In fact, the two cases are formally identical. The difference is that this time the “±” in
Eq. (33) signifiesR0- andR0R1-symmetric periodic orbits, respectively. Thus, altogether, the analysis which led
to Eqs. (30), (31) and (33) is consistent with the numerical results of Section 3. In particular, it predicts cascades
of homoclinic (λ < 0) and heteroclinic (λ > 0) connections accumulating at the principal heteroclinic bifurcation
(λ = 0). These can be identified as the gluing and symmetry-switching bifurcations shown in Fig. 10. Whenλ < 0
the periodic solutions created are alternately asymmetric andR1-symmetric while ifλ > 0 the symmetry switches
betweenR0 andR0R1. Furthermore, each of these associated connections can contain (fors1 > 1) dynamics
of Shil’nikov type and its attendant chaos. The scaling predicted by Eq. (30), approximately 0.70 and 0.36 for
the heteroclinic bifurcations atµ � 1.455 and 2.278, respectively, can be compared with Fig. 14 which shows
enlargements of the two cascades in Fig. 10. Direct measurement from this figure yields ratios of 0.69 and 0.35
which are in excellent agreement with Eq. (30). In addition, Eq. (33) leads to a prediction for the scaling of individual
saddle-node cascades:

lim
k→∞

λ̃k+1

λ̃k
= −e−π/Ω, (34)

where the saddle-node bifurcations, on alternating sides (of, e.g.λ̄n), have been denoted byλ̃k. Eq. (34) gives values
of −0.1853 atµ � 1.455 and−0.4534 atµ � 2.278; this is also consistent with Fig. 14 and the fact that in the
second cascade (Fig. 14b) the saddle-node bifurcations are considerably more prominent than in the first.

4.2. Codimension-two point: U → NU → O→ U

Fig. 7 shows that for positiveΛ one of the curves marking heteroclinic bifurcations terminates at(µ,Λ) �
(2.5803,0.1877). This value ofµ falls between the two saddle-node bifurcations on the NU branch; three distinct
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NU solutions are therefore present (see Fig. 5e). One of these is stable and cannot be involved in heteroclinic
dynamics while the lower branch after the Hopf bifurcation has a two-dimensional stable and a two-dimensional
unstable manifold. The third NU state, NU0, lying between the two saddle-node bifurcations has a three-dimensional
stable manifold Ws(NU0) and a one-dimensional unstable manifold Wu(NU0), and can therefore participate in the
simplest heteroclinic connections involving either O or U. Since the intersection ofWu(U) (one-dimensional) with
Ws(NU0) is of codimension-one the locus of connections U→ NU0 is represented by a curve in the(µ,Λ)
plane. Likewise, the intersection of Wu(NU0) with Ws(O) (three-dimensional) is also of codimension-one and
so is represented by a second curve in the(µ,Λ) plane. Generically, these two curves intersect, and the point of
intersection corresponds to a heteroclinic cycle of the type U→ NU → O → U. In the neighborhood of such a
codimension-two point one can again use Poincaré maps to study nearby periodic solutions and related bifurcations.
We focus first on the curve of heteroclinic bifurcations U→ O → U (see Fig. 7) which appears to emanate from
this sort of intersection. We assume that the NU state of interest, NU0 (hereafter simply NU), is hyperbolic with two
real eigenvalues (one stable, and one unstable) and two complex eigenvalues (both stable). This is the case when
(µ,Λ) � (2.5803,0.1877). Near NU we can therefore find normal coordinates(u, v, ρ, ψ) satisfying

u̇ = βu, v̇ = −γ v, ρ̇ = −δ ρ, ψ̇ = =. (35)

Hereβ, γ , andδ are positive and unrelated to the earlier variables of the same names. We define next the Poincaré
sections

ΣNU : {(u, v, ρ, ψ)||u| ≤ ε, |v| ≤ ε, ρ = ε}, Σ±
NU : {(u, v, ρ, ψ)|u = ±ε, |v| ≤ ε, ρ ≤ ε},

and obtain the mapTNU : ΣNU → Σ+
NU ∪Σ−

NU:

TNU :



u

v

ε

ψ


 �→




ε sign(u)

v

∣∣∣u
ε

∣∣∣γ /β
ε

∣∣∣u
ε

∣∣∣δ/β
ψ + =

β
log

∣∣∣ ε
u

∣∣∣



. (36)

Although there are four symmetry-related NU states, we have once again absorbed the symmetries (R0 andR1)
into the definition of the local variables(u, v, ρ, ψ). The mapTNU lacks any explicit dependence on the sign of its
absolute coordinates. It will sometimes be necessary, nonetheless, to distinguish the four symmetry-related states;
we do this with the notation, NU±κ . Here NU++ is associated with Wu+(U+) and the symmetries act according to
R0(NU±

κ ) = NU±
−κ , R1(NU±

κ ) = NU∓
κ . Furthermore, we can assume without loss of generality that any trajectory

approaching O after leaving NU crossesΣ+
NU. Trajectories which crossΣ−

NU are lost (they may, e.g. be attracted to
the stable NU state). We can now expand about the exact heteroclinic cycle at the codimension-two point to obtain
two global maps,TUκ→NU±

κ
: Σ±

U → ΣNU andTNU±
κ→O : Σ+

NU → ΣO:

TUκ→NU±
κ

:



R

φ

±ε
w


 �→




E1R cos(φ̃1 + φ)± E4w + λ1

v̄ + E2R cos(φ̃2 + φ)± E5w + eλ1 + f λ2

ε

ψ̄ + E3R cos(φ̃3 + φ)± E6w + gλ1 + hλ2


 , (37)
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Fig. 15. (a) Bifurcation set for the heteroclinic cycle U→ O → U in the(λ1, λ2) plane. (b) Sketch of a heteroclinic cycle at a particular point
along this curve.

TNU±
κ→O :



ε

v

ρ

ψ


 �→




κ (G1ρ cos(ψ1 + ψ)+G4v + λ2)

κ
(
ŷ0 +G2ρ cos(ψ2 + ψ)+G5v + lλ1 +mλ2

)
ε

θ̂ ± π
2
+G3ρ cos(ψ3 + ψ)+G6v + pλ1 + qλ2


 . (38)

Herev̄, ψ̄ , ŷ0, andθ̂ are parameters determined by the location of the exact heteroclinic cycle(s) at(λ1, λ2) = (0,0)
while λ1 andλ2 are linear combinations ofµ andΛmeasuring the distance from the codimension-two point. Note
that because of the way they have been chosen,λ1 controls the breaking of the connection U→ NU while a nonzero
λ2 breaks the connection NU→ O. In other words, theλ1 andλ2 axes are precisely the bifurcation sets for the
heteroclinic connections NU→ O and U→ NU, respectively.

The goal of explaining Fig. 7 prompts us to look for exact heteroclinic connections of the form U→ (neighborhood
of NU) → O → U (see Fig. 15b). This can be done, for example, by starting on Wu+(U+) ∩ Σ+

U = (0, φ, ε,0)
and requiring that the compositionTNU+

+→O ◦ TNU ◦ TU+→NU+
+ maps this point somewhere within Ws(O). Such a

prescription leads to the equation

λ2 + G̃1λ
δ/β

1 cos

(
ψ̃ + gλ1 + hλ2 − =

β
logλ1

)
+ G̃4(v̄ + eλ1 + f λ2)λ

γ/β

1 = 0, (39)

with λ1 positive and

G̃1 = ε1−δ/βG1, G̃4 = ε−γ /βG4, ψ̃ = ψ1 + ψ̄ + =
β

logε.

The curve defined by Eq. (39) has been plotted in Fig. 15a (cf. Fig. 7) using the numerical valuesβ � 1.204,
γ � 3.206, δ = 1, and= � 7.454 obtained from the eigenvalues of the relevant NU state at(µ,Λ) �
(2.5803,0.1877), and arbitrary choices for the remaining parameters. In Fig. 15b we sketch the simplest kind
(asymmetric, two segments) of heteroclinic cycle along this curve. We identify the oscillations in the(λ1, λ2)

plane with those along the curve of heteroclinic cycles U→ O → U in Fig. 7 near the codimension-two
point.
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Fig. 16. Bifurcation sets for the heteroclinic connections NU→ U accumulating on theλ1 axis, the locus of the connections NU→ O→ U.

Although an analysis of the codimension-two point U→ NU → O → U has been successful in explaining
several features of Fig. 7 this bifurcation point is also the organizing center for a great deal of additional dynamics.
We begin a more thorough exploration by recalling that theλ1 axis represents the heteroclinic connection NU→ O.
At a small but finite distance away from that axis the connection is broken. However, because of the structurally
stable connection O→ U the unstable manifold of NU is propelled, after missing O, toward the neighborhood
of either U+ or U−; this suggests the possibility of additional connections NU→ U. Furthermore, from the map
TNU±

κ→O one can see that heteroclinic connections of the form NU±
κ → Uκ are only possible ifλ2 > 0 while

the other kind, NU±κ → U−κ , requireλ2 < 0. To search for such connections we start on Wu(NU) and apply the
condition:TO→Uεκ ◦ TO ◦ TNU±

κ→O (ε,0,0, ψ) ∈ Ws(U)∩ΣU, whereε = sign(λ2). This leads to the equation (cf.
Eq. (30)):

sin
(
θ̂2 + pλ1 + qλ2 + ω

σ
log|λ2|

)
= 0, (40)

whereθ̂2 = θ2+θ̂−(ω/σ)logε. The solutions are sketched (for smallλ1, λ2) in Fig. 16. Note that there are an infinite
number of curves representing each connection and that these accumulate with the scaling of Eq. (31), exp(−πσ/ω),
on theλ1 axis from either side. What makes these curves interesting is the fact that they cross theλ2 axis. Whenever
this happens there are codimension-two heterocliniccycles. Forλ2 > 0 these take the form Uκ → NU±

κ → Uκ
while forλ2 < 0 the cycles Uκ → NU±

κ → U−κ → NU±
−κ → Uκ alternate between U+ and U− (i.e. they haveR0

orR0R1 symmetry). Thus, associated with the original codimension-two point (U→ NU → O→ U) are cascades
of additional codimension-two points (U→ NU → U) which have their own dynamical consequences. To pursue
this issue, we focus (forλ2 > 0) on one of these points, say(λ1, λ2) = (0, λ̄2), and perform a local analysis by
settingλ2 = λ̄2 + λ̃2 with |λ̃2| � λ̄2. If λ̃2 is small enough then trajectories come much closer to U and NU than
they do to O. It is thus advantageous to neglect the origin and use a new global map,TNU±

κ→Uκ : Σ+
NU → ΣU,

given by

TNU±
κ→Uκ :



ε

v

ρ

ψ


 �→




ε

φ̂ + b̂λ1 + ĉλ̃2 +H1ρ cos(ψ̂1 + ψ)+H4v

±(d̂λ̃2 +H2ρ cos(ψ̂2 + ψ)+H5v)

±(ŵ + êλ1 + f̂ λ̃2 +H3ρ cos(ψ̂3 + ψ)+H6v)


 . (41)

This new map in combination withTU, TNU, andTUκ→NU±
κ

allows, among other things, the determination of
additional (codimension-one) bifurcation curves. For example, breaking the connection U→ NU may lead (for
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λ1 > 0) to homoclinic orbits, Uκ → Uκ . Finding these homoclinic bifurcation sets is equivalent to finding points
(0, φ, ε,0) ∈ Wu+(Uκ)∩Σ+

U which are mapped to Ws(Uκ) underTNU+
κ→Uκ ◦ TNU ◦ TUκ→NU+

κ
. Such points satisfy

the equation

d̂λ̃2 + Ĥ2λ
δ/β

1 cos

(
Ψ̂2 + gλ1 + hλ̃2 − =

β
logλ1

)
+ Ĥ5(v̂ + eλ1 + f λ̃2)λ

γ/β

1 = 0, (42)

whereλ1 must be positive, and

Ĥ2 = H2ε
1−δ/β, Ψ̂2 = ψ̂2 + ψ̄ + hλ̄2 + =

β
logε, v̂ = v̄ + f λ̄2, Ĥ5 = H5ε

−γ /β .

Eq. (42) is virtually identical in form to Eq. (39) and defines a curve in the(λ1, λ̃2) plane which is well represented
by Fig. 15a under the substitutionλ2 → λ̃2.

The other way of breaking the cycle Uκ → NU±
κ → Uκ (i.e. perturbing the connection NU→ U) provides two

more possibilities for codimension-one cycles: NU±
κ → NU±

κ and NU±κ → NU∓
κ → NU±

κ . These cycles can be
located, for example, by looking at NU+κ and subjecting a point(ε,0,0, ψ) ∈ Wu(NU) ∩Σ+

NU to the requirement

TUκ→NUεκ ◦ TU ◦ TNU+
κ→Uκ (ε,0,0, ψ) ∈ Ws(NU). Hereε = sign(d̂λ̃2), reflecting the fact that it is the parameter

λ̃2 which determines whether the connection NU+
κ → Uκ breaks ‘up’ or ‘down’. Both cases are described by the

equation

λ1 + Ê1|λ̃2|1/s1 cos

(
Φ̂1 + b̂λ1 + ĉλ̃2 − Ω

s1
log|λ̃2|

)
+ εÊ4

(
ŵ + êλ1 + f̂ λ̃2

)
|λ̃2|s2/s1 = 0, (43)

where

Ê1 = E1ε

∣∣∣∣∣ d̂ε
∣∣∣∣∣
1/s1

, Φ̂1 = φ̃1 + φ̂ + Ω
s1

log

(
ε

d̂

)
, Ê4 = E4

∣∣∣∣∣ d̂ε
∣∣∣∣∣
s2/s1

.

This equation is analogous to Eqs. (39) and (42) except that now the ‘independent’ variable isλ̃2 and may be
either positive or negative. We remark that the other cascade (λ2 < 0) of codimension-two points can be treated
in a similar manner. The required mapTNU±

κ→U−κ is of the same form asTNU±
κ→Uκ given above (the parameters

will take different values, of course) and the relevant codimension-one connections (which imply cycles) are also
completely analogous. Eq. (42), with appropriate reinterpretation, describes the bifurcation set for Uκ → U−κ
while the connections NU±κ → NU±

−κ and NU±κ → NU∓
−κ correspond to solutions of Eq. (43). We illustrate

the full situation predicted by the Poincaré maps in Fig. 17. This can be compared with Fig. 18 which shows
many of the same bifurcation sets obtained from Eqs. (18) and (19). Here we have continued, inµ andΛ, the
first three gluing bifurcations of Fig. 10 (atµ � 1.112, 1.149, and 1.204) and the first three symmetry-switching
bifurcations (atµ � 1.647, 1.573, and 1.533). Because the symmetry-switching bifurcations are bounded by a
curve of heteroclinic bifurcations they form closed curves and do not reach the region of the codimension-two
point (µ,Λ) � (2.5803,0.1877) (there are presumably others, below the oscillating curve of heteroclinic bifur-
cations, which do). However, the three gluing bifurcations (Uκ → Uκ ) terminate at three of the codimension-two
points (U→ NU → U) identified above. Evidence of this is provided by following the connections U→ NU
(close to the set of saddle-node bifurcations in Fig. 18), as well as NU→ O, and NU±κ → Uκ (only three of
the latter are shown). It is clear that the cascades of this section and of Section 4.1 are not independent. The
cascade of gluing bifurcations associated with the principal heteroclinic bifurcation U→ O → U terminates
in the cascade of codimension-two cycles U→ NU → U associated with the main codimension-two point
U → NU → O→ U.
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Fig. 17. Dynamics near the codimension-two point U→ NU → O → U. A curve of heteroclinic cycles U→ O → U emerges from
(λ1, λ2) = (0,0)while three separate curves (dotted) of homoclinic or heteroclinic cycles are generated at each of the associated codimension-two
points (solid dots) U→ NU → U.

Fig. 18. Additional global bifurcation sets for Eqs. (18) and (19) including three gluing (Uκ → Uκ ) and three symmetry-switching (Uκ → U−κ )
bifurcations (dotted lines). (b) Enlargement near the codimension-two point (∗): U → NU → O→ U.
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5. Comparison with the PDEs

Since it is the dynamics of the PDEs that are of ultimate interest, one would like to understand how faithfully
their behavior is represented by a truncated set of ODEs. While there is no a priori reason to assume that a finite
number of modes can accurately capture the effect of the nonlinear terms, it turns out that in many problems they
do [17,20,27]. To investigate this question we have integrated the PDE system (7)–(8) using fast Fourier transforms
(FFTs) in space and a fourth-order Runge–Kutta method in time. Starting with random initial conditions, we find
that attractors for Eqs. (7) and (8) are frequently reflection-symmetric (inx) and as such are well described by
restricting to the cosine subspace. Whenever this is the case we have used initial conditions close to the cosine
subspace for ease of comparison with the results from the ODEs. In addition, numerical simulations of Eqs. (7) and
(8) indicate that the influence of the higher modes is often negligible, particularly for periodic orbits and chaotic
attractors which are approximately heteroclinic. Fig. 19 shows that this heteroclinic behavior, described in Sections
2–4 within the two-mode model (18)–(19), also occurs in the full PDEs.

To examine the influence of higher modes (n > 1) on the dynamics we have computed|c0|, |c1|, and
ΣNn=2|cn| as functions of time, after first allowing transients to die away. The solutions in Fig. 20 represent
typical chaotic attractors that can be found forΛ = 2/9 and 1.5 � µ � 2.8, together with the time series
representing their harmonic content. Notice that in all cases the amplitude of the higher modes (thick lines in
the right-hand set of panels) remains small, indicating that these modes do not play a significant role in the
dynamics.

While such a low-dimensional description is not unexpected for small amplitudes (i.e. near onset atµ = 1)
Eqs. (7) and (8) continue to be described by the two-mode truncation even relatively far from the primary bifurcation.
Notice, e.g., that forΛ = 2/9 andµ � 1.875 (see Fig. 3a) the uniform states are unstable to at least two nonuniform
modes and one might therefore suppose that a two-mode truncation will be of dubious validity. However, we
often find that the system (18)–(19) continues to apply (see Fig. 20b and c). This increased range of validity is
likely due to the prominence of the heteroclinic bifurcation since for orbits which are approximately heteroclinic
the potentially complicated dynamics of the full PDEs are controlled mainly by symmetries and by the local
properties of the fixed points O and U where most time is spent; recall that O and U are the same in both the PDEs
(7)–(8) and the ODE model (18)–(19). Also important is the fact, mentioned in Section 2, that due to the spatial
averaging of the forcing term in Eq. (7) the origin is always stable with respect to nonuniform modes. The higher
modes are thus quickly damped under the attracting influence of the trivial state. We conclude that the evident
low-dimensional behavior of the PDEs (7)–(8) is related to the presence of the heteroclinic bifurcation involving
the origin and its associated cascades. Whenever one is relatively close to these bifurcations in parameter space

Fig. 19. Stable periodic orbits of the PDEs with different symmetries whenΛ = 2/9. Gluing and symmetry-switching bifurcations, as in the
ODEs, appear to be present.
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Fig. 20. Relative importance of the Fourier components forΛ = 2/9: chaotic attractor at (a)µ = 1.51, (b)µ = 2.0, and (c)µ = 2.8. The thin,
medium and thick lines correspond to|c0|, |c1| andΣNn=2|cn|, respectively.

(see Fig. 7) the dynamics will typically be dominated by the many periodic and chaotic attractors associated with
them (cf. Section 4). For parameter values outside of this regime (e.g.µ � 3 whenΛ = 2/9) the dynamics are
no longer heteroclinic and hence are more likely to involve other modes. Additional numerical simulations with
µ � 3.5 (not shown) confirm that the two-mode ODE model no longer gives an adequate description of the PDE
dynamics.

WhenΛ = 2/3, the value used in [7] for Fig. 1, the heteroclinic bifurcation does not actually occur (see Fig. 7),
but the dynamics may nonetheless be dominated by the various periodic orbits and related chaotic attractors which
exist in nearby regions of parameter space; gluing bifurcations still occur (see Fig. 18a) even though the full cascade
does not. Fig. 21 shows several chaotic attractors forΛ = 2/3 demonstrating that the dynamics are again dominated
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Fig. 21. Relative importance of the different Fourier components whenΛ = 2/3 and (a)µ = 1.85, (b)µ = 1.925, and (c)µ = 3.2. The thin,
medium and thick lines correspond to|c0|, |c1| andΣNn=2|cn|, respectively.

by the first two modes. As forΛ = 2/9, this low-dimensional behavior does not hold for all values ofµ and the
two-mode ODE model eventually fails. But in contrast to the caseΛ = 2/9, whenΛ = 2/3 this failure can arise
for two reasons. The first failure of Eqs. (18) and (19) is due to aR symmetry-breaking bifurcation, which occurs at
µ ∼ 3.4. In this case it is not the two-mode nature of the model that becomes inappropriate (the uniform state does
not lose stability to then = 2 mode untilµ � 4.093) but the restriction to the cosine subspace. Fig. 22a shows a
solution, which possesses low-dimensional character but is not reflection-symmetric and is therefore not contained
in the system (18)–(19). After a narrow interval (3.4 � µ � 3.46) the dynamics recover their reflection-symmetric
character, and subsequently (see Fig. 1) a second window of stable uniform states appears for 3.5 � µ � 4.3. The
system becomes abruptly chaotic forµ � 4.3, with many modes playing a role in the dynamics and no detectable
heteroclinic (or homoclinic) structure. This situation, however, does not persist uniformly asµ is increased even
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Fig. 22. Space–time diagrams corresponding to (a) a quasiperiodic attractor without reflection symmetry forΛ = 2/3 andµ = 3.4 and (b) a
periodic attractor with reflection symmetry forΛ = 2/9 andµ = 3.46.

further. In particular, forµ = 4.65 trajectories spend a long time near the invarianteven subspace (Cn = 0 if n is
odd), occasionally coming under the influence of unstable periodic orbits in this subspace and being briefly ejected
from the even subspace (see Fig. 23). These excursions are associated with episodic drift of the solution (type I drift
in the terminology of Martel et al.). This interesting behavior is reminiscent of the so-called blowout bifurcation
(see, e.g. [39]) but its description is beyond the scope of the present paper. In the present case, the attractor is
completely contained in the even subspace (with dynamics dominated by the first two even modes,n = 0,2, see
Fig. 24) over a moderately large interval, 5.0 � µ � 6.5, but loses stability, apparently in the above manner, asµ

decreases belowµ � 5.0. We remark that blowout bifurcations provide a general mechanism by which attractors
in invariant subspaces lose stability with respect to perturbations out of the subspace.

Fig. 23. Norm of the first three modes vs.τ forΛ = 2/3 andµ = 4.65. The thin, medium, and thick lines denote|c0|, |c2|, and|c1|, respectively.
Note the episodic excitation of the modec1.
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Fig. 24. Relative importance of the even Fourier modes forΛ = 2/3 andµ = 5.5. The thin, medium and thick lines correspond to|c0|, |c2| and
ΣNn=2|c2n|, respectively.

6. Conclusions

In this paper we have examined in detail the mechanism responsible for the presence of complex dynamics in the
damped nonlocal parametrically forced nonlinear Schrödinger equation. Equations of this type arise naturally in
the nearly inviscid Faraday system, as well as in optics where they describe pulse propagation down optical fibers
with dispersion management. The results shed much light on earlier results for this equation obtained numerically
by Martel et al. [7] in the two casesΛ = 2/3,−1. Positive values ofΛ are in general much more interesting. We
have seen that for this problem a two-mode Galerkin truncation not only captured the dynamics of the PDEs over
a substantial range of forcing amplitudes, but also enabled us to establish that the observed behavior in the PDEs
is very likely due to the presence of a heteroclinic connection between nontrivial spatially uniform states and the
trivial state. We have seen how the reflection symmetries inherited by the truncation are responsible for the cascades
of gluing bifurcations and symmetry-switching bifurcations that accumulate on the heteroclinic bifurcation from
opposite sides. We presented the results of an extensive numerical study of the truncated equations demonstrating
the presence of these cascades and establishing their scaling properties. Finally, we have used these results to find
analogous behavior in the PDEs, thereby extending the study of Martel et al. [7]. The latter paper presents extensive
reconstructions of the physically relevant field (1) from the solutions of the PDEs, indicating the various possible
types of space–time dependence that results. Identical reconstructions hold for the solutions obtained here. It must be
emphasized, however, that these reconstructions ignore the presence of mean flows, and that such mean flows require
the solution of a two-dimensional Navier–Stokes equation whenever|A| 
= |B| [11]. This is not, however, an issue
for reconstructing the space–time behavior from the solutionsC(x, τ), and the resulting space–time reconstructions
resemble Fig. 12c of [7], i.e. patterns of spatially nonuniform standing waves. All such patterns are characterized
by a plane of reflection symmetry that is preserved for all time. Since all the coefficients are known (see [6]) a
comparison with experiments is in principle possible. Unfortunately, detailed experiments under conditions where
Eqs. (2)–(4) or (5) and (6) apply are not yet available. Vega et al. [6] discuss the experimental situation, and suggest
appropriate physical parameters for such experiments.

The behavior described in the present paper bears a substantial resemblance to that discussed by Rucklidge and
Matthews [27] in their study of the dynamics of the shearing instability in magnetoconvection. This system also
hasD2 symmetry and exhibits global bifurcations involving both the origin (corresponding to the conduction state)
and the convective state SS. The latter state is reflection-symmetric and can undergo a pitchfork bifurcation to a
tilted convection state STC. From a symmetry point of view these states play the same role as O, U and NU in our
problem. The essential difference between our system and that studied by Rucklidge and Matthews lies in the fact



M. Higuera et al. / Physica D 162 (2002) 155–187 185

that in our case the leading stable eigenvalues of both O and U are complex (the former in thec0 = 0 subspace,
and the latter in thec1 = 0). To our knowledge such heteroclinic connections between a pair of saddle-foci have
not hitherto been studied (this case was left essentially untreated in [27]), although homoclinic connections to a
double saddle-focus have been partially analyzed [40]. Rucklidge and Matthews discuss connections of the form
U → O→ U (without encountering the STC states) including the case in which the leading eigenvalues of both O
and U are real (cf. [41,42]) and the case in which the least stable eigenvalues of O are complex and in thec0 = 0
subspace while those of U remain real. In the latter case they identify behavior similar to ours, namely cascades of
gluing and symmetry-switching bifurcations accumulating on a heteroclinic bifurcation from opposite sides. They
point out, moreover, that in contrast to their Galerkin prediction the leading eigenvalues of the U state within their
PDEs may in fact be complex. The present paper may therefore be viewed as a detailed investigation of this very
interesting case using both general arguments based on appropriate equivariant maps, and specific computational
results to illustrate them. In particular the involvement of the NU fixed points (a situation that appears to have little
significance for the problem studied in [27]) in the dynamics results in a number of interesting and hitherto unseen
complications.

The paper of Rucklidge and Matthews is notable in comparing not only the results from Poincaré maps with
those from a system of ODEs but also with PDE simulations. We have followed here the same approach and have
likewise been able to demonstrate the utility of both the maps and the drastically truncated Galerkin expansion
to the understanding of the dynamics initially observed in the PDEs by Martel et al. [7]. Of course, truncated
Galerkin expansions have also been used to study the effect of direct forcing on the sine-Gordon equation, a system
much more closely related to ours. Here, too, the study of the finite-dimensional system proved of substantial help
in understanding the PDE simulations [21,43]. In the limit of weak forcing and driving the resulting system is a
perturbed two-degree-of-freedom completely integrable Hamiltonian system. This Hamiltonian system is identical
to the corresponding one in the present system. In particular it possesses aresonance consisting of a circle of fixed
points each with a pair of symmetry-related homoclinic orbits. The geometric techniques that have been developed to
study perturbations of this situation [22–25] provide a detailed picture of the complex multipulse orbits homoclinic
to slow periodic orbits or heteroclinic to fixed points, produced by the breakup of the resonance. In the present
paper we have explored a different regime, one with a much higher level of both forcing and damping. As a result
many (if not most) of the orbits created from the perturbation of the Hamiltonian case are absent. We have seen,
however, that there is a great variety of other homoclinic and heteroclinic structures in this regime, made possible
fundamentally by the pair of reflection symmetries of Eqs. (20), and that the two-mode model continues to represent
these structures faithfully. As emphasized already by Bishop et al. [21,44] this is the reason for the success of the
two-mode system as a model of the PDE behavior even at substantial amplitudes. An exploration of the connection
between the nearly Hamiltonian dynamics and the ones identified here remains at present unclear, and constitutes
an interesting direction for further study.
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