
Linear (Airy) wave theory 
 
 
We begin with the incompressible Navier-Stokes equations – 
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where DtuDr  is the total derivative, or material derivative.   
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Assuming inviscid, irrotational, two-dimensional flow and no 
other motions (i.e., no currents) a sinusoidal wave field produces 
the potential (ideal) flow solution to the flow and pressure field 
– 
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where φ is the velocity potential and ψ is the stream 
function.  These quantities  also have the property of being 
orthogonal everywhere – 
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Like most fluid-mechanical problems, the difficulty lies in the 
imposition of boundary conditions.   The boundary conditions 
take the form of three equations.  We define η to be the 
perturbation from mean sea level. 
 
 
 
The first boundary condition is the kinematic condition, which 
states that a parcel of fluid at the surface remains at the surface 
(Currie).  
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Converting the velocity components u and w into velocity 
potential leaves 
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The second boundary condition is that the pressure on the 
surface is constant (presumably in the case of the ocean – the 
atmospheric pressure).  We will use the Bernoulli equation to 
find 
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where the pressure ( )txp ,Θ=  on η=z  and ρ is the fluid 
density.  Finally, there is no flow through the bottom boundary, 
which means  
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Small-amplitude approximation 
 
We intend to examine small-amplitude plane waves.  That is, 
waves that are small with respect to the depth of the water and 
have small water surface angles.  They are sometimes called 
short or Stokes waves.  They are also two-dimensional. 
 
Stokes (1847, 1880) assumed that the solution of Equation (4) 
with boundary conditions defined by Equations (7-9) (i.e., the 
wave-field defined above) could be expressed by a Fourier 



series.  Linear (Airy) wave theory uses only the first term of this 
series.  Without dwelling on details, that term is 
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This result requires the water surface elevation to be in the form 
of 
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where Lk π2=  is the wavenumber, Tπω 2=  is radian 
frequency (T is the period).  The celerity (or wave speed) 

kC ω=  has the form 
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or alternatively… 
 

khgk tanh2 =ω         (13) 
 
Equation (13) is often called the dispersion relation (discussed 
below). 
 
Assumptions in the derivation: 
 

- incompressibility 



- irrotational flow 
- inviscid (viscous/drag/friction terms are negligible) 
- two-dimensional wave field 
- no ambient velocity (i.e., no current) 
- small-amplitude waves 

 
It is worthwhile to examine the behavior of the hyperbolic 
functions in Equations (10-13) in the limit of certain water 
depths to obtain simpler relationships. 
 
 
Deep-water waves 
 
In the limit of , .  In this case, we can solve 
explicitly for the deep-water wavelength 

∞→x 1tanh →x
∞L  using (12).  For 

Airy waves – 
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In actuality,  is ~ unity, so the assumption of deep-
water is generally appropriate for 

3tanh >x
5.0>∞Lh .  It follows that 

 
kgC =∞

         (15) 
 

  
and the dispersion relation becomes 
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Shallow-water waves 
 
In the other limit, when , .  This yields the 
shallow-water wavelength L

0→x xx →tanh
s 
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The shallow-water celerity Cs yields the familiar result – 
 

ghCs =          (18) 
 
which is not dependent on wave properties, but merely the total 
flow depth.  
 
 
Intermediate depths 
 
When 05.025. >> ∞Lh0 , you need to use Equation (12).  As 
you can see, Equation (12) is implicit in L.  The problem is 
normally solved graphically.  An alternative is given by the 
Shore Protection Manual (1984) suggests 
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Other properties of waves 
 



Dispersion 
 
Dispersion refers to the sorting of waves of different sizes with 
time.  If wave speeds are dependent on the wavenumber (e.g., 
deep-water Airy waves), the wave-field is said to be dispersive.  
If the wave speed is independent of wavenumber (e.g., shallow-
water Airy waves), the wave-field is non-dispersive.  
 
One result of dispersion in deep-water waves is swell.  
Dispersion explains why swell can be so monochromatic 
(possessing a single wavelength) and so sinusoidal.  Smaller 
wavelengths are dissipated out at sea and larger wavelengths 
remain and segregate with distance from their source. 
 

   Raglan beach, New Zealand 
 
 
Wave orbital characteristics 
 
The flow paths of parcels within the fluid column have the 
general form shown below (photograph from Van Dyke’s Album 
of Fluid Motion, diagram from Komar). 
 



 
 
 

 
 
Considering that Equation (10) defines the paths of all fluid 
parcels, we can derive an expression for both the diameter and 
the velocity of the orbital motions.  
 
In deep water, there is no motion at the bed.  The diameter of the 
orbital motion (which is circular) within the water column is  
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The orbital velocity also varies exponentially in the vertical 
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In shallow water, the motions are not elliptical, but linear.  The 
orbital diameter and velocity (each of which only has a 
horizontal component) become 
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Finally, in intermediate depths, the hyperbolic functions remain 
to find orbital diameters and velocities at the bed – 
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Wave energy 
 
In addition to the motion of fluid parcels, Airy theory allows us 
a simple way to express the energy within a train of gravity 
waves.  You can integrate the potential and kinetic energy for a 
single wavelength and find that energy per unit length E  
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E is sometimes called the energy density.  
 
As we will see in upcoming lectures, the energy density leads to 
the calculation of the energy flux P, a particularly powerful 
quantity.  The energy flux is typically defined 
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where Cg is the group velocity. 
 
 
Group velocity  
 
Contrary to simple intuition, waves of a particular celerity do 
not travel collectively at that speed, if they are dispersive.  
 
 
 
To identify the relationship CCn g= , we notice 
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where α is the ‘local phase’ of the waves comprising the group.  
 
 
It follows that 
 

0=
∂
∂

+
∂
∂

xt
k ω

         (26) 

 
Lighthill calls (26) the “equation of continuity for phase.”  
Knowing that kC=ω , we find 
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where dkdgC ω= .  Now we simply differentiate the dispersion 
equation (13) to find 
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which is equivalent to 
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It turns out that for shallow waves,  and for deep waves 1→n

21→n . 
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