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1. Introduction 

One of the notable features of the motions of both atmosphere and oceans is the presence of 

fluctuations at time scales not directly related to the periodicities of solar heating. Further, the 

observations of the fluctuations show that they occur erratically in time. This suggests that 

these variations are amplifications of the small scale disturbances which are inevitably present 

in any real system. More precisely, if the state of the flow is unstable with respect to small 

fluctuations, the latter may grow in amplitude with time. Remarkably, it turns out that the 

study of instability associated with highly simplified atmospheric flows, explains to a great 

extent observed weather waves in the atmosphere. The time and space scales of modes of 

instability demonstrated by Eady (1949) and Charney (1947) are remarkably close to 

observations. 

Most stability theories idealize the initial state of the flow as zonally uniform. Study of such a 

state of flow reveals in the most straightforward way the underlying mechanisms behind the 

instability process. If vertical shear is present in such a flow, it implies the presence of 

horizontal temperature gradients, and therefore the presence of available potential energy. 

This energy may be released and transferred to the small fluctuations by a process known as 

baroclinic instability. As the instability grows, the center of mass of the fluid is lowered. In 

growing waves in the atmosphere, cold air moving downwards and equatorwards displaces the 

warmer air moving polewards and upwards. 

The most important feature of baroclinic instability is that it exists even in the situation of rapid 

rotation (small Rossby number) and strong stable stratification (large Richardson's number) 
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typically observed in the atmosphere. A simple but elegant model demonstrating the baroclinic 

instability in its purest form was introduced by Eric Eady in 1949. This paper discusses the basic 

mechanism behind baroclinic instability and Eady’s model following Pedlosky (1987). Section 2 

describes how the problem can be formulated for an arbitrary initial perturbation upon an 

initial basic state zonal flow. In section 3, Eady’s model is presented and the nature of the 

structure of the growing unstable wave is estimated. Consequently, an estimate is made of the 

length scale of the unstable waves for the case of the atmosphere. Limitations of the Eady’s 

model are listed in section 4. Finally, the conclusions drawn throughout the preceeding sections 

are summarized in section 5. 

2. Formulation of the problem 

As mentioned in section 1, we can safely assume a zonally uniform initial flow with velocity 

described by ),(0 zyU , where 0U  is the non-dimensional velocity of order unity. A 

streamfunction Ψ  describing the flow can be given by 

y

zy
U

∂
Ψ∂

−=
),(

0  
(1) 

In this section, we will formulate the stability problem for the basic state described by the 

above streamfunction, for the case of the atmosphere. Oceanographic stability problem can be 

considered as a special case of the atmospheric problem. The density field )(zsρ  can be 

considered as a constant and the atmospheric potential-temperature anomaly θ  can be 

replaced by the negative of oceanic density anomaly. 
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A perturbation φ  can be imposed over the initial state, such that the streamfunction can now 

be written as  

),,,(),(),,,( tzyxzytzyx φψ +Ψ=  (2) 

Such a flow must satisfy the quasi geostrophic equation of motion given by  
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If we substitute (2) in (3), we obtain the following equation which is nonlinear in φ  
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where q  and 0Π  are the perturbation and ambient potential vorticities respectively, given by 
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and 
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with the gradient of ambient potential vorticity 
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As the non-linearity in (4) makes it impractical to solve, we have to assume that, at least 

initially, the amplitude of the perturbations is sufficiently small ( 1<<φ ), such that the terms 

proportional to 
2φ  and qφ  are neglected, leading to the linear stability problem 
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We need boundary conditions to complete the problem for φ . The lateral boundary conditions 

can be assumed to be rigid walls at 1±=y , to effectively isolate the region from its 

surroundings. This will make sure that the source of the instability must lie within the region 

under consideration. For 0v  to vanish at these boundaries, it implies 

0=
∂
∂
x

φ
, 1±=y  

(9) 

The upper and lower boundary conditions can be assumed to be 

0=w ,  1,0=z  (10) 

A normal mode approach can be used to solve the above perturbation problem by assuming 

the solution to be of the form 

( ) ( )[ ]{ }ctxikzytzyx −Φ= exp,Re),,,(φ  (11) 

If we substitute this in the linearized equation (8), we obtain the normal mode problem for Φ , 

viz. 
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along with the boundary conditions (10). The latter, in the absence of topography and friction 

(Pedlosky 1987; pp 524) can be shown to satisfy 
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(13) 

3. Eady’s Model 

To isolate the effects of vertical shear, an initial flow independent of y  is assumed. In a non 

dimensional sense, this can be expressed by the relation 

zU =0  (14) 

Using the thermal wind relationship ( ) ( )yzU ∂Θ∂−=∂∂ 00

 

we recognize that the potential 

temperature gradient is constant: 
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Further, in Eady’s model the stratification parameter S  is taken to be constant; Boussinesq 

approximation is used, i.e. sρ  is taken as constant; the effect due to sphericity of earth is 

purposely left out by assuming  

0=β  (16) 

Using (14) and (7), we find that the gradient of ambient potential vorticity vanishes, i.e.  
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so that the normal mode problem developed in (12) becomes 
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along-with specialized boundary conditions obtained using zU =0  (14) in (13). These boundary 

conditions now become
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Since solutions must vanish at 1±=y , it suggests that we can sought solutions of the form 

( ) ( ) ylzAzy ncos, =Φ  (20) 

where 
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Substituting this form of the solution (18) in the normal mode problem (18) gives 

( ) 02

2

2

=







−− A

dz

Ad
cz µ  

(22) 

where 
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with boundary conditions 
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We seek the functional form of )(zA  for every value of k  and n . In general c  in (22) will be a 

complex number. Let us first consider the case for non-singular solutions for (22) such that  
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This differential equation has the general solution 

zbzazA µµ sinhcosh)( +=  (26) 

where a  and b  are arbitrary constants. Boundary conditions (24) must be used to relate them, 

i.e. 

0=+ cba µ  (27) 

( )[ ] ( )[ ] 0sinhcosh1coshsinh1 =+−++− µµµµµµ cbca  (28) 

Nontrivial solutions for a  and b  imply determinant of coefficients a  and b vanishes, which 

yields a quadratic equation in c  
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with the solution 
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Since ( )2/tanh2 µµ ≥  for all values of µ , roots are real if ( )2/coth2 µµ >  and complex if 

otherwise. The critical value cµ  such that ( )2/coth2 cc µµ =  numerically equals 3994.2=cµ  

If cµµ > , for each k  and n  we get two real roots for phase speed (fig. 1). As µ  approaches cµ  

from above, the phase speeds for two roots coalesce. For very large wave numbers (23) implies 

that µ  will be very large. So one of the roots in (30) goes to zero (i.e. equal to the velocity at 

the lower boundary (14)) and the other root goes to 1 (i.e. equal to the velocity at upper 

boundary). 

However, if cµµ < , we get two complex roots from (30) which are complex conjugates with 

the real part 5.0=rc , which is actually equal to the mean velocity of the basic flow. (11) shows 

that the complex part of c  can give rise to a growing mode with growth rate ikc . 

The condition cµµ <  also implies a condition on the stability parameter S  using (23) such that 
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Thus 0=n  or the least wiggly mode is the most unstable mode since even relatively higher 

values of S  will lead to growing modes. Fig. 2 shows the growth rate as a function of k  for 
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25.0=S  for the most unstable mode 0=n . Although ic  is largest as µ  approaches zero (fig 1) 

i.e. for longer waves (high k ), the growth rate ikc  in fig. 2 shows a maximum at 

1277.3=mk  (32) 

and as expected vanishes for cµµ > . The corresponding wavelength can be obtained using 

( )Lkmπλ 2* =  where L  depends upon S  through 
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where DL  is the Rossby radius of deformation ( fD�L sD = ). For the atmosphere, if DL  is 
310  

km, we obtain 4000* ≈λ  km. In other words, half the distance from a crest to trough is ( )DLO  

which is in excellent agreement with the observed scale of mid latitude synoptic disturbances 

(baroclinic waves) in the atmosphere. This immediately validates the mechanism of baroclinic 

instability for explaining the existence of observed transient long waves in the atmosphere. 

Since c  is known, we can obtain the structure of the unstable wave by calculating b  in terms of 

a . Notice that we are unable to predict the amplitude of the disturbance from the linear 

theory. However, the form of )(zA  (from (26)) and thus Φ  (from (20)) and can be calculated. 

Fig 2(b) shows the amplitude and phase angle for the most unstable wave. Some distinct 

features can be noted 

• Note that the phase angle tilts westward, i.e. against the current. 

• The lower level wave leads the upper level wave by nearly 
o90 . 
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• The amplitude is nearly symmetric about its minimum value attained at the 5.0=z . 

Meridional heat flux for a perturbation field φ  is given by ( )( )zxs ∂∂∂∂ φφρ . It turns out that 

the increase of phase angle with height (as shown in fig 2(b)) leads to northward value of heat 

flux. 

Recall that the above analysis is true only for  done for non-singular solutions. However, if c  is 

real, it is possible that (26) holds true except for cz = . Since 10 ≤≤ z , and a real value of c  lies 

anywhere in the range ( )1,0 , the appropriate solution must be achieved through 

( )czBA
dz

Ad
−=− δµ 2

2

2

 

(34) 

where B  is any constant and δ  is the Dirac delta function. There are an infinite number of 

such solutions, each of which corresponds to a real value of c  within the range ( )1,0 . Any 

arbitrary initial disturbance can be represented as a sum of Eady modes and these singular 

solutions. 

4. Limitations of the Eady’s model 

• Setting 0=β  is highly unrealistic at the scales DLL ~  

• Presence of a rigid boundary at 1=z  is essential for Eady instability. 

• Eady model is capable of demonstrating only the essential features of baroclinic 

instability. The detailed structure is expected to alter considerably in the presence of 

ambient potential-vorticity gradient.  
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5. Conclusion 

We have found that Eady modes are unstable if cµµ < . Based on this we found a condition on 

S  (equation 29), which depicts that the least wiggly mode of the wave is the most unstable. 

This condtion allows us to estimate that scales of the order of Rossby radius of deformation are 

preferred by baroclinic instability, a very insightful conclusion. The complex part of the phase 

speed was found to be largest if 0→µ , i.e. for large waves. However the product ikc  becomes 

zero if cµµ >  and attains a maximum at an intermediate value. The amplitude of the unstable 

mode attains a minimum at a middle level and its phase angle increases with height, which 

implies a tilt against the current. This in turn implies the release of the potential energy by the 

disturbance. 
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Fig 1.  (a) Imaginary part of ic  as a function of µ . Only unstable mode ( 0>ic ) is shown. The positive part of 

phase speed is just a mirror image of the one shown here about the the µ -axis. (b) Real part of c  as a function of 

µ . 
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Fig 2. (a) Growth rate as a function of wavenumber for the most unstable mode, with 25.0=S . (b) Amplitude 

and phase angle as a function of height. 

 


