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Abstract

In this note we shall improve some congruences of G.S. Kazandzidis and D.F. Bailey to higher prime
power moduli, by studying the relation between irregular pairs of the form (p,p − 3) and a refined version
of Wolstenholme’s theorem.
© 2006 Elsevier Inc. All rights reserved.

MSC: primary 11A07, 11Y40; secondary 11A41, 11M41

1. Introduction

Let H1(n) be the nth partial sum of the harmonic series. It is a classical result commonly
attributed to Wolstenholme [5, p. 89] that for any prime p � 5

H1(p − 1) :=
p−1∑
k=1

1

k
≡ 0

(
mod p2). (1)

It is also known [10] that H1(p − 1) ≡ 0 (mod p3) if and only if (p,p − 3) is an irregular
pair, namely, p divides the numerator of Bp−3. Here we define the Bernoulli numbers Bk by the
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Maclaurin series

x

ex − 1
=

∞∑
k=0

Bk

xk

k! .

There is another important equivalent statement of Wolstenholme’s theorem by using combi-
natorics. Bailey [1] generalizes it to the following form.

Theorem 1.1. [1, Theorem 4] Let n and r be non-negative integers and p � 5 be a prime. Then(
np

rp

)
≡

(
n

r

) (
mod p3),

where we set
(
n
r

) = 0 if n < r .

He further obtains the following variation of Lucas’ theorem.

Theorem 1.2. [1, Theorem 5] Let N , R, n and r be non-negative integers and p � 5 be a prime.
Suppose n, r < p. Then

(
Np3 + n

Rp3 + r

)
≡

(
N

R

)(
n

r

) (
mod p3).

In late 1960’s G.S. Kazandzidis worked on similar congruences. Define for any integer n and
any positive integer r

(
n

0

)
= 1,

(
n

r

)
= n(n + 1) · · · (n + r − 1)

r! .

Among many results he obtained in [8,9] the followings are particular relevant to our study

Theorem 1.3. [8, 2∗∗ on p. 10] Let n be any integer and r be any positive integers and p � 3 be
a prime. Then

(
np

rp

)/(
n

r

)
≡

{
1 − p2nr(n + r) (mod p3) if p = 3,

1 (mod p3) if p > 3,
(2)

and (
np

rp

)/(
n

r

)
≡

{
1 − p2nr(n − r) (mod p3) if p = 3,

1 (mod p3) if p > 3.
(3)

Here (2) and (3) are equivalent.

In this short note we will refine the above results for primes p > 5 by using higher prime
power modulus (see Theorem 3.2). This is best possible in the sense that the result would be
wrong if we allowed p = 5. Note that in [9] Kazandzidis obtains an improved version of his
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congruences of Theorem 1.3 by replacing the modulus by p3p̄{nr(n − r)}, where p̄{N} denotes
the highest power of the prime p that divides N . This improvement does not follow from our
result in this paper. However, it does not imply ours either.

In the last section of this paper we provide an interesting congruence involving Bernoulli
numbers of the form Bp−3 for odd primes p.

2. Preliminaries and some notation

Define the Euler–Zagier multiple zeta functions of depth d by

ζ(s1, . . . , sd) =
∑

0<k1<···<kd

k
−s1
1 · · ·k−sd

d (4)

for complex variables s1, . . . , sd satisfying Re(sj )+· · ·+Re(sd) > d −j +1 for all j = 1, . . . , d .
The special values of multiple zeta functions at positive integers have significant arithmetic and
algebraic meanings, whose defining series (4) will be called MZV series, and whose nth partial
sum is

H(s1, . . . , sd ;n) :=
∑

1�k1<···<kd�n

k
−s1
1 · · · k−sd

d , n ∈ Z�0. (5)

Note that partial sums exist even for divergent MZV ζ(. . . ,1) such as the harmonic series ζ(1).
When an ordered set (e1, . . . , et ) is repeated d times we abbreviate it as {e1, . . . , et }d . From the
definitions (4) and (5) one derives easily the so-called shuffle relations. For example,

ζ(s)ζ(t) = ζ(t, s) + ζ(t + s) + ζ(s, t)

because ∑
k>0

·
∑
l>0

=
∑

k>l>0

+
∑

k=l>0

+
∑

0<k<l

.

Similarly, one has

H(s;n)H(t;n) = H(t, s;n) + H(t + s;n) + H(s, t;n). (6)

Recall that Stirling numbers S(n, j) of the first kind are defined by the expansion

fn(x) = x(x − 1)(x − 2) · · · (x − n + 1) =
n∑

j=1

(−1)n−j S(n, j)xj . (7)

These numbers are related to the partial sums of nested harmonic series:

S(n, j) = (n − 1)!H ({1}j−1;n − 1
)
, for j = 1, . . . , n. (8)

For example, S(n,n) = 1, S(n,n−1) = n(n−1)/2, and S(n,1) = (n−1)!. In particular, if n = p

is a prime we then have

fp(x) = (p − 1)!x(
1 − H(1;p − 1)x + H(1,1;p − 1)x2 − · · · + xp−1).
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Comparing fp(p) = p! we recover the Wolstenholme theorem.
One last thing we need in this note is the following generalization of (1).

Lemma 2.1. [11, Theorem 2.13] Let s and d be two positive integers. Let p be an odd prime
such that p � sd + 3. Then

H
({s}d ;p − 1

) ≡
{

0 (mod p2) if 2 � sd,

0 (mod p) if 2 | sd.

3. Main results

Our first result improves on Theorem 1.1 of Bailey and Theorem 1.3 of Kazandzidis simulta-
neously for all primes greater than 5.

Definition 3.1. For any prime p � 5 by Wostenholme’s theorem (1) we define wp < p2 to be the
unique non-negative integer such that wp ≡ H1(p −1)/p2 (mod p2). It is a well-known fact that
(see for e.g., [4])

wp ≡ −1

3
Bp−3 (mod p). (9)

Theorem 3.2. Let n and r be non-negative integers and p � 7 be a prime. Then(
np

rp

)/(
n

r

)
≡ 1 + wpnr(n − r)p3 (

mod p5). (10)

Moreover, (
np

rp

)/(
n

r

)
≡ 1

(
mod p4) (11)

for all n, r if and only if p divides the numerator of Bp−3.

Remark 3.3. When p = 5 Theorem 3.2 does not hold. Indeed, it is easy to see that H1(4) =
25/12 so w5 = 23. Now take n = 4 and r = 1. Then(

4 · 5

5

)/(
4

1

)
≡ 751 �≡ 1 + 23 · 4 · 1 · 3 · 53 ≡ 126

(
mod 55).

Proof of Theorem 3.2. Clearly we may assume n > r . To save space we write Hk = H({1}k;p−
1) throughout this proof. By Eq. (7) we have

(
np

rp

)
=

∏n
j=n−r+1 fp(jp)∏r

l=1 fp(lp)
.

By relation (8) and Lemma 2.1 we have

(
np

rp

)/(
n

r

)
≡

∏n
j=n−r+1(1 − jpH1 + j2p2H2)∏r

(1 − lpH + l2p2H )

(
mod p5). (12)
l=1 1 2
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Now it follows quickly from (1) and the shuffle relation (6) that

2H2 + H(2;p − 1) = H 2
1 ≡ 0

(
mod p4). (13)

By substitution k → p − k we further can see that

2H1 =
p−1∑
k=1

p

k(p − k)
≡ −

p−1∑
k=1

p

k2

(
1 + p

k
+ p2

k2

) (
mod p4)

≡ −(
pH(2;p − 1) + p2H(3;p − 1) + p3H(4;p − 1)

) (
mod p4

)
≡ −pH(2;p − 1)

(
mod p4

)
≡ 2pH2

(
mod p4

)
. (14)

Congruence (14) is obtained by Lemma 2.1 (so we indeed need the condition p � 7) while the
last step follows from (13). Therefore by (1) congruence (12) is reduced to

(
np

rp

)/(
n

r

)
≡ 1 +

n∑
j=n−r+1

(
j2 − j

)
pH1 −

r∑
l=1

(
l2 − l

)
pH1

(
mod p5)

≡ 1 + wpnr(n − r)p3 (
mod p5).

This proves congruence (10). The last statement of the theorem follows from (9) immedi-
ately. �

By induction on the exponent the following corollary is obvious.

Corollary 3.4. Let p � 7 be a prime and let r and n be two non-negative integers. Then for any
exponent e � 1 we have

(
npe

rpe

)/(
n

r

)
≡ 1 + wpnr(n − r)p3 (

mod p5).
Next we consider a refined version of Theorem 1.2 of Bailey.

Theorem 3.5. Let N , R, n and r be non-negative integers and p � 7 be a prime. If r � n < p

then

(
Np3 + n

Rp3 + r

)/[(
N

R

)(
n

r

)]
≡ 1 + c(N,R,n, r;p)p3 (

mod p5), (15)

where c(N,R,n, r;p) = H1(n)N −H1(r)R + (wpNR −H1(n− r))(N −R). If n < r < p then

(
Np3 + n

Rp3 + r

)/(
N

R

)
≡ (−1)r−n+1 N − R

n

(
r − 1

n

)−1

p3 (
mod p5). (16)
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Proof. Clearly we can assume that N � R. Observe that we have a variant of fn(x) defined
by (7):

Fn(x) = (−1)n+1fn+1(−x)/x = (x + 1)(x + 2) · · · (x + n)

= n!(1 + H(1;n)x + H(1,1;n)x2 + · · · ).
First, let r � n < p. Then by straightforward expansion we have

(
Np3 + n

Rp3 + r

)/[(
N

R

)(
n

r

)]
=

[(
Np3

Rp3

)/(
N

R

)]
r!(n − r)! · ∏n

i=1(Np3 + i)/n!∏r
i=1(Rp3 + i)

∏n−r
i=1 ((N − R)p3 + i)

=
[(

Np3

Rp3

)/(
N

R

)]
Fn(Np3)

Fr(Rp3)Fn−r ((N − R)p3)

≡ (1 + H1(n)Np3)(1 + wpNR(N − R)p3)

(1 + H1(r)Rp3)(1 + H1(n − r)(N − R)p3)

(
mod p5)

by Corollary 3.4 and the fact that H1(m) is p-integral if m < p. Congruence (15) follows imme-
diately. �
Example 3.6. Take p = 7. Then the following congruence is exact (and the term c(· · ·)p3 is not
needed):

(
4 · 73 + 5

2 · 73 + 2

)
≡

(
4

2

)(
5

2

) (
mod 75).

Using GP Pari and taking 1 � N,R,n, r � 6 we find the complete list of nontrivial (N,R,n, r)

(i.e., N �= R or n �= r) for which this type of congruence holds when p = 7: (4,2,5,2),
(4,2,5,3), (5,2,6,1), (4,2,6,3), (5,1,6,3), (5,4,6,3), (5,3,6,5). We believe there are al-
ways such nontrivial congruences for every prime p � 7.

Remark 3.7. (1) If p = 5 then congruence (15) of Theorem 3.5 is not true anymore. For example,
take N = 3, n = 4, R = r = 1. Then c(3,1,4,1;5) = 1675/12. So

(
3 · 53 + 4

53 + 1

)/[(
3

1

)(
4

1

)]
≡ 2501 �≡ 1 + c(3,1,4,1;5)53 ≡ 1

(
mod 55).

(2) If p = 5 then congruence (16) of Theorem 3.5 still holds for all possible N,R < 55

and n < r < 5. I believe this is true for all other N and R.

4. An interesting sum related to ζ(1,2)

The last result of this note is related to the above theme and has some independent interest. We
discovered this when trying to prove Theorem 3.2 in the special case r = 1 following Gardiner’s
suggestion in [3]. We failed but obtained this unexpected byproduct.
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Proposition 4.1. Suppose p is an odd prime. Then

2H(2,1;p − 1) ≡ −2H(1,2;p − 1) ≡
∑

i+j+k=p
i,j,k>0

1

ijk
(mod p).

Proof. By the shuffle relation (6) and Lemma 2.1 we have

H(2,1;p − 1) + H(1,2;p − 1) = H(1;p − 1)H(2;p − 1) − H(3;p − 1) ≡ 0 (mod p).

So the first congruence is obvious. Let us prove the second.
The cases p = 3 and 5 can be checked easily:

2H(1,2;2) +
∑

i+j+k=3
i,j,k>0

1

ijk
= 1

2
+ 1 = 3

2
≡ 0 (mod 3),

2H(1,2;4) +
∑

i+j+k=5
i,j,k>0

1

ijk
= 17

16
+ 7

4
= 45

16
≡ 0 (mod 5).

Suppose now p � 7. Let us go through Gardiner’s proof of [3, Theorem 1]. Let n > 3 be a
positive integer (we will take n = p − 1 later). Combinatorial consideration leads us to

3

(
np

p

)
=

∑
i1+···+in=p

(
p

i1

)
· · ·

(
p

in

)

≡ n +
(

n

2

) ∑
i+j=p
i,j>0

(
p

i

)(
p

j

)
+

(
n

3

) ∑
i+j+k=p
i,j,k>0

(
p

i

)(
p

j

)(
p

k

) (
mod p4) (17)

≡ n +
(

n

2

)
X +

(
n

3

)
Y

(
mod p4),

where X and Y are given by the two sums in (17), respectively. Recall from (7) and (8)

fi(x) = x(x − 1) · · · (x − i + 1) = (i − 1)!
n∑

j=1

(−1)i−jH
({1}j−1; i − 1

)
xj .

Hence

X =
p−1∑
i=1

(
fi(p)

i!
)2

=
p−1∑
i=1

p2

i2

(
i∑

j=1

(−1)i−jH
({1}j−1; i − 1

)
pj−1

)2

≡
p−1∑
i=1

p2

i2

(
1 − 2H(1; i − 1)p

) (
mod p4)

≡ p2H(2;p − 1) − 2p3H(1,2;p − 1)
(
mod p4).
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As for Y we have Y = 0 if n = 2. If n � 3 then

Y =
∑

i+j+k=p
i,j,k>0

1

i!j !k!
∏

α=i,j,k

(
α∑

l=1

(−1)l−αS(α, l)pl

)
≡

∑
i+j+k=p
i,j,k>0

p3

ijk

(
mod p4).

Putting every thing together with n = p − 1, comparing to (10) with r = 1, using the fact
2H(1;p − 1) ≡ −pH(2;p − 1) (mod p4) from (14), and canceling the factor n(n − 1)/2, we
arrive at

−np2H(2;p − 1) ≡ p2H(2;p − 1) − 2p3H(1,2;p − 1) + n − 2

3

∑
i+j+k=p
i,j,k>0

p3

ijk

(
mod p4).

With n = p − 1 this simplifies to

2H(1,2;p − 1) − p − 3

3

∑
i+j+k=p
i,j,k>0

1

ijk
≡ H(2;p − 1) ≡ 0 (mod p),

whence the second congruence in the proposition. �
Combining Proposition 4.1 with [11, Theorem 3.1] we find the following corollary.

Corollary 4.2. For any prime p � 5

∑
i+j+k=p
i,j,k>0

1

ijk
≡ −2Bp−3 (mod p).

Remark 4.3. (1) We know that among all the primes p less than 12 million p divides the numer-
ator of Bp−3 only for p = 16 843 and p = 2 124 679 (see [2]). However, we believe there exist
infinitely many such primes.

(2) In a recent paper Ji provides a proof of Corollary 4.2 without using partial sums of MZV
series (see [6]). In more recent preprints he [7] and independently, Zhou and Cai [12], generalize
this to sums of arbitrary lengths: let p � 5 be a prime and n � p − 2 a positive integer, then

∑
l1+l2+···+ln=p

l1,...,ln>0

1

l1l2 · · · ln ≡
{−(n − 1)!Bp−n (mod p) if 2 � n,

− n!np
2(n+1)

Bp−n−1 (mod p2) if 2 | n.
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