Vector and Dyadic Analysis

| am greatly astonished when | consider the weakness of my mind and

its proness to error.
—Descartes

This appendix summarizes a number of useful relationships and transformaions from
vector calculus and dyadic analysis that are espedially relevant to electromagnetic theory.

A.1 COORDINATE SYSTEMS

A.1.1 Rectangular Coordinates: (X;y; 2)

A = Ag+Ag+AZ dS = dydzi+dedzj+drdyz
dl = zdx+ydy+ z2dz dV = dxdydz
zA zA
z=124 plane
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A.1.2 Cylindrical Coordinates:

App+ Asd+ A2 ds

pdp+ ¢ppdo + 2dz

SN

z =24 plane

¥ A; z)

pdodzp+dpdzé+pdpde 2
pdpdodz

Z‘

ds; =dr dz

D T
r=rq . . -
cylinder/ f1- " Y
f=1f1 plane
X
A.1.3 Spherical Coordinates:
A A+ Agh + Ay s
dr¢ 7dr + 0 rdd + ¢rsinf de av
A
g=q1 cone

(r;u; A)

r2sinfdf do 7 + rsinbdr def +rdr db ¢
r2sinf dr dfdg

z4

ds; =rZsinq dq df
ds; =<dr dq
_\\‘\,

//\

q.dg ¥
,j 'r'oi ; dsg =1 sing drdq
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A.2 COORDINATE TRANSFORMATIONS

Note that rdations between the unit vectors in thedifferent coordinate systems are obtained

from the following by replacing the components of A with the corresponding unit vector
(for example, A, = 7).

A.2.1 Rectangular «—— Spherical transformation:
These coordinates are rdated by

xr = rsinfcosg¢
y = rsinfsin ¢ (A.D
z = rcosf

and conversion between vedors is given by

A, = A,sinflcos¢+ Agcosfcosgp — Aysing
Sphericd — Rectangular A, = A,sinfsing + Aycosfsing + Aycose
A, = A,cosf— Agsinf
(A.2
A, = Agsinfcos¢p+ A,sinfsing + A, cosd
Rectangular — Spherical Ay = A cosfcos¢p+ A,cosfsing — A, sinf
Ay = —A,sing+ A,cos¢
(A.3)

A.2.2 Rectangular «— Cylindrical transformation:

These coordinates are rdated by

T = pcos ¢
y = psing (A9
z =z

and conversion between vedtors is given by

Ay = A,cos¢p— Agsing

Cylindrical — Rectangular A, = A,sing+ Ay cos¢ (A.5)
Az = Az

A, cosp+ Ay sing

—A,sin¢ + A, cos ¢ (A.6)
A,

<

RN
I

A
Rectangular — Cylindrical Ay
A

W

A.2.3 Cylindrical «+— Spherical transformation:
These coordinates are rdated by

p = rsinf
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z = rcosf (A7)

(the azimuthal angle ¢ is common to both coordinate systems). Conversion between
vedors is given by

A, = A,sinf+ A.cosb
Cylindrical — Spherical Ay = Apcosf — A, sind (A.8)
Ay = Ay

A, sinf + A, cosf
Ay (A.9)
A,cosf— Aysinb

°
(I

Spherical — Cylindrical A,

>
I

A.3 ELEMENTS OF VECTOR CALCULUS

A.3.1 Flux and Circulation

Maxwell’s equations are expressed in terms of two important vector fidd concepts: flux
and circulation. The flux ¢ of a vector field A through some surface S is defined as

flux of A through S ¢ = // A-dS (A.10)
JJ S
and the circulation of A around some path C'is defined as
circulation of A around C' = % A-dl (A.11)
JC

These concepts are expressed in differential form as the divergence and curl

#Z.dg fz.dz
JJ S JC

Divergence: V- A = lim “2—— Cul: Vx A= lim ““—— (A.12)
VvV —0 // dv S—0 // ds
JIIv JJs

where we have defined the ‘del’ operator, which in rectangular coordinates is
V= i:r +—+ iz (A.13)

The V operator takes on different forms in other coordinate systems. Section A .4 lists
explicit divergence and curl operations in the three most common coordinae systems.
Note that the concepts of flux/divergence are also rdated through the Divergence theorem
(A.54), and the concepts of circulaion/curl are also related through the Stokes theorem
(A.59).
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A.3.2 The Gradient

Ancther important operation isthe gradient of a vector field, which is the vector equivalent
of aderivative operation. The gradient only operates on scalar fields, ¢, and iswritten as
V¢. Explicit forms for the gradient operation in the three common coordinate systems is
given in section A 4.

The gradient produces a vector which points in the direction of greatest change
of the scalar field. This property is useful in a geometric sense for determining tangent
planes and normal directions to an arbitrary surface [2]. In three dimensions an arbitrary
surface can be described by the functional relaion

for=c (A19

where C' is a constant, and f(r) is shorthand for a function of the three coordinate
variables; for example, in rectangular coordinates, f(7) = f(x,y,z). A plane tangent to
this surface at the point 7 is described by

F=7)-Vf(7)=0 (tangent plane) (A.15)

The gradient points in the direction normal to the surface, so a unit normal to the surface
described by (A.14) at the point 7’ can be found from

(unit normal) (A.16)

A.3.3 Vector Taylor Expansion

The multi-dimensional Taylor series expansion of afunction f (7 + @) around the point 7
can be represented in vector form as

1
n!

fE+a) =) =@ V)" (7 (A.17)

n=0

A.3.4 Change of Variables

Inthree dimensions, a change of variables from the coordinates (z, ¥, z) to new coordinates
(u,v,w) is given by [2]

///f(xy, z)dx dy dz = /// g(u, v, w) '88((5’—3{:;))

Ox/ou Ox/0v Ox/ow
= |9y/0u Oy/Ov Iy /ow
0z/0u 0z/0v 0z/ow

is called the Jacobian of the transformation, and

du dv dw (A.18)

where
(x,y,2)
O(u, v, w)

g9(u,v,w) = f (2(u, v, w), y(u, v, w), z(u, v, w))
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and it has been assumed that (x, y, z) can be expressed functionally in terms of (u, v, w)

(or vica-versa). A similar result applies to transformations in two-dimensions.

A.4 EXPLICIT DIFFERENTIAL OPERATIONS

A.4.1 Rectangular Coordinates (X;y;z):

Ve =

Aa_Q) + ,Aa_¢ + Aa_(I)
Tor Y dy “ o2
0A, 0A, N 0A,
Ox oy 0z

N 94, 0A, I
T\ oy 0z Y
9*’d 9% n 0%*®
0z%  Oy?  0z?

0A, 3 0A,
0z ox

A = iVZA, + VA, + 2V2A,

A.4.2 Cylindrical Coordinates (% A; z):

Vi =

VA =) (vQAﬂ -

0P

= +
"o
10(pA 10A

_ 100 p)+_ $

109 0%
p 0P 0z

0A,

p Op p 09

190
pop

A[mAZ OA
=P\l -
p

0p 0z }

+¢
»

p* 0¢

+6 <v2A¢ +

. {814;, - E)Az}
0z ap
0P 10%0 0§

( >+p28¢2 s

200 A)

0z

Al[
2=
p
2P

P
2 0A, A,

P o p?

d(pAs) 04,

dp 8_¢}

) + 2(V3%4,)

L 04, 04,
“\or y

)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)
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A.4.3 Spherical Coordinates (r;; A):

V- a(r;:lr) g g aa? 450
ved o[- 5]

™

vie - L0 (2%—@) vl (me%—?) i ;9227‘1’ (A32)

= 150 i (M%) e g a9

— 2 0A 0A
P R ¢ 6
VA—T’[V AT—T2 (AT+A(;COt9+CSC9 90 + 29 )}

- 1 0A 0A
2Ag — — (Agesc?h — 27 42 =2
+6 [V 0= 3 g csc” 0 2 + 2cotfcsch 00

i lvza, L 20— 205028 _ RT)
+o {V Ay 3 Agcsc™§ —2cscd 90 2cot O cscl 00 (A.39

A.5 VECTOR RELATIONS

A.5.1 Dot and §2ross Product Identities

A A =4 (A.35)
A.B=-B-A (A.36)
AxB=-BxA (A.37)
A (BxC)=B-(CxA)=C-(Ax B) (A.38)
Ax(BxC)=(A-C)B—(A-B)C (A .39
Ax(BxC)+Bx(CxA)+Cx(Ax B)=0 (A 40)
(Ax B)-(CxD)=A-[Bx(C xD)]
=(A-C)(B-D)~(A-D)(B-C) (A.41)

(Ax Byx (CxD)=(AxB -D)C—-(AxB -C)D (A.42)
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A.5.2 Vector Differential operations

V.-V¢ = V3¢ (A.43)
Vigy) = ¢V +9Vo (A.44)

V- (pA) = A-Vo+ ¢V -A (A.45)

V x (¢pA) = ¢V x A—AxVo (A.46)
V-(AxB) = B-(Vx A)—A-(V xB) (A.47)
Vx(AxB) = A(V-B)—B(V-A)+ (B-V)A— (A-V)B (A.48)

V(A-B) = Ax (VX B +Bx (VxA) +(B-V)A+(A-V)B (A.49)

VxVe =0 (A.50)
V- (VxA) =0 (A.51)
VXxVxA=VV-A) -V*A (A.52)

The last identity essentially defines the vector Laplacian V2A, which reduces to three
scalar Laplacians in rectangular coordinates only.

A.5.3 Integral relations

From the Fundamental Theorem of Calculus,

b _ b a¢
/ Vo-dl= | Zrdl=o(b) — d(a) (A.53)

In the following, V is a volume bounded by a closed surface S, with the direction of dS

taken as pointing outward from the enclosed volume, by convention:

A-dS (A.54)
S

(Divergence theorem) ///V (V- A)dV

l///v'(w) dv = [ b odS (A.55)

/[/V(VXZ) dv

Note that (A.54) combined with (A.51) gives

(A.56)

I

RS
=
|
X
=

ﬁ (VxA)-dS=0 (A.57)
S
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and tha (A.50) and (A.56) give

# dS x Vo =0 (A.58)
4 S

In the following, S is an open surface bounded by a contour C' described by line
dement d¢. The direction of d/ is tangent to C. The direction of dS is normal to the
surface following the right-hand rule with the fingers curled in the direction of C":

Stokes th [(vxA).dS = ¢ A.d7 A 59
(Stokes theorem) //S< < A) 3 (A59)
// (dS x Vo) = 7{ odl (A.60)
JSs JC
Note that (A.50) and (A.59) give
7(%@:0 (A.61)
JC

Green’s identities and theorems provide additional relations between surface and
volume integrals. These are often useful in proving orthogondity of eigenfunctions of the
scalar and vedtor wave equations, and also for boundary-value problems using Green’s
functions. For two scalar functions ¢ and ¢, which are continuous through the second
derivatives in the volume V', we have

(Green's first identity) /// (Vo -V + ¢V23)dV = # oV -dS  (A62)
Vv S
Interchanging ¢ and ¢ and subtracting gives

(Green’s theorem) ///)‘V(w%g —V2) dV = ﬁiww — V) - dS
(A.63)

The vector forms of Green' s identity and Green’ s theorem are

///v (VXZ.VXE—Z.VXVXE) dvzﬁé(zxvxg).dg

/// (B-VxVxA—-A-VxVxB) dV:#(ZxVXE—EXVXZ)-dg
v s

which also require that A and B are continuous through the second derivatives.

(A .64)

(A.65)
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A.5.4 Distance Vector Identities

Let Eb_ethe position vector defined by the two points 7 and 7 as shown below. Also
define R = RR, where R is the distance between the points and R is the unit vector in

the direction of R.

A

__.-¥
r=r

=

Then the following relations hold, where ¥ operates on unprimed coordinates:

VR=R
V(1/R) = -R/R*= —R/R?

"R=3

<

V-R=2/R  (fromA.67 and A.68)
VxR=0 (from A.66)
VxR=0  (fromA.66 and A.70)

V?(1/R) = —476(R)
V- (R/R?) =4rn6(R)  (from A.67 and A.72)

In the following, @ is any constant vector:

V-(@/R)=a-V(1/R) = —a-n/R*
V*(a/R) =aV*(1/R) = —4nad(R)

V x [a x (2/R*)] = 47as(R) — V [(a-7)/R’]

(@ V)R %[E—R(ER)}

(@-VYR=a  (from A.66 and A.77)

(A.66)
(A.67)
(A.68)
(A.69)
(A.70)
(A.71)
(A.72)
(A.73)

(A.74)
(A.75)

(A.76)
(A.77)

(A.78)
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A.5.5 The Helmholtz theorem

The Helmholtz theorem [3] states that a vector function A(7) can be expressed as the
sum of two vector functions, one which has zero divergence (the solenoidal or rotational
part) and one with zero curl (the lamdlar, or irrotational part); thet is,

AF) =V x4 Ve (A.79)

To show that such a decomposition is possible, take the divergence and curl of (A.79),
which gives

Vip = V-A (A.80a)

VXVXxE=VxA (A.80b)

Since A is assumed known, these two differential equations are uncoupled and can (in
principle) be solved independently for the pair of functions (¢, £). This essentially proves
the theorem. Note that in order to uniquey determine A, both it’s divergence and curl
must be specified; this is an alternative statement of the Helmholtz theorem.
Therearean infinite number of possible functions £ which can be used to uniquely
determine A, since the gradient of an arbitrary scdar function, V¢, can always be added
to ¢ without changing (A.80); that is, if £ is a solution of (A.80), s0is & + V¢. We can
pick any function ¢ that is convenient; if ¢ is chosen such tha V - £ = 0, then
VxVxE=V(V-§) —Vi=-Vvi
and (A.80) become
Vip=V-A (A 81a)
Vi = —VxA (A .81b)

From eledraostatics, we know these have the solution (for unbounded regions)

A V’XA_’ v
// 47r|r—r dV £ = // 47r\7—

and so (A.79) can be written as

/A—/ / A—(
—v//v @) AV Y x //VX ) sav (A.82)

AT =7 dn|T — 7

If the field is to be represented in a bounded region, then the solutions to (A.81) must be
modified accordingly, and it can be shown that the representation is, more generally,

A -dS'
(// 47r|rfr’\ v’ - # 47r|rfr )
" AT [ AT S
+ VX(// V X AT) ’+#M) (A.83)
47r|777’\ Jg Amlr —7|

where S is the surface enclosing the volume V. This is the formd statement of the
Helmholtz theorem.
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A.5.6 Useful Vector Relations in Two-Dimensions

Situations arise where one dimension (usually taken as Z) can be factored out of the
analysis. Let the subscript ¢ represent vector components that are transverse to Z, so that:

9 _
V=V;+2— A=A, +2A,
0z

Transverse and longitudinal components of other common operations can then be similarly

decomposed
ZXE = AZ(Z?XEf)—BZ(é th) + Zz‘, th (A84)
N
transverse longitudinal
— R 0 R — —
V x A = —z X (VfAz) + _(Z X At) + Vt X At (A85)
0z ——
longitudinal

transverse

We use the earlier vector relations in three dimensions to prove the following iden-
tities:

Vi Vip = V2o (A.86)

Vi (2% Vig) = 0 (A.87)
VixVip =0 (A.83)

Ex (2 X Vig) = —Vi¢ (A.89)

V, x (2 x V) = 2Vig (A.90)
Ex(ExA) = —A, (A.91)

((x A) - ((xBy) = A B, (A.92)
Ay x (2x By) = 2(A; - By) (A.9)

V, x (2 x A) = 2(V, - AY) (A.94)

(2 x Ay) x (2 x By) = A, x By (A.95)
Vi-(2xA) = —2-(Vy x By) (A.96)

A - (3xBy) = —%-(A; x By) (A.97)

In the following, S is an open surface bounded by a contour C' described by line
element d¢. The direction of d/ istangent to C, while the normal to C' is described by 7.

(2D Divergence theorem) // (Vy-A)dS = f A-ndl (A.98)
s c
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Green's identity (A.60) and Green's theorem (A.61) generalize to two dimensions as

folows:
(2D Green's identity) // (Vip -V + ¢Vi)dS = % ¢%d€ (A.99)
JJ g JC Y
, [ 2, o2 Lo 0¢
(2D Green’s theorem) // (Vi) — Vi) dS = f o— —1p—| d¢ (A.100)
/S C on on

A.5.7 Solid Angle

An element of surface area for a sphere of radius a, centered at the origin of a spherical
ocoordinate system, isgiven by dA = a?sin 6 df d¢. It is sometimes convenient to view this
dement of surface area as subtending a “solid angle”, df2, so that the angular integration
in @ and ¢ is replaced by an integration over the range of “solid angles’ subtended by
the surface. That is, wewrite dA = a? df2, and integrating over the surface of the sphere

gives
#dA:aQ# dQ = 4ra®

which is interpreted as meaning that the entire dosed surface of the sphere subtends a
total solid angle of 47. The solid-angle is a unitless concept, but it is conventionally
given the dimensionless units of steradians.

This concept can be extended to any arbitrary surface S by forming the projection
of each surface element d.S onto a sphere. In thefigure aove, dA is the projection of the
surface dement dS along the radial direction onto a sphere of radius a, centered at the
origin. In doing so, both dA and dS subtend the same solid angle df2, which from the
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discussion above is defined as df2 = dA/a*. The projection dA is found by taking the
dot product of dS = 7dS with the radial unit vector, and scaling the result by a factor of
a?/r?, where r is the distance to the surface dement,

and therefore

go= "9 g #d@:#r'ds—m (A.101)

r2 r2

It is important to note that the result § dQ = 4r is critically dependent on having
chaosen the surface enclose the origin of the coordinate system. Clearly if the origin were
outside of the surface S, then the surface no longer subtends a total solid angle of 4.
Mathematically this can be seen as follows. From (A.67) note that

dQ=—v(1/r) -dS

From the divergence theorem,

# d = *// V2(1/r)dV = 477/// §(7) dV

where the last equality follows from (A.72). The last integral is zero unless the volume
bounded by S contains the point » = 0. Shifting the coordinae system by 7, this result
takes the more generd form

R-dS _ {47r ro inside S (A.102)

T¢ R? 0 7o outside S

where R = 7 — 7. Thisis essentially Gauss law.

A.6 DIRAC DELTA FUNCTIONS

Dirac delta functions are a convenient mathematical shorthand that are used to help us out
of difficult situations. In the context of Maxwell’s equations, such difficulties can arise
from our description of charge and current distributions as density functions, p and J,
respectively. For example consider the charge density of a single electron—how do we
represent such a thing? From a macroscopic point of view, the actual size of the electron
is neglible, and acounting for it would unnecessarily complicate the mathematics. For an
electron located at » = 0 with charge ¢, a mathematical description of the charge density
must have the properties

p(r)=0 forr#0  and /Z/p(?) dV =q
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where the integral is taken over the region contining the charge. A delta function in one
dimension, written as (), is defined to have similar properties, ie

1 a<x<b

0 otherwise (A-103

b
S(x—m) =0 forx+#£xg and / 6(1:—w0)da::{

The most important property of the delta function follows from the above definition and
involves its appearance in an integrand with another ordinary function, f(z). Aslong as
f is continuous at the location of the ddta function singularity, then the only contribution
to the integral will come from this point, and we get (in one dimension)

b
/ F(@)6(z — wo)dx = {g(f”o) gtﬁezsi; b (A.104)

where the range of integration is taken over all vdues of x. Thisis called the “sifting”
property of the ddta function.

The extension to three dimensionsis straightforward, & least in rectangular coordi-
nates. We define §(7 —7) by the properties

5F-T)=0 forF#7  and ///51% qv={1 TNV, 105
=7 rET JI v (r=7) {0 otherwise ( )

which in turn lead to the sifting property
/// e —7yav = {17 A7 in Y (A.106)
Jv

0 otherwise

In rectangular coordinates, dV = dz dy dz, and therefore § (7 — 7) can be represented as
a product of three one dimensional delta functions

rectangular: 6(r —7) = 6(x — x")o(y — y)é(z — 2') (A.107)

Returning to our original example, we find that the charge density function associated
with a point charge at 7 can now be represented concisely as
p(r) = q8(r —=7")

As another example, consider a current I, flowing along a thin wire colinear with the
z-axis. Using the delta function, we can represent the corresponding current density as

J(x,y,2) = Io6(2)6(y)2

Although the current density so defined is singular at = = y = 0, the integral over the
cross section of the wire will remain finite and provide the correct answer

I= //7~d§: // Io6(2)6(y) da dy = I

These examples also illustrate that the delta function must have units. If x represents
a physical length dimension, then ¢(z) has the units of inverse length. Examining the
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expressions for the charge and current density above, we see that the correct units of
[C/m?] and [A/m?] are obtained, respectively, with this association of units. From the
sifting property of the three dimensiond delta function, we see that it has the units of
inverse volume, [1/dV].

In three dimensions, the differential dement of volume takes different forms in
different coordinate systems, and so the ddta function must be represented somewhat
differently in each case. To transform from the representation in rectangular coordinates
(A.107) to some other set of coordinates (u, v, w), we use the change of variable theorem
of the previous section and note that the volume element in the new coordinate system
is given by |J|dudv dw, where |J| is the Jacobian of the transformation. Therefore a
representation for the delta function is

S(r—7) = |€1]—|(5(u7 w)o(v— v )6(w —w') (A.108)
Using this we find, for cylindrical coordinates
gylindrical:  6(r —7') = l6(p —p)6(p — ¢ )o(2— ) (A.109)
p

and for spherical coordinates

) = S(r—1")6(0 —0")o(¢p — @)

9 .
7' sin 6

spherical:  6(r — (A.110)
There are situations where this approach breaks down, however, corresponding to the
singularities of the Jacobian. This occurs when the delta function peak is located such
that one of the variables (u, v, w) isirrelevant in the transformation. For example, in
cylindrical coordinates if the delta function is located on the z-axis, the azimuthal angle
¢ does not appear in the transformation, and the representation is instead [4]

ST —7) = ——6(p)5(=— ) (A111)
2mp
One can dways check the validity of a delta function representation using the integral
properties defined above. Similarly in spherical coordinates, points on the z-axis (corre-
sponding to @ = 0 or §' = 7) are represented by
— =\ ; N / _ /
S(r—7m) = 27rr2sin06(7 r6(6 —6") (A.112)
For points at the origin, both # and ¢ are irrelevant, and

— o(r
o(r—7") = 3 (A.113)
42

Having shown how the three-dimensional delta function can be represented by products
of one-dimensional delta functions, we now list some additiond properties of the latter

that are useful in dectromagnetic analysis:

, 1

6(ax —b) = —6(x —b/a) (A.114)

|al
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6(z% —a®) = i [6(x —a)+6(z +a)] (A.115)
/5(.77—@)5(.77 —b)dx=6(a—0b) (A.116)
/f(:u)é’(w —a)dxr = —f'(a) (A.117)

where in the last relation the prime denotes a derivative with respect to the argument.
Ancther useful transformation is given by

5 (f(x)) = ;—|df(x£)/gx‘ (A.118)

where z; are the zeroes of f(z), ie f(z;) = 0, and the summation is over al the
possible zeroes. A more exhaustive collection of ddta function properties rdevant to
dectromagnetic theory is found in [4].

A.7 DYADIC ANALYSIS

In elementary vector andysis we frequently encounter scalar relationships between two
vectors, such asin Ohm’s law, J = ¢ £/, where o is a scalar quantity. In matrix form,

This is a very simple rdationship which takes the vector quantity E and scales each
component by the number o to give a new vector, .J, which consequently retains the
original direction of 2. A more general linear transformationwould alow each component
of F to influence each component of .J, so that the transformation changes the direction
a well as the magnitude (ie. involves a rotation in addition to a scaling). We could write
this in matrix form as

Ty Oez Oaxy Ozz {Em-‘
Jy | = [T Oyy Oy: E,
L) o o L] L
The matrix [o] is referred to & a second-rank tensor. Each component of the tensor
describes the influence of one field quantity on another; for example o,. describes the
z-component of current flow due to the Z-component of the electric field. Such tensor
relationships arise in many physical contexts, such as current flow in an anisotropic crys-
tal, or wave propagaion in a plasma. Naurally the mathematics becomes more compli-

cated, which is why tensor rdationships arerardy covered in elementary d ectromagnetics
courses!
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The tensor relationship cen be written in a different way using vector notation as
J=0-F (A.119)
where 7 is defined as

T = Opu®d + Opy @Y + 04202+
Oya YT + Oyyyy + 0y2yZ +

Osn 28 + 0.y 2 + 05,22

The only new feature is the appearance of products of unit vectors. This definition gives
the correct result using the normad rules for the vector dot product, provided we strictly
obey the order of the unit vectors and the dot product. For example, 27 - £ = &F,, but
interchanging the order of the unit vectors clearly gives a different result, 2 - £ = g E,.
Similarly, we can see that interchanging the order of the dot product in (A.119) also
markedly affects the result, ie. o- E # E - o. This is not surprising given the obvious
similarity between this new quantity o and an ordinary matrix.

Since the components of & are characterized by pairs of unit vectors, it is called
a dyad, or a dyadic quantity (the word “dyad” means pair). Clearly there is a close
relationship between dyads and second-rank tensors.

A dyad or dyadic operator is expressable as the dgebraic product of two vectors or
vector operators, much like a marix can be formed from the product of two vectors,

P=XY (A.120)

To the extent that the vector fidds represent (or can be rdated to) physicaly meaningful
quantities, a dyad only has meaning when it acts upon another vector. However, we
can often ascribe an independent physical significance to dyads such as @, in this case
the “conductivity” dyadic. As noted above, dyad-vector multiplications do not obey
the familiar vector commutation rules (A.36)-(A.37), but obey instead the matrix-like
commutative laws

— A.PT
— <Z><?T)T

|
|

P

|

P x

where the superscript T' suggests a matrix-like transpose operaion. For example,

=T A A A n A A
0" = OgzX% + Oyg YT+ 0,20 +

O'xy-%@ + JZIZJZA/Z,A/ + Uzyéy +
03232 + 0y 02+ 0,,22
Consequently, one must resist the temptation to use dyads in place of vectors in the vector

identities of section A.5, which are derived assuming the simpler vector commutation
laws (A.36)-(A.37) where ordering of the vectors is not as significant.
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It is frequently useful to employ a unit dyad, ? defined such that
A-T=TA=4 (A.121)

In rectangular coordinates,

T=di+ gy+ 22 (A.122)
This is analogous to the identity matrix in linear algebra.

In electromagnetic theory, dyadic notation is frequently used for brevity. Once the
reader becomes familiar with the notation, we find it can be employed in many situations
formerly handled by vector manipulations. A simple example given in the text is the
function VV - A. Ordinarily this expression is understood to mean V(V - A), but it can
dso be represented as (VV) - A, where VV is a dyadic operaor. Similarly, the function

J — (#- J)# which appears in the radiation integrals can be represented by (I — ##) - .J

A.7.1 Dyadic Dot and Cross Product Identities

A.-P=P. 4 (A.123)
(Zx?)T:f?TXZ (A.124)
AP B=(4P)B=4 (P B) (A.125)
A-P-B=B-PT. A (A.126)
(AxB) - P=4-(BxP)=-B-(4xP) (A.127)
?(Zxﬁ):—(?xﬁ)ﬁ: ?xZ)E (A.128)
Ax(BxP)=B(4A-P)-(A-B)P (A.129)
(4xP) B=Ax (P B)=4xP-B (A.130)
(A.P)xB=A (PxB)=4-PxB (A.131)
<Z><$>><§:Z><(F><§):Zx$x§ (A.132)
(?.E)T:? Pr (A.133)
(Z-?) Q=4 (?.5 _41.P.0Q (A.134)
(?-@.Z—? (5-2):?52 (A.135)
P (Axﬁ): (FxA) (9} (A.136)
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(Zxa»5:2x<$-5):Zx?«5 (A.137)
(?.@xizf.(ﬁxz):?ﬁxz (A.138)
A.7.2 Differential Operations Involving Dyads
V(¢A) = (Vo) A+ ¢VA (A.139)
V. (ﬁ) —(V¢) - P+¢V-P (A .140)
¥ x (qs?) — (Vo) x P+ oV x P (A.141)
V-(AB)=(V-A) B+ A-(VB) (A.142)
V-(AB—-BA)=V x (B x A) (A.143)
Vx(AB)=(VxA)B-AxVB (A.144)
V(Ax B)=(VA) x B— (VB) x A (A.145)
v ZX%)Z(VXZ)‘?fZ‘VX? (A.146)
Vx(VA)=0 (A.147)
V'(VX?)ZO (A.148)
Vx(vxP)=v(V.-P)-vP (A.149)
A.7.3 Properties of the Unit Dyad

I=17 (A.150)
AT=T4A=4 (A.151)
IxA=Ax1 (A.152)
(4xT7) B=4 (TxB)=4xB (A.153)
Ix (AxB)=BA-4B (A.154)
(Zx?)-?:Zx? (A.155)

v. (¢7) — Ve (A.156)
V~(7xZ>ZVXZ (A.157)

V x <¢= —VoxT (A.158)
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(A.159)

A.7.4 Integral relations

We can generalize the earlier vector integral theorems in a straightforward manner to
accomodate dyadic functions. In the following, V' is a volume bounded by a closed
surface S, with the direction of dS taken as pointing outward from the enclosed volume,
by convention:

//Vv.?dv _ #g@.? 160
// ” VAV = 77%5 dSA (A.161)
‘[[Vv «PdV = #gdﬁx? (A.162)

In the following, .S is an open surface bounded by a contour C' described by line element
dl. The direction of d/ is tangent to C', while the normal to C' is described by 7. The
direction of dS is normal to the surface following the right-hand rule with the fingers
aurled in the direction of C-

//Sd§~ (VX?) - ]{Cd_-? (A.163)
| (dSxVA) = ¢ dl A (A.164)
I

The vector-dyadic form of Green's identity (A.64) and Green’s theorem (A.65) are (see
[5] for aderivation)

J N xD)-9 <P =299 Plav = i (A v« Pris (a165)
[ (vxvx2) P-d.vxv<P|av
:#n [Ax VPt (VA xPds  (A166)
where dS = ndS. The dyadic-dyadic forms of the ebove are:
J[ (=@ v (vxvxa) 7 av
:#S (VX@T.(M?) ds (A.167)
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5#{@w5yi@xf-ﬁ?.@xvx?ﬂds (A.168)
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