
A
Vector and Dyadic Analysis

I am greatly astonished when I consider the weakness of my mind and
its proness to error.

—Descartes

This appendix summarizes a number of useful relationships and transformations from
vector calculus and dyadic analysis that are especially relevant to electromagnetic theory.

A.1 COORDINATE SYSTEMS

A.1.1 Rectangular Coordinates: (x; y; z)

A = Axx̂ +Ay ŷ +Az ẑ
d` = x̂ dx+ ŷ dy + ẑ dz

dS = dy dz x̂ + dx dz ŷ + dx dy ẑ
dV = dx dy dz
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A.1.2 Cylindrical Coordinates: (½; Á; z)

A = A½½̂ +AÁÁ̂ +Az ẑ
d` = ½̂ d½+ Á̂ ½ dÁ + ẑ dz

dS = ½ dÁ dz ½̂ + d½ dz Á̂ + ½ d½ dÁ ẑ
dV = ½ d½ dÁ dz

x

y

z

ẑ

φ = φ1  plane

z = z1  plane

x

y

z

dsρ = ρ dφ dz

dφ

O
O

dsz  = ρ dρ dφ

z

ρ = ρ1
cylinder φ1

ρ̂
φ̂

ρ1

z1

dz

dρ

ρ

φ

dsφ = dρ  dz

A.1.3 Spherical Coordinates: (r; µ; Á)

A = Ar r̂ +Aµ µ̂ +AÁÁ̂
d` = r̂ dr + µ̂ rdµ + Á̂ r sinµ dÁ

dS = r2 sinµ dµ dÁ r̂ + r sin µ dr dÁ µ̂ + r dr dµ Á̂
dV = r2 sinµ dr dµdÁ

x

y

z

φ = φ1  plane
x

y

z

O
O

dsr = r2sinθ dθ dφ

r

r = r1  sphere

φ1

φ̂
θ

φ

dsφ = r dr dθ

θ
^r1

θ1

θ = θ1  cone

dθ

dφ

dsθ = r sinθ dr dθ 

r̂
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A.2 COORDINATE TRANSFORMATIONS
Note that relations between the unit vectors in the different coordinate systems are obtained
from the following by replacing the components of A with the corresponding unit vector
(for example, Ar ) r̂).

A.2.1 Rectangular Ã! Spherical transformation:
These coordinates are related by

x = r sinµ cosÁ
y = r sinµ sin Á (A.1)

z = r cos µ

and conversion between vectors is given by

Spherical ! Rectangular
Ax = Ar sin µ cos Á +Aµ cos µ cosÁ ¡AÁ sin Á
Ay = Ar sin µ sinÁ + Aµ cos µ sin Á +AÁ cosÁ
Az = Ar cos µ¡Aµ sin µ

(A.2)

Rectangular ! Spherical
Ar = Ax sin µ cosÁ + Ay sin µ sin Á +Az cos µ
Aµ = Ax cos µ cos Á +Ay cos µ sin Á ¡Az sin µ
AÁ = ¡Ax sin Á +Ay cos Á

(A.3)

A.2.2 Rectangular Ã! Cylindrical transformation:
These coordinates are related by

x = ½ cos Á
y = ½ sinÁ (A.4)

z = z

and conversion between vectors is given by

Cylindrical ! Rectangular
Ax = A½ cos Á¡ AÁ sin Á
Ay = A½ sinÁ +AÁ cos Á
Az = Az

(A.5)

Rectangular ! Cylindrical
A½ = Ax cosÁ +Ay sinÁ
AÁ = ¡Ax sin Á +Ay cos Á
Az = Az

(A.6)

A.2.3 Cylindrical Ã! Spherical transformation:
These coordinates are related by

½ = r sinµ



4 VECTOR AND DYADIC ANALYSIS

z = r cos µ (A.7)

(the azimuthal angle Á is common to both coordinate systems). Conversion between
vectors is given by

Cylindrical ! Spherical
Ar = A½ sin µ +Az cos µ
Aµ = A½ cos µ ¡Az sinµ
AÁ = AÁ

(A.8)

Spherical ! Cylindrical
A½ = Ar sinµ +AÁ cos µ
AÁ = AÁ

Az = Ar cos µ¡ Aµ sinµ
(A.9)

A.3 ELEMENTS OF VECTOR CALCULUS

A.3.1 Flux and Circulation
Maxwell’s equations are expressed in terms of two important vector field concepts: flux
and circulation. The flux Ã of a vector field A through some surface S is defined as

flux of A through S Ã ´
ZZ

S
A ¢ dS (A.10)

and the circulation of A around some path C is defined as

circulation of A around C =
I

C
A ¢ d` (A.11)

These concepts are expressed in differential form as the divergence and curl

Divergence: r ¢A ´ lim
V !0

Z
°
Z

S
A ¢ dS

ZZZ

V
dV

Curl: r £ A ´ lim
S!0

I

C
A ¢ d`

ZZ

S
dS

(A.12)

where we have defined the ‘del’ operator, which in rectangular coordinates is

r ´ @
@x

x̂ +
@
@y

ŷ +
@
@z

ẑ (A.13)

The r operator takes on different forms in other coordinate systems. Section A.4 lists
explicit divergence and curl operations in the three most common coordinate systems.
Note that the concepts of flux/divergence are also related through the Divergence theorem
(A.54), and the concepts of circulation/curl are also related through the Stokes theorem
(A.59).



ELEMENTS OF VECTOR CALCULUS 5

A.3.2 The Gradient
Another important operation is the gradient of a vector field, which is the vector equivalent
of a derivative operation. The gradient only operates on scalar fields, Á, and is written as
rÁ. Explicit forms for the gradient operation in the three common coordinate systems is
given in section A.4.

The gradient produces a vector which points in the direction of greatest change
of the scalar field. This property is useful in a geometric sense for determining tangent
planes and normal directions to an arbitrary surface [2]. In three dimensions an arbitrary
surface can be described by the functional relation

f (r) = C (A.14)

where C is a constant, and f (r) is shorthand for a function of the three coordinate
variables; for example, in rectangular coordinates, f (r) = f (x; y; z). A plane tangent to
this surface at the point r0 is described by

(r ¡ r0) ¢ rf (r0) = 0 (tangent plane) (A.15)

The gradient points in the direction normal to the surface, so a unit normal to the surface
described by (A.14) at the point r 0 can be found from

n̂ =
rf (r0)
jrf (r0)j (unit normal) (A.16)

A.3.3 Vector Taylor Expansion
The multi-dimensional Taylor series expansion of a function f (r + a) around the point r
can be represented in vector form as

f (r + a) =
1X

n=0

1
n!

(a ¢ r)n f (r) (A.17)

A.3.4 Change of Variables
In three dimensions, a change of variables from the coordinates (x; y; z) to new coordinates
(u; v; w) is given by [2]

ZZZ
f (x; y; z) dx dy dz =

ZZZ
g(u; v; w)

¯̄
¯̄ @(x; y; z)
@(u; v;w)

¯̄
¯̄ du dv dw (A.18)

where ¯̄
¯̄ @(x; y; z)
@(u; v; w)

¯̄
¯̄ =

¯̄
¯̄
¯̄
@x=@u @x=@v @x=@w
@y=@u @y=@v @y=@w
@z=@u @z=@v @z=@w

¯̄
¯̄
¯̄

is called the Jacobian of the transformation, and

g(u; v; w) = f (x(u; v; w); y(u; v; w); z(u; v; w))
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and it has been assumed that (x; y; z) can be expressed functionally in terms of (u; v; w)
(or vica-versa). A similar result applies to transformations in two-dimensions.

A.4 EXPLICIT DIFFERENTIAL OPERATIONS

A.4.1 Rectangular Coordinates (x; y; z):

r© = x̂
@©
@x

+ ŷ
@©
@y

+ ẑ
@©
@z

(A.19)

r ¢A =
@Ax

@x
+

@Ay

@y
+

@Az

@z
(A.20)

r £ A = x̂
µ
@Az

@y
¡ @Ay

@z

¶
+ ŷ

µ
@Ax

@z
¡ @Az

@x

¶
+ ẑ

µ
@Ay

@x
¡ @Ax

@y

¶
(A.21)

r2© =
@2©
@x2 +

@2©
@y2

+
@2©
@z2

(A.22)

r2A = x̂r2Ax + ŷr2Ay + ẑr2Az (A.23)

A.4.2 Cylindrical Coordinates (½; Á; z):

r© = ½̂
@©
@½

+ Á̂
1
½
@©
@Á

+ ẑ
@©
@z

(A.24)

r ¢A =
1
½
@(½A½)

@½
+

1
½
@AÁ

@Á
+

@Az

@z
(A.25)

r £ A = ½̂
·
1
½
@Az

@Á
¡ @AÁ

@z

¸

+Á̂
·
@A½

@z
¡ @Az

@½

¸
+ ẑ

1
½

·
@(½AÁ)

@½
¡ @A½

@Á

¸
(A.26)

r2© = 1
½

@
@½

µ
½@©
@½

¶
+ 1

½2
@2©
@Á2

+ @2©
@z2

(A.27)

r2A = ½̂
µ
r2A½ ¡

2
½2

@AÁ

@Á
¡ A½

½2

¶

+ Á̂
µ
r2AÁ +

2
½2

@A½

@Á
¡ AÁ

½2

¶
+ ẑ(r2Az ) (A.28)
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A.4.3 Spherical Coordinates (r; µ; Á):
r© = r̂

@©
@r

+ µ̂
1
r
@©
@µ

+ Á̂
1

r sinµ
@©
@Á

(A.29)

r ¢ A =
1
r2

@(r2Ar)
@r

+
1

r sinµ
@(Aµ sin µ)

@µ
+

1
r sin µ

@AÁ

@Á
(A.30)

r £ A =
r̂

r sin µ

·
@(AÁ sin µ)

@µ
¡ @Aµ

@Á

¸

+
µ̂
r

·
1

sinµ
@Ar

@Á
¡ @(rAÁ)

@r

¸
+

Á̂
r

·
@(rAµ )
@r

¡ @Ar

@µ

¸
(A.31)

r2© =
1
r2

@
@r

µ
r2

@©
@r

¶
+

1
r2 sin µ

@
@µ

µ
sin µ

@©
@µ

¶
+

1
r2 sin2 µ

@2©
@Á2

(A.32)

=
1
r
@2

@r2
(r©) +

1
r2 sin µ

@
@µ

µ
sinµ

@©
@µ

¶
+

1
r2 sin2 µ

@2©
@Á2 (A.33)

r2A = r̂
·
r2Ar ¡

2
r2

µ
Ar + Aµ cot µ+ csc µ

@AÁ

@Á
+

@Aµ

@µ

¶¸

+µ̂
·
r2Aµ ¡

1
r2

µ
Aµ csc2 µ ¡ 2

@Ar

@µ
+ 2 cot µ csc µ

@AÁ

@Á

¶¸

+Á̂
·
r2AÁ ¡ 1

r2

µ
AÁ csc2 µ ¡ 2 csc µ

@Ar

@Á
¡ 2 cot µ csc µ

@Aµ

@Á

¶¸
(A.34)

A.5 VECTOR RELATIONS

A.5.1 Dot and Cross Product Identities
A ¢ A¤ = jAj2 (A.35)

A ¢ B = B ¢ A (A.36)

A £B = ¡B £ A (A.37)

A ¢ (B £ C) = B ¢ (C £ A) = C ¢ (A £ B) (A.38)

A £ (B £ C) = (A ¢ C)B ¡ (A ¢ B)C (A.39)

A £ (B £ C) +B £ (C £ A) + C £ (A £ B) = 0 (A.40)

(A £ B) ¢ (C £D) = A ¢
£
B £ (C £D)

¤

= (A ¢ C)(B ¢ D) ¡ (A ¢ D)(B ¢ C) (A.41)

(A £ B)£ (C £ D) = (A £B ¢D)C ¡ (A £B ¢C )D (A.42)



8 VECTOR AND DYADIC ANALYSIS

A.5.2 Vector Differential operations
r ¢rÁ = r2Á (A.43)

r(ÁÃ) = ÁrÃ + ÃrÁ (A.44)

r ¢ (ÁA) = A ¢ rÁ + Ár ¢A (A.45)

r £ (ÁA) = Ár £ A ¡A £rÁ (A.46)

r ¢ (A £B) = B ¢ (r £ A)¡A ¢ (r £B) (A.47)

r £ (A £B) = A(r ¢ B) ¡B(r ¢A) + (B ¢ r)A ¡ (A ¢ r)B (A.48)

r(A ¢B) = A £ (r £ B) + B £ (r £ A) + (B ¢ r)A + (A ¢ r)B (A.49)

r £rÁ = 0 (A.50)

r ¢ (r £ A) = 0 (A.51)

r £r £ A = r(r ¢ A)¡r2A (A.52)

The last identity essentially defines the vector Laplacian r2A, which reduces to three
scalar Laplacians in rectangular coordinates only.

A.5.3 Integral relations
From the Fundamental Theorem of Calculus,

Z b

a
rÁ ¢ d` =

Z b

a

@Á
@`

d` = Á(b)¡ Á(a) (A.53)

In the following, V is a volume bounded by a closed surface S, with the direction of dS

taken as pointing outward from the enclosed volume, by convention:

(Divergence theorem)
ZZZ

V
(r ¢ A) dV =

Z
°
Z

S
A ¢ dS (A.54)

ZZZ

V
(rÁ) dV =

Z
°
Z

S
Á dS (A.55)

ZZZ

V
(r £ A) dV =

Z
°
Z

S
(dS £ A) (A.56)

Note that (A.54) combined with (A.51) gives

Z
°
Z

S

¡
r £ A

¢
¢ dS = 0 (A.57)
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and that (A.50) and (A.56) give

Z
°
Z

S
dS £rÁ = 0 (A.58)

In the following, S is an open surface bounded by a contour C described by line
element d`. The direction of d` is tangent to C. The direction of dS is normal to the
surface following the right-hand rule with the fingers curled in the direction of C :

(Stokes theorem)
ZZ

S
(r £ A) ¢ dS =

I

C
A ¢ d` (A.59)

ZZ

S
(dS £rÁ) =

I

C
Á d` (A.60)

Note that (A.50) and (A.59) give

I

C
rÁ ¢ d` = 0 (A.61)

Green’s identities and theorems provide additional relations between surface and
volume integrals. These are often useful in proving orthogonality of eigenfunctions of the
scalar and vector wave equations, and also for boundary-value problems using Green’s
functions. For two scalar functions Á and Ã, which are continuous through the second
derivatives in the volume V , we have

(Green’s first identity)
ZZZ

V
(rÁ ¢ rÃ + Ár2Ã)dV =

Z
°
Z

S
ÁrÃ ¢ dS (A.62)

Interchanging Á and Ã and subtracting gives

(Green’s theorem)
ZZZ

V
(Ár2Ã ¡ Ãr2Á) dV =

Z
°
Z

S
(ÁrÃ ¡ ÃrÁ) ¢ dS

(A.63)

The vector forms of Green’s identity and Green’s theorem are

ZZZ

V

¡
r £ A ¢ r £B ¡A ¢ r £ r £B

¢
dV =

Z
°
Z

S
(A £ r £B) ¢ dS (A.64)

ZZZ

V

¡
B ¢ r £ r £ A ¡A ¢ r £ r £B

¢
dV =

Z
°
Z

S
(A £ r £B ¡B £r £ A) ¢ dS (A.65)

which also require that A and B are continuous through the second derivatives.
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A.5.4 Distance Vector Identities
Let R be the position vector defined by the two points r and r0 as shown below. Also
define R = RR̂, where R is the distance between the points and R̂ is the unit vector in
the direction of R .

x

y

z

r'
r

R = r - r'

Then the following relations hold, where r operates on unprimed coordinates:

rR = R̂ (A.66)

r (1=R) = ¡R̂=R2 = ¡R=R3 (A.67)

r ¢R = 3 (A.68)

r ¢ R̂ = 2=R (from A.67 and A.68) (A.69)

r £ R̂ = 0 (from A.66) (A.70)

r £R = 0 (from A.66 and A.70) (A.71)

r2 (1=R) = ¡4¼±(R) (A.72)

r ¢ (R=R3) = 4¼±(R) (from A.67 and A.72) (A.73)

In the following, a is any constant vector:

r ¢ (a=R) = a ¢ r(1=R) = ¡a ¢ n̂=R2 (A.74)

r2(a=R) = ar2(1=R) = ¡4¼a±(R) (A.75)

r £
£
a £ (n̂=R2)

¤
= 4¼a±(R)¡ r

£
(a ¢ n̂)=R2¤ (A.76)

(a ¢ r)R̂ =
1
R

h
a ¡ R̂(a ¢ R̂)

i
(A.77)

(a ¢ r)R = a (from A.66 and A.77) (A.78)
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A.5.5 The Helmholtz theorem
The Helmholtz theorem [3] states that a vector function A(r) can be expressed as the
sum of two vector functions, one which has zero divergence (the solenoidal or rotational
part) and one with zero curl (the lamellar, or irrotational part); that is,

A(r) = r £ » +r' (A.79)

To show that such a decomposition is possible, take the divergence and curl of (A.79),
which gives

r2' = r ¢ A (A.80a)

r £r £ » = r £ A (A.80b)

Since A is assumed known, these two differential equations are uncoupled and can (in
principle) be solved independently for the pair of functions ('; »). This essentially proves
the theorem. Note that in order to uniquely determine A, both it’s divergence and curl
must be specified; this is an alternative statement of the Helmholtz theorem.

There are an infinite number of possible functions » which can be used to uniquely
determine A, since the gradient of an arbitrary scalar function, rÁ, can always be added
to » without changing (A.80); that is, if » is a solution of (A.80), so is » +rÁ. We can
pick any function Á that is convenient; if Á is chosen such that r ¢ » = 0, then

r £ r £ » = r(r ¢ ») ¡r2» = ¡r2»

and (A.80) become

r2' = r ¢ A (A.81a)

r2» = ¡r £ A (A.81b)

From electrostatics, we know these have the solution (for unbounded regions)

'(r) = ¡
ZZZ r0 ¢ A(r0)

4¼jr ¡ r 0j dV
0 »(r) =

ZZZ r0 £ A(r 0)
4¼jr ¡ r0 j dV 0

and so (A.79) can be written as

A(r) = ¡r
ZZZ r0 ¢ A(r0)

4¼jr ¡ r 0j dV
0 + r £

ZZZ r0 £ A(r0)
4¼jr ¡ r0 j dV 0 (A.82)

If the field is to be represented in a bounded region, then the solutions to (A.81) must be

modified accordingly, and it can be shown that the representation is, more generally,

A(r) = ¡r
µZZZ

V

r 0 ¢ A(r0)
4¼jr ¡ r 0 j dV

0 ¡
Z
°
Z

S

A(r0) ¢ dS 0

4¼jr ¡ r 0j

¶

+ r £
µZZZ

V

r0 £ A(r 0)
4¼jr ¡ r0 j

dV 0 +
Z
°
Z

S

A(r 0)£ dS 0

4¼jr ¡ r0 j

¶
(A.83)

where S is the surface enclosing the volume V . This is the formal statement of the
Helmholtz theorem.
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A.5.6 Useful Vector Relations in Two-Dimensions
Situations arise where one dimension (usually taken as ẑ) can be factored out of the
analysis. Let the subscript t represent vector components that are transverse to ẑ, so that:

r = rt + ẑ
@
@z

A = At + ẑAz

Transverse and longitudinal components of other common operations can then be similarly

decomposed

A £B = Az(ẑ £Bt)¡Bz(ẑ £ At)| {z }
transverse

+ At £Bt| {z }
longitudinal

(A.84)

r £ A = ¡ẑ £ (r tAz) +
@
@z

( ẑ£ At)
| {z }

transverse

+ rt £ At| {z }
longitudinal

(A.85)

We use the earlier vector relations in three dimensions to prove the following iden-
tities:

rt ¢ rtÁ = r2
tÁ (A.86)

rt ¢ (ẑ £rtÁ) = 0 (A.87)

rt £rtÁ = 0 (A.88)

ẑ £ (ẑ £rtÁ) = ¡rtÁ (A.89)

rt £ (ẑ £rtÁ) = ẑr2
tÁ (A.90)

ẑ £ (ẑ £ At) = ¡At (A.91)

(ẑ£ At) ¢ (ẑ £Bt) = At ¢ Bt (A.92)

At £ (ẑ £Bt) = ẑ(At ¢ Bt) (A.93)

rt £ (ẑ £ At) = ẑ(rt ¢ At) (A.94)

(ẑ £ At)£ (ẑ £Bt) = At £Bt (A.95)

rt ¢ (ẑ £ At) = ¡ ẑ ¢ (rt £Bt) (A.96)

At ¢ (ẑ £Bt) = ¡ ẑ ¢ (At £Bt) (A.97)

In the following, S is an open surface bounded by a contour C described by line
element d`. The direction of d` is tangent to C, while the normal to C is described by n̂.

(2D Divergence theorem)
ZZ

S
(rt ¢A) dS =

I

C
A ¢ n̂ d` (A.98)
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Green’s identity (A.60) and Green’s theorem (A.61) generalize to two dimensions as

follows:

(2D Green’s identity)
ZZ

S
(rtÁ ¢ rtÃ + Ár2

tÃ)dS =
I

C
Á
@Ã
@n

d` (A.99)

(2D Green’s theorem)
ZZ

S
(Ár2

tÃ ¡ Ãr2
tÁ)dS =

I

C

·
Á
@Ã
@n

¡ Ã
@Á
@n

¸
d` (A.100)

A.5.7 Solid Angle
An element of surface area for a sphere of radius a, centered at the origin of a spherical
coordinate system, is given by dA = a2 sin µ dµ dÁ. It is sometimes convenient to view this
element of surface area as subtending a “solid angle”, d­, so that the angular integration
in µ and Á is replaced by an integration over the range of “solid angles” subtended by
the surface. That is, we write dA = a2 d­, and integrating over the surface of the sphere
gives Z

°
Z

dA = a2
Z
°
Z

d­ = 4¼a2

which is interpreted as meaning that the entire closed surface of the sphere subtends a
total solid angle of 4¼. The solid-angle is a unitless concept, but it is conventionally
given the dimensionless units of steradians.

x

y

z

dS

dΩ

r

dA

r̂

a

S

n̂

This concept can be extended to any arbitrary surface S by forming the projection
of each surface element dS onto a sphere. In the figure above, dA is the projection of the
surface element dS along the radial direction onto a sphere of radius a, centered at the
origin. In doing so, both dA and dS subtend the same solid angle d­, which from the
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discussion above is defined as d­ = dA=a2. The projection dA is found by taking the
dot product of dS = n̂dS with the radial unit vector, and scaling the result by a factor of
a2=r2, where r is the distance to the surface element,

dA = r̂ ¢ dSa2

r2

and therefore

d­ =
r̂ ¢ dS
r2

and
Z
°
Z

d­ =
Z
°
Z

r̂ ¢ dS
r2

= 4¼ (A.101)

It is important to note that the result
H

d­ = 4¼ is critically dependent on having
chosen the surface enclose the origin of the coordinate system. Clearly if the origin were
outside of the surface S , then the surface no longer subtends a total solid angle of 4¼.
Mathematically this can be seen as follows. From (A.67) note that

d­ = ¡r(1=r) ¢ dS

From the divergence theorem,
Z
°
Z

d­ = ¡
ZZZ

r2(1=r) dV = 4¼
ZZZ

±(r)dV

where the last equality follows from (A.72). The last integral is zero unless the volume
bounded by S contains the point r = 0. Shifting the coordinate system by r0, this result
takes the more general form

Z
°
Z

S

R̂ ¢ dS
R2

=
½
4¼ r0 inside S
0 r0 outside S

(A.102)

where R = r ¡ r0. This is essentially Gauss’ law.

A.6 DIRAC DELTA FUNCTIONS
Dirac delta functions are a convenient mathematical shorthand that are used to help us out
of difficult situations. In the context of Maxwell’s equations, such difficulties can arise
from our description of charge and current distributions as density functions, ½ and J ,
respectively. For example, consider the charge density of a single electron—how do we
represent such a thing? From a macroscopic point of view, the actual size of the electron
is neglible, and acounting for it would unnecessarily complicate the mathematics. For an
electron located at r = 0 with charge q , a mathematical description of the charge density
must have the properties

½(r) = 0 for r 6= 0 and
ZZZ

½(r) dV = q
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where the integral is taken over the region contining the charge. A delta function in one
dimension, written as ±(x), is defined to have similar properties, ie.

±(x¡ x0) = 0 for x 6= x0 and
Z b

a
±(x¡ x0) dx =

n 1 a · x0 · b
0 otherwise

(A.103)

The most important property of the delta function follows from the above definition and
involves its appearance in an integrand with another ordinary function, f (x). As long as
f is continuous at the location of the delta function singularity, then the only contribution
to the integral will come from this point, and we get (in one dimension)

Z b

a
f (x)±(x¡ x0)dx =

n
f (x0) a · x0 · b
0 otherwise

(A.104)

where the range of integration is taken over all values of x. This is called the “sifting”
property of the delta function.

The extension to three dimensions is straightforward, at least in rectangular coordi-
nates. We define ±(r ¡ r0) by the properties

±(r ¡ r0) = 0 for r 6= r 0 and
ZZZ

V
±(r ¡ r0) dV =

n
1 if r 0 in V
0 otherwise

(A.105)

which in turn lead to the sifting property
ZZZ

V
f (r)±(r ¡ r0)dV =

n f(r0) if r0 in V
0 otherwise

(A.106)

In rectangular coordinates, dV = dx dy dz, and therefore ±(r ¡ r0) can be represented as
a product of three one dimensional delta functions

rectangular: ±(r ¡ r0) = ±(x¡ x0)±(y ¡ y0)±(z ¡ z 0) (A.107)

Returning to our original example, we find that the charge density function associated
with a point charge at r0 can now be represented concisely as

½(r) = q±(r ¡ r0)

As another example, consider a current I0 flowing along a thin wire colinear with the
z-axis. Using the delta function, we can represent the corresponding current density as

J (x; y; z) = I0±(x)±(y)ẑ

Although the current density so defined is singular at x = y = 0, the integral over the
cross section of the wire will remain finite and provide the correct answer

I =
ZZ

J ¢ dS =
ZZ

I0±(x)±(y) dx dy = I0

These examples also illustrate that the delta function must have units. If x represents
a physical length dimension, then ±(x) has the units of inverse length. Examining the
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expressions for the charge and current density above, we see that the correct units of£
C=m3

¤
and

£
A=m2

¤
are obtained, respectively, with this association of units. From the

sifting property of the three dimensional delta function, we see that it has the units of
inverse volume, [1=dV ].

In three dimensions, the differential element of volume takes different forms in
different coordinate systems, and so the delta function must be represented somewhat
differently in each case. To transform from the representation in rectangular coordinates
(A.107) to some other set of coordinates (u; v; w), we use the change of variable theorem
of the previous section and note that the volume element in the new coordinate system
is given by jJ jdudv dw, where jJj is the Jacobian of the transformation. Therefore a
representation for the delta function is

±(r ¡ r0) =
1
jJ j±(u¡ u0)±(v¡ v0)±(w ¡ w0) (A.108)

Using this we find, for cylindrical coordinates

cylindrical: ±(r ¡ r0) =
1
½
±(½ ¡ ½0)±(Á ¡ Á0)±(z¡ z0) (A.109)

and for spherical coordinates

spherical: ±(r ¡ r0) =
±(r ¡ r0)±(µ ¡ µ 0)±(Á ¡ Á0)

r02 sin µ0
(A.110)

There are situations where this approach breaks down, however, corresponding to the
singularities of the Jacobian. This occurs when the delta function peak is located such
that one of the variables (u; v; w) is irrelevant in the transformation. For example, in
cylindrical coordinates if the delta function is located on the z-axis, the azimuthal angle
Á does not appear in the transformation, and the representation is instead [4]

±(r ¡ r0) =
1

2¼½
±(½)±(z¡ z0) (A.111)

One can always check the validity of a delta function representation using the integral
properties defined above. Similarly in spherical coordinates, points on the z-axis (corre-
sponding to µ0 = 0 or µ 0 = ¼) are represented by

±(r ¡ r0) =
1

2¼r2 sin µ
±(r ¡ r 0)±(µ ¡ µ 0) (A.112)

For points at the origin, both µ and Á are irrelevant, and

±(r ¡ r0) =
±(r)
4¼r2

(A.113)

Having shown how the three-dimensional delta function can be represented by products
of one-dimensional delta functions, we now list some additional properties of the latter
that are useful in electromagnetic analysis:

±(ax ¡ b) =
1
jaj±(x¡ b=a) (A.114)
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±(x2 ¡ a2) =
1
2a

[±(x ¡ a) + ±(x + a)] (A.115)

Z
±(x¡ a)±(x ¡ b)dx = ±(a ¡ b) (A.116)

Z
f (x)±0(x ¡ a)dx = ¡f 0(a) (A.117)

where in the last relation the prime denotes a derivative with respect to the argument.
Another useful transformation is given by

± (f (x)) =
X

i

±(x¡ xi)
jdf (xi)=dxj

(A.118)

where xi are the zeroes of f (x), ie. f (xi) = 0, and the summation is over all the
possible zeroes. A more exhaustive collection of delta function properties relevant to
electromagnetic theory is found in [4].

A.7 DYADIC ANALYSIS
In elementary vector analysis we frequently encounter scalar relationships between two
vectors, such as in Ohm’s law, J = ¾E , where ¾ is a scalar quantity. In matrix form,

2
4
Jx

Jy

Jz

3
5 = ¾

2
4
Ex

Ey

Ez

3
5

This is a very simple relationship which takes the vector quantity E and scales each
component by the number ¾ to give a new vector, J, which consequently retains the
original direction of E. A more general linear transformation would allow each component
of E to influence each component of J , so that the transformation changes the direction
as well as the magnitude (ie. involves a rotation in addition to a scaling). We could write
this in matrix form as

2
4
Jx
Jy
Jz

3
5 =

2
4
¾xx ¾xy ¾xz
¾yx ¾yy ¾yz
¾zx ¾zy ¾zz

3
5
2
4
Ex

Ey

Ez

3
5

The matrix [¾] is referred to as a second-rank tensor. Each component of the tensor
describes the influence of one field quantity on another; for example, ¾xz describes the
x̂-component of current flow due to the ẑ-component of the electric field. Such tensor
relationships arise in many physical contexts, such as current flow in an anisotropic crys-
tal, or wave propagation in a plasma. Naturally the mathematics becomes more compli-
cated, which is why tensor relationships are rarely covered in elementary electromagnetics
courses!
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The tensor relationship can be written in a different way using vector notation as

J = ¾ ¢ E (A.119)

where ¾ is defined as

¾ = ¾xx x̂x̂+ ¾xy x̂ŷ + ¾xzx̂ẑ+
¾yx ŷx̂+ ¾yyŷŷ + ¾yz ŷẑ +
¾zx ẑx̂ + ¾zy ẑŷ + ¾zz ẑẑ

The only new feature is the appearance of products of unit vectors. This definition gives
the correct result using the normal rules for the vector dot product, provided we strictly
obey the order of the unit vectors and the dot product. For example, x̂ŷ ¢ E = x̂Ey, but
interchanging the order of the unit vectors clearly gives a different result, ŷx̂ ¢E = ŷEx .
Similarly, we can see that interchanging the order of the dot product in (A.119) also
markedly affects the result, ie. ¾ ¢ E 6= E ¢ ¾. This is not surprising given the obvious
similarity between this new quantity ¾ and an ordinary matrix.

Since the components of ¾ are characterized by pairs of unit vectors, it is called
a dyad, or a dyadic quantity (the word “dyad” means pair). Clearly there is a close
relationship between dyads and second-rank tensors.

A dyad or dyadic operator is expressable as the algebraic product of two vectors or
vector operators, much like a matrix can be formed from the product of two vectors,

P = X Y (A.120)

To the extent that the vector fields represent (or can be related to) physically meaningful
quantities, a dyad only has meaning when it acts upon another vector. However, we
can often ascribe an independent physical significance to dyads such as ¾, in this case
the “conductivity” dyadic. As noted above, dyad-vector multiplications do not obey
the familiar vector commutation rules (A.36)-(A.37), but obey instead the matrix-like
commutative laws

P ¢ A = A ¢P T

P £ A = ¡
³
A £ P T

´T

where the superscript T suggests a matrix-like transpose operation. For example,

¾T = ¾xxx̂x̂+ ¾yx ŷx̂+ ¾zxẑx̂ +
¾xyx̂ŷ + ¾yy ŷŷ + ¾zyẑ ŷ +
¾xzx̂ẑ + ¾yz ŷẑ+ ¾zz ẑ ẑ

Consequently, one must resist the temptation to use dyads in place of vectors in the vector
identities of section A.5, which are derived assuming the simpler vector commutation
laws (A.36)-(A.37) where ordering of the vectors is not as significant.
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It is frequently useful to employ a unit dyad, I , defined such that

A ¢ I = I ¢ A = A (A.121)

In rectangular coordinates,

I = x̂x̂+ ŷŷ + ẑ ẑ (A.122)

This is analogous to the identity matrix in linear algebra.
In electromagnetic theory, dyadic notation is frequently used for brevity. Once the

reader becomes familiar with the notation, we find it can be employed in many situations
formerly handled by vector manipulations. A simple example given in the text is the
function rr ¢ A. Ordinarily this expression is understood to mean r(r ¢ A), but it can
also be represented as (rr) ¢ A, where rr is a dyadic operator. Similarly, the function
J ¡ ( r̂ ¢ J)r̂ which appears in the radiation integrals can be represented by (I ¡ r̂r̂) ¢ J

A.7.1 Dyadic Dot and Cross Product Identities
A ¢P = PT ¢ A (A.123)
³
A £ P

´T
= ¡PT £ A (A.124)

A ¢P ¢B =
³
A ¢P

´
¢B = A ¢

³
P ¢B

´
(A.125)

A ¢P ¢B = B ¢P T ¢ A (A.126)
¡
A £B

¢
¢ P = A ¢

³
B £ P

´
= ¡B ¢

³
A £ P

´
(A.127)

P ¢
¡
A £B

¢
= ¡

³
P £B

´
¢ A =

³
P £ A

´
¢ B (A.128)

A £
³
B £ P

´
= B

³
A ¢ P

´
¡
¡
A ¢ B

¢
P (A.129)

³
A £ P

´
¢ B = A £

³
P ¢ B

´
= A £ P ¢ B (A.130)

³
A ¢P

´
£B = A ¢

³
P £ B

´
= A ¢P £B (A.131)

³
A £ P

´
£ B = A £

³
P £B

´
= A £ P £B (A.132)

³
P ¢ Q

´T
= QT ¢ PT (A.133)

³
A ¢P

´
¢Q = A ¢

³
P ¢ Q

´
= A ¢ P ¢ Q (A.134)

³
P ¢ Q

´
¢ A = P ¢

³
Q ¢ A

´
= P ¢ Q ¢A (A.135)

P ¢
³
A £Q

´
=

³
P £ A

´
¢Q (A.136)
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³
A £ P

´
¢ Q = A £

³
P ¢ Q

´
= A £ P ¢Q (A.137)

³
P ¢ Q

´
£ A = P ¢

³
Q£ A

´
= P ¢Q £ A (A.138)

A.7.2 Differential Operations Involving Dyads
r
¡
ÁA

¢
= (rÁ) A + ÁrA (A.139)

r ¢
³
ÁP

´
= (rÁ) ¢ P + Ár ¢ P (A.140)

r £
³
ÁP

´
= (rÁ)£ P + Ár £ P (A.141)

r ¢
¡
AB

¢
=

¡
r ¢A

¢
B + A ¢

¡
rB

¢
(A.142)

r ¢
¡
AB ¡B A

¢
= r £

¡
B £ A

¢
(A.143)

r £
¡
AB

¢
=

¡
r £ A

¢
B ¡A £rB (A.144)

r
¡
A£ B

¢
=

¡
rA

¢
£ B ¡

¡
rB

¢
£ A (A.145)

r ¢
³
A £ P

´
=

¡
r £ A

¢
¢ P ¡ A ¢ r £ P (A.146)

r £
¡
rA

¢
= 0 (A.147)

r ¢
³
r £ P

´
= 0 (A.148)

r £
³
r £ P

´
= r

³
r ¢ P

´
¡r2P (A.149)

A.7.3 Properties of the Unit Dyad
I = IT (A.150)

A ¢ I = I ¢A = A (A.151)

I £ A = A £ I (A.152)
³
A£ I

´
¢ B = A ¢

³
I £B

´
= A£ B (A.153)

I £
¡
A £B

¢
= BA ¡ AB (A.154)

³
A£ I

´
¢ P = A £ P (A.155)

r ¢
³
ÁI

´
= rÁ (A.156)

r ¢
³
I £ A

´
= r £ A (A.157)

r £
³
ÁI

´
= rÁ £ I (A.158)
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(A.159)

A.7.4 Integral relations

We can generalize the earlier vector integral theorems in a straightforward manner to

accomodate dyadic functions. In the following, V is a volume bounded by a closed

surface S , with the direction of dS taken as pointing outward from the enclosed volume,
by convention:

ZZZ

V
r ¢P dV =

Z
°
Z

S
dS ¢ P (A.160)

ZZZ

V
rAdV =

Z
°
Z

S
dS A (A.161)

ZZZ

V
r £ P dV =

Z
°
Z

S
dS £ P (A.162)

In the following, S is an open surface bounded by a contour C described by line element
d`. The direction of d` is tangent to C , while the normal to C is described by n̂. The

direction of dS is normal to the surface following the right-hand rule with the fingers

curled in the direction of C:
ZZ

S
dS ¢

³
r £ P

´
=

I

C
d` ¢P (A.163)

ZZ

S
(dS £rA) =

I

C
d` A (A.164)

The vector-dyadic form of Green’s identity (A.64) and Green’s theorem (A.65) are (see

[5] for a derivation)
ZZZ

V

h¡
r £ A

¢
¢ r £ P ¡A ¢ r £ r £ P

i
dV =

Z
°
Z

S
n̂ ¢ (A £r £ P )dS (A.165)

ZZZ h¡
r £r £ A

¢
¢ P ¡ A ¢ r £ r £ P

i
dV

=
Z
°
Z

n̂ ¢
h
A £r £ P +

¡
r £ A

¢
£ P

i
dS (A.166)

where dS = n̂dS. The dyadic-dyadic forms of the above are:
ZZZ

V

·³
r £Q

´T
¢ r £ P ¡

³
r £r £ Q

´T
¢ P

¸
dV

=
Z
°
Z

S

³
r £Q

´T
¢
³
n̂ £ P

´
dS (A.167)
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ZZZ ·
QT ¢ r £ r £ P ¡

³
r £r £Q

´T
¢ P

¸
dV

=
Z
°
Z ·³

r £Q
´T

¢
³
n̂ £ P

´
+ QT ¢

³
n̂ £r £ P

´¸
dS (A.168)
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