
Estimation of Communication Signal Strength in Robotic Networks

Yasamin Mostofi , Mehrzad Malmirchegini and Alireza Ghaffarkhah

Abstract— In this paper we consider estimating the spatial
variations of a wireless channel based on a small number
of measurements in a robotic network. We use a multi-scale
probabilistic model in order to characterize the channel and
develop an estimator based on this model. We show that our
model-based approach can estimate the channel well for several
scenarios, with only a small number of gathered measurements.
We furthermore consider a sparsity-based channel estimation
approach, in which we utilize the compressibility of the channel
in the frequency domain. Our results show that this approach
can also be effective in several scenarios. We then discuss
the underlying tradeoffs between the two approaches. For the
model-based approach, we show the impact of the error in
the underlying model as well as the error in the estimation of
the parameters of the model on the overall performance. For
the sparsity-based approach, we show the impact of channel
compressibility on the performance. Overall, the proposed
framework can be utilized for communication-aware motion
planning in robotic networks, where a prediction of the link
qualities is needed.

I. INTRODUCTION

In the past few years, the sensor network revolution

has created the possibility of exploring and controlling

the environment in ways not possible before. The vision

of a multi-agent robotic network cooperatively learning

and adapting in harsh unknown environments to achieve a

common goal is closer than ever. In order to realize this

vision, however, an integrative approach to communication

and control issues is essential. In the robotics and control

community, considerable progress has been made in the

area of networked robotic and control systems. However,

ideal or over-simplified models have typically been used to

model communication links. A mobile cooperative network

needs to maintain its connectivity in order to accomplish its

task. In order to achieve this, each robot should consider

the impact of motion decisions on its link qualities, when

planning its trajectory. This requires each robot to assess

the quality of the communication links in the locations that

it has not yet visited. As a result, proper prediction of the

communication signal strength in a given area, based on only

a few measurements, becomes considerably important. As

the robots move around, they can learn the signal strength at

positions along their motion trajectories. However, there is

simply not enough time to measure the channel at every loca-

tion directly. Therefore, the channel should be reconstructed

based on a considerably incomplete data set. Mapping the
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spatial variations of a communication channel, based on

a small number of measurements, is an emerging area of

research. In [1], we proposed utilizing the sparsity of the

communication channel in the frequency domain in order

to map the channel with a small number of measurements.

In [2], we provided a comprehensive overview of channel

characterization and modeling for networked robotic appli-

cations, by tapping into the relevant knowledge available

in the wireless communication literature. In particular, we

showed how certain probabilistic models can characterize

the spatial variations of a wireless channel considerably

well. In this paper, we show how such models can be used

for channel prediction. We furthermore compare the model-

based channel estimation approach of this paper with the

sparsity-based one of [1]. We discuss the underlying tradeoffs

between the two methods and the conditions under which one

may perform better than the other.

The paper is organized as follows. In Section II we briefly

summarize probabilistic modeling of a wireless channel.

In Section III, we show how such models can be used

for channel prediction. Section IV briefly summarizes the

sparsity-based channel prediction approach, based on using

compressive sensing. In Section V, we show the performance

of the model-based approach in estimating real channels.

We furthermore compare its performance with that of the

sparsity-based one and shed light on the underlying tradeoffs

between the two. We conclude in Section VI.

II. PROBABILISTIC MODELING OF A WIRELESS

CHANNEL

This section provides a brief overview of wireless channel

modeling, as needed for the model-based reconstruction of

the next section. Readers are referred to [2], [3] for more

details. In the wireless communication literature, it is well

established that a communication channel between two nodes

can be modeled as a multi-scale dynamical system with

three major dynamics: multipath fading (small-scale fading),

shadowing and path loss. Fig. 1 shows the received signal

power across a route in the basement of the ECE building

at UNM. The three main dynamics of the received signal

power are marked on the figure. As can be seen, the received

power can have rapid spatial variations that are referred

to as multipath fading. By spatially averaging the received

signal locally and over distances that channel can still be

considered stationary, a slower dynamic emerges, which is

called shadowing. Finally, by averaging over the variations

of shadowing, a distance-dependent trend is seen, which is

referred to as path loss. Two parameters are important in

characterizing the channel: the distribution of a sample of



the channel as well as its spatial correlation. Let Pr represent

the receiver signal power (the solid black curve of Fig. 1).

Empirical data has shown Nakagami distribution to be a

good match for the distribution of small-scale fading. As

for the spatial correlation of small-scale fading, on the other

hand, there is no single model that can be a good match

for different environments. If the environment is rich in

scatterers, for instance, the Fourier transform of the auto-

correlation function of small-scale fading will have a form

that is referred to as Jakes spectrum [2]. However, there is

no general form that can fit most environments.

Once we average over small-scale variations, another

dynamic can be observed, which changes at a slower rate. Let

P r represent the average of the received power. P r varies

over larger distances and is referred to as shadowing. It is the

result of the transmitted signal being possibly blocked by a

number of obstacles before reaching the receiver. Empirical

data has shown lognormal distribution to be a good match

for the distribution of shadowing. Let P r,dB = 10 log10(P r).
We have the following for the distribution of P r,dB:

p(P r,dB) =
1√
2πα

e−
(P r,dB−µdB)2

2α2 , (1)

where µdB = KdB−10γ log d and α is the standard deviation

from average. Consider the distance-dependent path loss,

µ = K/dγ , where d represents the distance between the

transmitting and receiving robots and γ denotes the power

fall-off rate. Then, it can be seen from Eq. 1 that µdB =
10 logµ represents the average of the large-scale variations.

Thus, the distance-dependent path loss characterizes the

average of the shadowing variations (which is thus non-

stationary due to the varying average), as can be seen from

Fig. 1 as well.

Fig. 2 shows the pdf of shadowing using several collected

data in the basement of ECE building. It can be seen that

the distribution of the log of the shadowing variations (after

removing the distance-dependent average) matches a zero-

mean normal distribution very well. The standard deviation

for this match is α = 2.8.

As for the spatial correlation of shadowing, there is less

mathematical characterizations. Gudmundson [4] character-

izes an exponentially-decaying spatial correlation function

for shadowing, which is widely used.

III. MODEL-BASED CHANNEL ESTIMATION

As can be seen from the previous section, the received

signal power can be modeled probabilistically. Therefore,

we can use such models for estimating the strength of

a wireless channel in a given area, based on very few

measurements. In order to estimate a random field, based

on few measurements, we need to have both the spatial

correlation and sample distribution of the field. Therefore,

since for multipath fading, there is no general model that

would fit the correlation, we develop our estimator by only

considering the models for shadowing and path loss. As such,

the multipath fading component will appear as noise in the

estimation. More specifically, we use the fact that Gaussian
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Fig. 1. Underlying dynamics of the received signal power across a route in
the basement of the ECE building.
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Fig. 2. pdf of shadowing based on several measurements in the basement
of ECE building. See [2] for more details.

distribution matches the distribution of the average of the

received signal power in dB and that an exponential function

can characterize the correlation of shadowing for several

scenarios. We, however, note that while such models have

shown to match the characterization of a wireless channel

in several cases, they clearly can not be a good fit for all

scenarios. We show the impact of such modeling errors in

Section V.

Let qb ∈ R
2 denote the position of a fixed transmitter (base

station). We are interested in estimating the received signal

strength (in the reception from the transmitter) at all positions

in a given area, based on only a few direct measurements.

The received signal at position q ∈ R
2 can be modeled as

follows by only considering shadowing and path loss:

Pr,dB = KdB − 10γ log(‖q − qb‖) + vs, (2)

where Pr,dB denotes the received signal power in dB and

vs is a zero-mean Gaussian variable representing shadowing

impact. Note that there is a modeling error as we are not

considering the small-scale fading. In order to estimate the

signal at positions that are not measured directly, we need



to first estimate the underlying parameters of this model, i.e.

the parameters of path loss (KdB and γ) and the correlation

parameters of the shadowing term. Next, we will show how

to estimate these parameters. Let y = [y1, · · · , yn]T ∈ R
n

be a vector of all the available channel measurements in

dB, where n denotes the number of available measurements.

Based on the models of the previous section, we have

y = Hθ + v
︸︷︷︸

zero-mean Gaussian shadowing

+ w
︸︷︷︸

noise caused by multipath fading

(3)

where

H =






1 −10log(‖q1 − qb‖)
...

...

1 −10log(‖qn − qb‖)




 , (4)

and θ = [KdB γ]T contains the path-loss parameters. Here qi

is the position of the ith measurement and v ∈ R
n is a zero-

mean Gaussian random vector with R = [ri,j ]n×n denoting

its covariance matrix. The element ri,j in the covariance

matrix characterizes the correlation between the ith and jth

samples and is typically modeled by an exponential function

as discussed in the previous section: ri,j = αe−‖qi−qj‖/β .

Thus we need to first estimate KdB, γ, α and β before we

can estimate the channel based on Eq. 2. In the following,

we first consider a Maximum Likelihood (ML) estimation

approach. Let p(y|θ, α, β) denote the conditional pdf of y,

given the parameters θ, α, β:

p(y|θ, α, β) =
1

(2π)n/2|R|1/2
e−

1
2 (y−Hθ)T R−1(y−Hθ), (5)

where |R| is the determinant of R. We have the following

ML estimation of the parameters:

[θ̂, α̂, β̂] = argmaxθ,α,β log
(
p(y|θ, α, β)

)

= argminθ,α,β

1

α

(
y − Hθ

)T
R̃−1(β)

(
y − Hθ

)

+ log
(∣
∣R̃(β)

∣
∣
)

+ n log(α), (6)

where R̃ = 1
αR is the normalized covariance matrix, which

is only a function of the decorrelation distance β and the

positions of the samples. Then we have,

θ̂ =
(
HT R̃−1(β̂)H

)−1
HT R̃−1(β̂)y,

α̂ =
1

n

(
y − Hθ̂

)T
R̃−1(β̂)

(
y − Hθ̂

)
. (7)

In order to estimate β, we insert θ̂ and α̂ in Eq. 6 to have

the following:

β̂ = argminβ

1

α̂

(
y − Hθ̂

)T
R̃−1(β)

(
y − Hθ̂

)
(8)

+ log
(∣
∣ ˜R(β)

∣
∣
)

+ n log
(
α̂
)

= argminβ

[

yT MT (β)R̃−1(β)M(β)y
]n∣

∣R̃(β)
∣
∣,

where M(β) = I − H
(
HT R̃−1(β̂)H

)−1
HT R̃−1(β̂). Note

that if β → 0, the samples become uncorrelated, which

results in

lim
β→0

θ̂ =
(
HT H

)−1
HT y,

lim
β→0

α̂ =
1

n

(
y − Hθ̂

)T (
y − Hθ̂

)
. (9)

Therefore, the estimate of θ and α will not depend on the

estimate of β, as expected. It can be easily confirmed that

Eq. 9 is also the result of a Least Squares (LS) estimation

of θ and α. The estimation of β, on the other hand, is typ-

ically challenging, as matrix R̃ can become ill-conditioned

depending on the sampling pattern. This requires devising

suboptimum but robust estimation strategies, as we discuss

next. Let R̂ represent the estimate of R through numerical

averaging. Then, we can find the β that results in the best

exponential fit to R̂ (measured by the Frobenius norm of the

difference in dB) as follows

β̂ =
1

|D|
∑

di∈D

di

log α̂
r̂(di)

, (10)

where D = {di| α
r̂(di)

≥ 1}, |D| denotes the size of set D and

r̂(di) is the numerical estimate of correlation at distance di.

This can also be extended to a weighted approach as follows:

β̂ =
1

∑
wi

∑

di∈D

widi

log α̂
r̂(di)

, (11)

where wi is the corresponding weight for the ith term and

can be chosen based on our assessment of the accuracy of

the estimation of r̂(di). For instance, if we have very few

measurements at a specific distance between two points, then

the weight should be smaller.

In case the location of the transmitting node is not known,

then the path loss parameters can be estimated by finding the

best line fit to the log of the received measurements (as can

be seen from Fig. 1). α can then be estimated by calculating

the deviation from this average and β can be estimated as

explained previously. Alternatively, the position of the base

station can also be added to the unknown parameters and

jointly estimated.

A. Channel Estimation

Once the underlying parameters of our model are esti-

mated, channel at any arbitrary position q ∈ R
2, can be

estimated as follows. Let µ(q) = 10 logPr(q). We have the

following for the probability of µ(q) conditioned on all the

gathered measurements, y, and the path-loss and shadowing

parameters:

p(µ(q)|y, θ, α, β) ∼ N
(
µave(q), σµ(q)

)
, with

µave(q) = hT (q)θ + φT (q)R̃−1(β)
(
y − Hθ

)
,

σ2
µ(q) = α − αφT (q)R̃−1(β)φ(q) (12)

where N (.) denotes a normal distribution and

h(q) =
[
1 − 10log(‖q − qb‖)

]T
,

φ(q) =
[
e−‖q−q1‖/β, · · · , e−‖q−qn‖/β

]T
. (13)

Then, µave(q) will be the estimate of the channel (in dB) at

position q, where we use the estimated θ, α, β.



IV. SPARSITY-BASED CHANNEL ESTIMATION [1]

In this part, we briefly summarize another approach for

channel estimation using a small number of measurements.

In this approach, the sparsity of the channel in the frequency

domain, together with the recent results in the area of

compressive sampling theory, are used for channel estimation

based on a considerably incomplete data set. Readers are

referred to [1], [5] for more details.

A. Compressive sampling theory

A sparse signal is a signal that can be represented with

a small number of non-zero coefficients. A compressible

signal is a signal that has a transformation where most of

its energy is in a very few coefficients, making it possible

to approximate the rest with zero. The new theory of com-

pressive sampling [5] shows that, under certain conditions,

a compressible signal can be reconstructed using very few

observations. Most natural signals are indeed compressible.

The best sparse representation of a signal depends on the

application and can be inferred from analyzing similar data.

Consider a scenario where we are interested in recovering a

vector x ∈ R
N . In our case, x represents the received signal

strength over the field of interest. We refer to the domain

of x as the primal domain. For 2D signals, vector x can

represent the columns of the matrix of interest stacked up

to form a vector. Let z ∈ R
n where n ≪ N represent the

incomplete linear measurements of vector x obtained by the

sensors. We will have

z = Φx, (14)

where we refer to Φ as the observation matrix. Clearly,

solving for x based on the observation set z is an ill-posed

problem as the system is severely under-determined (n ≪
N ). However, suppose that x has a sparse representation

in another domain, i.e. it can be represented as a linear

combination of a small set of vectors:

x = ΓX, (15)

where Γ is an invertible matrix and X is S-sparse, i.e.

|supp(X)| = S ≪ N , where supp(X) refers to the set of

indices of the non-zero elements of X and | · | denotes its

cardinality. This means that the number of non-zero elements

in X is considerably smaller than N . Then we will have

z = ΨX, (16)

where Ψ = Φ×Γ. We refer to the domain of X as the sparse

domain (or transform domain). If S ≤ n and we knew the

positions of the non-zero coefficients of X , we could solve

this problem with traditional techniques like least-squares.

In general, however, we do not know anything about the

structure of X except for the fact that it is sparse (which we

can validate by analyzing similar data). The new theory of

compressive sensing allows us to solve this problem.

Theorem 1 (see [5] for details and the proof): If n ≥ 2S
and under specific conditions, the desired X is the solution

to the following optimization problem:

min||X ||0, subject to z = ΨX, (17)

where ||X ||0 = |supp(X)| represents the zero norm of vector

X .

Theorem 1 states that we only need 2 × S measurements

to recover X and therefore x fully. This theorem, however,

requires solving a non-convex combinatorial problem, which

is not practical.

Instead, consider the following ℓ1 relaxation of the afore-

mentioned ℓ0 optimization problem:

min||X ||1, subject to z = ΨX. (18)

Theorem 2: (see [6], [7], [8], [9] for details) Assume that

X is S-sparse. The ℓ1 relaxation can exactly recover X from

measurement z if matrix Ψ satisfies the Restricted Isometry

Condition (RIC) [10] for (2S,
√

2 − 1).
Restricted Isometry Condition (RIC) [10]: Matrix Ψ sat-

isfies the RIC with parameters (Z, ǫ) for ǫ ∈ (0, 1) if

(1 − ǫ)||c||2 ≤ ||Ψc||2 ≤ (1 + ǫ)||c||2 (19)

for all Z-sparse vector c.

While it is not possible to define all the classes of matrices

Ψ that satisfy RIC, it is shown that random partial Fourier

matrices [11] satisfy RIC with the probability 1−O(N−M )
if n ≥ BMS × logO(1)N, where BM is a constant, M
is an accuracy parameter and O(·) is Big-O notation [5].

This shows that the number of required measurements could

be considerably less than N . While the recovery of sparse

signals is important, in practice signals may rarely be sparse.

Most signals, however, will be compressible. In practice, the

observation vector y will also be corrupted by noise. The

ℓ1 relaxation and the corresponding required RIC condition

can be easily extended to the case of noisy observations with

compressible signals [6]. The ℓ1 optimization problem of Eq.

18 can be posed as a linear programming problem [12]. The

compressive sensing algorithms that reconstruct the signal

based on ℓ1 optimization are typically referred to as “Basis

Pursuit” [7].

The Restricted Isometry Condition also implies that the

columns of matrix Ψ should have a certain near-orthogonality

property. Matching Pursuit (MP) approaches, on the other

hand, are another class of algorithms that use this property

to iteratively reconstruct the signal with less computational

complexity. Readers are referred to [10], [13] for more details

on this.

B. Sparsity-based channel estimation

Our analysis of several channel measurements has shown

the channel to be compressible in the frequency domain for

several scenarios. Thus we can also use this framework for

channel estimation based on a small number of measure-

ments. In this case, vector z represents all the collected chan-

nel measurements. Vector x is then the variable of interest,

which denotes the values of the channel over the field of

interest. Consequently, X represents the Fourier transform

of x (for a 2D channel, this is a vector that is formed by

stacking up all the samples of the 2D Fourier). While, in

several scenarios, a wireless channel can be considered fairly

compressible, there are cases that this may not be true as we

show in the next section.



V. CHANNEL PREDICTION AND THE UNDERLYING

TRADEOFFS

In this part we show the performance of the aforemen-

tioned approaches for channel estimation based on a small

number of measurements. As we shall see, each approach

has its own strength that can result in a better reconstruction

depending on the scenario. Fig. 3 shows channel measure-

ment across a street in San Francisco (data is courtesy of

Mark Smith [14]). Fig. 4 measures the sparsity of the channel

in the frequency domain. The figure shows −10log(NMSE),

where NMSE denotes the normalized mean square error of

the difference between the channel and its sparsified version.

In order to generate a sparsified channel, for any point on

the x-axis, that percentage of the ordered Fourier coefficients

are kept (ordered decreasingly) while the rest are zeroed.

Then, the plot characterizes how compressible this channel

is. As can be seen, this channel is fairly compressible. Fig. 5

shows the performance of both the sparsity-based and model-

based approaches for the reconstruction of this channel,

where the x-axis shows the percentage of the measurements

gathered (as a % of the whole area of interest). The y-

axis shows −10log(NMSE), where NMSE is the normalized

mean square error of the estimation. In this case, the gathered

measurements are randomly distributed over the channel. It

can be seen that when the number of measurements are small

(less than 13.5%), the sparsity-based approach outperforms

the model-based one. This makes sense as the model-based

approach needs to estimate the underlying parameters. For

a very small number of measurements, the error in the

estimation of these parameters can be high, resulting in

a performance degradation in the overall estimation. As

the number of measurements increases, the model-based

approach then outperforms the sparsity-based one in this

case.

As expected, the model-based approach would be sensitive

to the accuracy of the underlying model. In order to see

this, Fig. 6 shows another channel measurement in San

Francisco [14]. It can be seen that this channel can not be

well characterized by only one path loss trend. As a result,

we expect that the performance of the model-based approach

degrades. Fig. 7 shows the performance of channel recon-

struction in this case. It can be seen that the sparsity-based

approach outperforms the model-based one in this case. For

this case, the channel is considerably compressible in the

Fourier domain, which is evident from the good performance

of the sparsity-based approach. As discussed previously, the

performance of the sparsity-based approach depends on the

compressibility of the channel in the frequency domain.

There could be cases where the spatial variations of the

channel in an area of interest is not that compressible. In

order to see this, Fig. 8 shows the reconstruction of the

channel in a small 2D area in the basement of the ECE

building. The area is 3.28 ft by 49.2125 ft. Fig. 9 shows the

sparsity of this channel in the same way that we measured

the sparsity for Fig. 4. It can be seen that this channel

is not that sparse. As a result, it can be seen from Fig.

8 that the sparsity-based approach does not perform that

well and that the model-based approach outperforms the

sparsity-based one for most part. It can also be seen that

the performance of the model-based approach has degraded

considerably as compared to the previous channels, due to

the possible mismatch in the underlying model as well as

error in the estimation of the parameters.

In general, both approaches can be useful in estimating a

wireless channel based on a small number of measurements.

We are currently working on a more rigorous characterization

of the underlying tradeoffs between the two approaches.
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Fig. 3. channel measurement across a street in San Francisco [14].
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Fig. 4. Characterizing the sparsity of the channel of Fig. 3.
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Fig. 5. Estimation Performance for the channel of Fig. 3.
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Fig. 6. Another channel measurement across a street in San Francisco [14].
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Fig. 7. Estimation Performance for the channel of Fig. 6.

VI. CONCLUSIONS

In this paper we considered estimating the spatial vari-

ations of a channel based on a small number of gathered

measurements. We proposed a model-based estimation ap-

proach, in which we used a multi-scale probabilistic model in

order to characterize the channel. We furthermore considered

a sparsity-based channel estimation approach based on the

compressibility of the channel in the frequency domain.

Our results showed that both approaches can be effective

in estimating the channel with only a few gathered measure-

ments. We then discussed the underlying tradeoffs between

the two approaches. Overall, the proposed framework can be

useful for communication-aware motion planning in robotic

networks, where a prediction of the link qualities is needed.
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Fig. 8. Performance of the model-based and sparsity-based approaches for
a 2D channel in the basement of the ECE building.
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