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Convex Sets, Separation Theorems, and
Non-Convex Sets in RN

Definition A set of points S in R
N is said to be convex if the line segment

between any two points of the set is completely included in the set, that is,

S is convex if x, y ∈ S implies {z | z = αx + (1 − α)y, 0 ≤ α ≤ 1} ⊆ S.

S is said to be strictly convex if x, y∈S, x6=y, 0<α<1 implies αx+(1−α)y

∈ interior S.

The notion of convexity is that a set is convex if it is connected, has no holes

on the inside, and has no indentations on the boundary. Figure 2.3 displays

convex and nonconvex sets. A set is strictly convex if it is convex and has a

continuous strict curvature (no flat segments) on the boundary.

Properties of convex sets Let C1 and C2 be convex subsets of R
N . Then

C1 ∩ C2 is convex,

C1 + C2 is convex,

C1 is convex.

Proof See Exercise 8.1.

The concept of convexity of a set in R
N is essential in mathematical eco-

nomic analysis. This reflects the importance of continuous point-valued

optimizing behavior. To understand the importance of convexity, consider

for a moment what will happen when it is absent. Suppose widgets are

consumed only in discrete lots of 100. The insistence on discrete lots is a

nonconvexity. Suppose a typical widget eater at some prices to be indiffer-

Former Figure 2.3 goes here

Fig. 8.1. Convex and nonconvex sets.
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ent between buying a lot of 100 and buying 0. He will definitely not buy a

fractional lot. At a low price, he will want to buy a lot of 100. As prices

increase he will become indifferent at some price, say at p∗, between 0 and

100. At still higher prices, he will demand 0. The demand curve has a gap

at p∗. Demand is set-valued (consisting of the two points 0 and 100) and

appears discontinuous1 at p∗ . With a gap that big in the demand curve, it

is clear that there may be no intersection of supply and demand and hence

no equilibrium. It is to prevent this family of difficulties that we will focus

on convexity (until Chapter 25 and the concluding sections of this chapter

and Chapter 22).

Strict convexity typically will assure uniqueness (point-valuedness) of max-

ima. Conversely, when opportunity sets or preferences are nonconvex (not

convex), optimizing behavior of firms or households may jump between dis-

crete noncontiguous points as prices vary.

8.1 Separation theorems

The Separating Hyperplane Theorem says that if we have two disjoint convex

sets in R
N we can find a (hyper)plane between them so that one of the two

sets is above the plane and the other below. The plane separates the convex

sets. Because the plane is linear, it is defined by an equation that looks

like a price system for N commodities. The Bounding Hyperplane Theorem

leads to a similar interpretation. When the economy is described by the

convex sets representing tastes (convex upper contour sets) or technology,

we can use the separation theorems to characterize an efficient allocation as

sustained by a price system. We’ll see this in Chapters 18 and 22.

All of the sets and vectors we treat here will be in R
N . Let p ∈ R

N , p 6= 0.

Then we define a hyperplane with normal p and constant k to be a set of

the form H ≡ {x | x ∈ R
N , p · x = k}, where k is a real number. Note

that for any two vectors, x and y, in H, p · (x − y) = 0. H divides R
N into

two subsets, the portion “above” H and the portion “below” as measured

by the dot product of p with points of R
N . The closed half space above H

is defined as the set {x | x ∈ R
N , p · x ≥ k}. The closed half space below H

is defined as {x|x ∈ R
N , p · x ≤ k}. H is said to be bounding for S ⊂ R

N if

S is a subset of one of the two half spaces defined by H .

Lemma 8.1 Let K be a nonempty closed convex subset of R
N , and let z ∈

R
N , z /∈ K. Then there is y ∈ K and p ∈ R

N , p 6= 0, so that p·z < k =

1 The set-valued demand function in this case is upper hemi-continuous but not convex-valued.
This is a concept developed in chapters 23, 24, and 25.
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Former Figure 2.7 goes here

Fig. 8.2. Bounding and separating hyperplanes for convex sets.

p·y ≤ p·x for all x ∈ K.

The lemma says that for a nonempty, closed, convex set K (not including

the whole space) there is a hyperplane separating K from a point outside

the set.

Proof of Lemma 8.1 Choose y ∈ K as the closest point in K to z. That

is, y minimizes |x− z| for all x ∈ K (continuity of the Euclidean norm and

closedness of K ensure that a minimizer exists). Now we define p = y − z

and k = p·y.

We must demonstrate that p·z < k and that p·x ≥ k for all x ∈ K. The

first of these follows directly: p·z = p·z−p·y+p·y = −p·p+p·y < k. Consider

x ∈ K. We must show that p·x ≥ k. Since K is convex, we know that every

point w on the line segment between x and y, w = αx+(1−α)y, 1 ≥ α ≥ 0,

is an element of K. We will show that the proposition p·x < k leads to a

contradiction. w = y + α(x − y). Consider

|z − y|2 − |z − w|2 = |z − y|2 − |(z − y)− α(x − y)|2

= (z − y)·(z − y)− [(z − y)·(z − y) − 2α(z − y)·(x − y)

−α2(x − y)·(x − y)]

=−2αp·(x − y)− α2(x− y)·(x − y)

=−α[2p·(x − y) + α(x − y)·(x − y)].

Recall that p·y = k. Suppose, contrary to hypothesis, that p·x < k. Then

p·(x−y) = p·x−p·y < 0. Then for α sufficiently small, |z−y|2−|z−w|2 > 0

and hence |z − y| > |z − w|. But this is a contradiction. The point y was

chosen as the element of K closest to z. There can be no w in K closer to

z than y.

The contradiction proves the lemma. QED

Theorem 8.1 (Bounding Hyperplane Theorem (Minkowski)) Let K be con-

vex, K ⊂ R
N . There is a hyperplane H through z and bounding for K if z

is not interior to K.
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Proof If z /∈ K, then the existence of H follows directly from the lemma. If

z ∈ boundary K, then consider a sequence zν /∈ K, zν → z. Let pν be the

corresponding sequence of normals to the supporting hyperplane, chosen to

have length unity. The sequence is in a closed bounded set (the unit sphere).

It thus has a convergent subsequence, whose limit is the required normal.

QED

Theorem 8.2 (Separating Hyperplane Theorem) Let A, B ⊂ R
N ; let A and

B be nonempty, convex, and disjoint, that is A ∩ B = φ. Then there is

p ∈ R
N , p 6= 0, so that p·x ≥ p·y, for all x ∈ A, y ∈ B.

Proof Consider K = A − B. K is convex. Since A and B are disjoint,

0 6∈ K. Then, by the lemma, there is p so that p·z ≥ p·0 = 0 for all z ∈ K.

If we let z = x − y then p·x ≥ p·y. QED

The hyperplane with normal p is said to separate A and B. Bounding and

separating hyperplanes are presented in Figure 8.2.

8.2 The Shapley-Folkman Theorem

Properties of convex sets are developed above in this chapter and in Chapter

9. We’ll find throughout the rest of this book how useful the convexity prop-

erty is. However, not all economic relations can conveniently be described

using convex sets. Some relations (typically involving economies of scale or

specialization in consumption or production) are best described using non-

convex sets. There is a remarkable family of results, the Shapley-Folkman

Theorem, that tells us that the sum of a large number of nonconvex sets —

though still nonconvex — is approximately convex. The nonconvexities do

not compound each other indefinitely.

The overwhelming majority of results in mathematical general equilibrium

theory follow from the study of convex sets (above) and from the fixed point

theorems that apply in convex settings (chapter 9). The results on non-

convex sets below are a bit technical — the first-time reader may skip them.

They are useful in dealing with small scale economies and preferences for

concentrated consumption (chapter 25) and for the most general proofs of

convergence of the core of an economy (chapter 22, section 22.4).

8.2.1 Nonconvex sets and their convex hulls

A typical nonconvex set contains a hole or indentation.
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Example Consider V 1 ={x ∈ R2|3 ≤ |x| ≤ 10} . V 1 is a disk in R2 with

a hole in the center. The hole makes it nonconvex. Let V 2 ={x ∈ R2|
|x| ≤ 10; x1 ≥ 0 or x2 ≥ 0} . V 2 is the disk of radius 10 centered at the

origin with the lower left quadrant omitted. The indentation at the lower

left makes V 2 nonconvex.

The convex hull of a set S will be the smallest convex set containing S.

The convex hull of S will be denoted con(S). We can define con(S) , for

S ⊂ RN as follows

con(S) ≡ {x | x =
N∑

i=0

αixi, where xi ∈ S, αi ≥ 0 all i, and
N∑

i=0

αi = 1}.

or equivalently as

con(S) ≡
⋂

S⊂ T ;T convex

T .

That is con(S) is the smallest convex set in RN containing S.

Example con(V 1) = {x ∈ R2||x| ≤ 10} , and con(V 2) = {x ∈ R2||x| ≤
10 for x1 ≥ 0 or x2 ≥ 0; for x1, x2 ≤ 0, x1 + x2 ≥ −10}. Taking the convex

hull of a set means filling in the holes just enough to make the amended set

convex.

8.2.2 The Shapley-Folkman Lemma

Most economic analysis uses convex sets. We’d like a means to formalize the

distinction between economic behavior characterized by convex sets versus

nonconvex sets. One way to represent this distinction is to look at the

discrepancy between a nonconvex set and its convex hull, con(S) \ S. This

focus leads to the Shapley-Folkman Theorem. We’ll now confine attention

to compact sets. The Theorem tells us that the result of summing up a

large number of compact nonconvex sets is an approximately convex set.

The theorem makes the approximation more precise.

Lemma (Shapley-Folkman): Let S1, S2, S3, . . . ,Sm, be nonempty com-

pact subsets of RN . Let x ∈ con(S1 + S2 + S3+. . .+Sm). Then for each

i=1,2,. . . ,m, there is yi ∈ con(Si) so that
∑m

i=1 yi = x and with at most

N exceptions, yi ∈ Si. Equivalently: Let F be a finite family of nonempty

compact sets in RN and let y ∈ con(
∑

S∈F S). Then there is a partition of

F into two disjoint subfamilies F ′ and F ′′ with the number of elements in

F ′ ≤ N so that y ∈ ∑
S∈F ′ con(S) +

∑
S∈F ′′ S.
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To see how the lemma works, let’s take a simple example. Let’s start

with ten identical subsets of R2. Let Si = {(0, 0), (0, 1), (1, 0), (1, 1)} for i

= 1, 2, ..., 10. Each of the sets Si consists of four points, the four corners

of a square in R2 with one corner at the origin and sides lying on the co-

ordinate axes. Now consider con(S1 + S2 + S3+. . .+S10). con(S1 + S2 +

S3+. . . +S10) = {x|x ∈ R2, 0 ≤ x1, x2 ≤ 10} . Choose a typical point in

con(S1 + S2 + S3+. . .+S10), say x = (5.5, 5.7). The lemma says that x can

be represented as a sum of points in the convex hulls of the original sets,

con(S1), con(S2), . . . , con(S10). More important, the theorem says that x

can be represented in this way as a sum of points most (all but two in R2)

coming from the original sets S1, S2, S3, . . .S10, not from points of their

convex hulls that were not part of the original sets Si. In this example,

there are many choices of xi that will fulfill the theorem. For example,

Let x1 = (0.5, 0) ∈ con(S1), x2 = (0, 0.7) ∈ con(S2), x3 = (1, 1) ∈ S3,

x4 = (1, 1) ∈ S4, x5 = (1, 1) ∈ S5, x6 = (1, 1) ∈ S6, x7 = (1, 1) ∈ S7,

x8 = (0, 0) ∈ S8, x9 = (0, 0) ∈ S9, x10 = (0, 0) ∈ S10. Then x =
∑10

i=1 xi ,

all xi ∈ con(Si) and with only two exceptions xi ∈ Si . This is just what

the Shapley-Folkman Lemma asserts.

8.2.3 Measuring Non-Convexity, The Shapley-Folkman Theorem

We now introduce a scalar measure of the size of a non-convexity.

Definition: The radius of a compact set S is defined as

rad(S) ≡ infx∈RN supy∈S |x− y| .

That is, rad(S) is the radius of the smallest closed ball containing S.

Theorem 8.3 (Shapley - Folkman): Let F be a finite family of compact

subsets S ⊂ RN and L > 0 so that rad(S) ≤ L for all S ∈ F . Then for any

x ∈ con(
∑

S∈F S) there is y ∈ ∑
S∈F S so that |x − y| ≤ L

√
N .

The significance of the Shapley-Folkman theorem is that the sum of a large

number of compact non-convex sets is approximately convex. We start with

a family of sets F whose elements S ∈ F are of rad(S), the measure of size,

less than or equal to L. The measure of the size of a nonconvexity suggested

here is the distance between a point of the convex hull and the nearest point

of the underlying set. Adding a few sets together may increase the size of

the nonconvexity in the sum; but eventually the radius of the nonconvexity

is limited by an upper bound of L
√

N . As additional sets are added, their

nonconvexities do not compound one another; the nonconvexity of the sum

does not become progressively larger. The size of the holes or indentations
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in the summation does not grow as additional summands are added. As ad-

ditional sets are added, the sum of the sets will typically become larger, but

nonconvexities in the sum are bounded above; they do not grow. Speaking

imprecisely, we could say that the sum becomes approximately convex (as a

proportion of the size of the sum) as the number of sets in the summation

becomes large.

8.2.4 Corollary: A tighter bound

Definition: We define the inner radius of S ⊂ RN as

r(S) ≡ supx∈con(S) infT⊂S;x∈con(T ) rad(T )

Corollary 8.1 Corollary to the Shapley-Folkman Theorem: Let F be a finite

family of compact subsets S ⊂ RN and L > 0 so that r(S) ≤ L for all S ∈ F .

Then for any x ∈ con(
∑

S∈F S) there is y ∈ ∑
S∈F S so that |x−y| ≤ L

√
N .

The Corollary and its interpretation here are very similar to the Shapley-

Folkman Theorem. The Theorem is stated in terms of the radius of spheres

circumscribing the summands. The Corollary is stated in terms of the radius

of spheres inscribed in the nonconvexities of the summands. Again, the

interpretation is that after a finite number of sets are added, the addition of

more sets to the summation will not increase the size of the nonconvexities

while it increases the size of the summation. Thus, as a proportion of the

size of the sum, or the number of summands, the sum of sets becomes

approximately convex as the number of summands grows.

8.3 Bibliographic Note

Chapter 1 of Debreu (1959), provides an excellent concise survey of the

mathematical results presented here and in Chapter 23. Green and Heller

(1981) provide a very thorough treatment of convexity. Separation theorems

are well expounded in Hildenbrand and Kirman (1988). A complete state-

ment of the Shapley-Folkman Lemma, Theorem, and corollary together with

their proofs is available in Arrow and Hahn (1971), Appendix B. The theo-

rem and proof, due to L.S. Shapley and J.H. Folkman, was first published

in Starr(1969).
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Exercises

8.1 Demonstrate the following properties of convex sets in R
N . Let A

and B be convex subsets of R
N . Then A ∩ B is convex, A + B is

convex, and A is convex.

8.2 Consider a closed square (two-dimensional cube) in R
2 with side [0,

2]:

C = [0, 2]× [0, 2] = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ 2}.

Demonstrate that C is a convex set. That is, let (x1, y1) and (x2, y2) ∈
C. Let 0 ≤ α ≤ 1. Let z = α(x1, y1) + (1 − α)(x2, y2). Show that

z ∈ C.

8.3 Recall the Separating Hyperplane Theorem (Theorem 8.2):

Let A, B ⊂ R
N , where A and B are nonempty convex sets, with

disjoint interiors. Then there is p ∈ R
N , p 6= 0, so that p·x ≥ p·y for

all x ∈ A, y ∈ B.

(i) Show by (counter)example (a well-drawn figure is sufficient)

that the convexity of both A and B are typically required to

ensure this result. That is, show that if either of A or B is

nonconvex then there may be no separating hyperplane.

(ii)Let A, B ⊂ R
2. Let A = {(x, y) | x2 + y2 ≤ 1}, the closed

disk of radius one centered at the origin, and let B = {(x, y) |
(x − 2)2 + y2 ≤ 1}, the closed disk of radius one centered at

(2,0). Show that A and B fulfill the conditions of the Separat-

ing Hyperplane Theorem and specify a separating hyperplane,

including its normal.


