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Abstract

This paper characterizes the workload seen at the stor-
age subsystem of an e-commerce system. Measurements are
conducted on multi-tiered systems running three different
benchmarks, i.e., TPC-W, TPC-C, and RUBiS. In this en-
vironment, TPC-W and RUBiS are used to represent web-
based e-commerce applications (i.e., on-line shopping and
auctioning). They generate mostly READ-dominated work-
loads. The TPC-C benchmark, although not directly an e-
commerce benchmark, is used to represent an e-commerce
system under heavy on-line transactions processing activity.
Different from the TPC-W and RUBiS benchmarks, TPC-
C generates WRITE-dominated workloads. For all three
benchmarks, in addition to the system load, the workload
mix causes the system resources such as memory to satu-
rate, IO traffic to increase, and, consequently, overall sys-
tem throughput to reduce. Generally, when a workload
shifts from web-site browsing (i.e, reading) to transaction
processing (i.e writing) the IO load reduces but the foot-
print of the IO working set increases, which slows down the
IO subsystem. File system and device driver scheduling rep-
resent elements in the IO path that for a given set of system
resources further improve user-level throughput. Their im-
pact is visible for medium to high utilization and diminishes
for light load or overload.

1 Introduction

In the last few years, the world wide web has evolved
from a global information repository into an ubiquitous in-
terface for people to interact and conduct daily activities.
Accordingly, the popularity of on-line e-commerce sites,
such as Amazon and E-Bay, has increased rapidly and their
performance represents one of the most important factors
for their success. Therefore, it becomes critical to under-
stand the characteristics of their workloads and their im-
plications on overall system performance for effective re-
source management and capacity planning.

Typically an e-commerce site is supported by a multi-
tiered system, which consists of a front-end web server, an
application server, and a back-end database server. The
database server stores all the data made available through
the e-commerce site and executes all the queries necessary
to dynamically generate the information requested by the
clients. A critical component of the database server is its
storage subsystem whose behavior under the e-commerce
workloads is the focus of this work.

Our evaluation of the IO subsystem behavior in a multi-
tiered architecture supporting e-commerce applications is
based on measurements conducted on three benchmarks
that emulate a range of e-commerce services. Specifically,
we deployed TPC-W [16], an on-line bookstore (such as
Amazon.com), RUBiS [1], an on-line auction site (such as
Ebay.com), and TPC-C [16], an on-line transaction process-
ing service such as inventory systems or banking. Although
an OLTP service such as the one emulated by TPC-C qual-
ifies only indirectly as an e-commerce application, we in-
clude it in our evaluation to represent e-commerce appli-
cations during periods of high transactions (i.e. ordering
and bidding type) volumes. Our intention is to emulate the
normal operation of an e-commerce site with the TPC-W
and RUBiS benchmarks and the occasional high activity pe-
riods with the TPC-C benchmark. As a result, our work
is different from previous ones [8, 7] that evaluate TPC-C
with the goal of understanding the behavior of production
databases where the normal operation is characterized by
heavy online-transaction processing.

Although we conduct measurements throughout the IO
path of the last tier (i.e., database one) of an e-commerce
system, we focus only on the general block-level charac-
terization of the workload, i.e., well below the file system,
where the application semantics are not available. Our goal
is to understand what can be done at the IO subsystem to
optimize for such workloads in terms of request schedul-
ing, request merging, or utilization of idle times. As such,
the evaluation presented in this paper is different from those
that focus on evaluating IO behavior under any of the above
benchmarks with the goal of addressing a specific feature
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either in the IO path or somewhere above it [3, 6].
Our measurements indicate that the memory size of the

database server (relative to the database size) largely de-
termines the load seen by the IO subsystems under e-
commerce workloads. Nevertheless, there are general ob-
servations that can be drawn. An important observation is
that e-commerce IO workloads are dominated by READs
rather than WRITEs. This is an outcome of the browsing
activity carried by the majority of web site users (rather than
purchasing). Browsing generates more IO activity than or-
dering or bidding and utilizes more the IO subsystem. How-
ever, as overall user activity switches from browsing to or-
dering/bidding, the footprint of the IO working set increases
because the e-commerce supporting databases are design to
have tables that handle exclusively ordering/bidding activ-
ity and they are rarely accessed if users browse. In general,
IO workload randomness increases as user activity switches
from browsing to ordering/bidding. Yet, under e-commerce
applications, locality of WRITEs is higher than locality of
READs.

The choice of the file system and the IO scheduler im-
pacts mostly cases when the IO subsystem is under heavy
load. If the IO subsystem operates under light load or over-
load then the user-level performance gap between different
file systems and IO schedulers is minimal. In the cases
that matter, ReiserFS gives the best performance among the
three file systems evaluated and the Deadline IO scheduler
performs best among the IO schedulers evaluated.

The rest of the paper is organized as follows. Section 2
discusses related work. In Section 3, we describe the bench-
mark specifications, the evaluated workloads, as well as our
experimental environment. Section 4 gives the user-level
performance of the benchmarks under different loads and
workloads. Section 5 discusses IO workload characteris-
tics under e-commerce applications. We conclude our paper
with Section 6, where we summarize our results.

2 Related work

With the ubiquitous deployment of e-commerce services
that support daily commercial and personal activities, the
complexity of the underlying systems has increased and var-
ious studies have been conducted to understand the main
characteristics of such systems [2, 13, 22, 21]. Better un-
derstanding of the behavior and workload in e-commerce
systems has resulted in new and more effective resource
management policies that are tailored for such applications
and systems [4, 11, 12, 14].

Because it is difficult to obtain data from real e-
commerce sites, one can only resort to synthetic workload
generators to study such systems, with the most promi-
nent ones being the benchmarks of the Transaction Pro-
cessing Council [16], such as TPC-C and TPC-W, respec-

tively, modeling an OLTP (on-line transaction processing)
database server and an on-line bookstore. Although an
OLTP service such as the one emulated by TPC-C quali-
fies only indirectly as an e-commerce application, it can be
used to represent e-commerce applications during periods
of high transactions (i.e. ordering and bidding type) vol-
umes. Other benchmarks are proposed to model on-line
e-commerce services such as RUBiS [1] that models an
on-line auction server. Various workload characterization
studies are based on measurements on these benchmarks
[5, 20, 8, 7, 3, 6] with some further generalizing the be-
havior via analytic models [18].

Our work differs from previous ones, because our focus
is on the detailed characterization of the block-level work-
load in the underlying system that supports e-commerce
applications rather than general understanding of such sys-
tems workloads as in [1, 5, 21]. We stress that the databases
supporting e-commerce systems differ from the production-
level ones on the way that they are accessed from the users.
As a result, the IO e-commerce workloads are READ dom-
inated and the IO online transaction processing workloads
are WRITE dominated. Our work explains the difference
and uses the TPC-C benchmark to capture occasional heavy
load situations on e-commerce sites. Consequently, our
work differs from previous work that focuses solely on
the behavior of the TPC-C benchmark and OLTP work-
loads [8, 7, 3, 6].

3 Measurement System

3.1 Benchmarks Evaluated

In this paper, three benchmarks are evaluated; TPC-W
and RUBiS capturing the average behavior and TPC-C cap-
turing the occasional heavy-transaction behavior in an e-
commerce site. The benchmarks themselves define how
clients interact with the system and the database structure
that supports a specific e-commerce application.

Interaction Browsing Shopping Ordering
Browse 95% 80% 50%
Order 5% 20% 50%

Table 1. Frequencies of the various Web in-
teractions for the TPC-W workload mixes

TPC-W is a transactional benchmark that models an on-
line bookstore. There are 14 Web interactions in TPC-W
classified as either browsing or ordering. The browsing
interactions mostly read data from the database while the
ordering interactions read and write data to the database.
Three different workload nixes, i.e., browsing, shopping,
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and ordering are defined in TPC-W. Table 1 gives the per-
centage of the two main Web interaction types for each
workload mix.

Interaction Browsing Bidding High Bidding
Browse 100% 85% 60%

Bid 0% 15% 40%

Table 2. Frequencies of the various Web in-
teractions for the RUBiS workload mixes

RUBiS benchmark [15] models the core functionalities
of an auction site where browsing, bidding, and selling of
auction items are possible. Items for sale in an auction
site are available for bidding only within a pre-defined time
period. RUBiS’s web interactions are classified as either
browsing or bidding. Browsing interactions mostly read
from the database, while bidding interactions read and write
into the database. The RUBiS benchmark defines only two
workload mixes, i.e., browsing and bidding. For our exper-
imental purpose, we also define a third workload mix (i.e.,
high bidding) where the bidding rate is even higher than in
the default bidding workload, as shown in Table 2.

Transactions Standard Mix High Write Mix
New Order 45% 45%
Payment 43% 7%

Order Status 4% 4%
Delivery 4% 40%

Stock Level 4% 4%

Table 3. Frequencies of the transactions in
the TPC-C workload mixes

TPC-C benchmark models a medium complexity online
inventory system which facilitates warehouse items order-
ing and delivery, as well as the maintenance of the items
stock level. There are five transaction types in TPC-C. The
new order placing transaction, the payment transaction, and
the delivery transaction read and write into the database.
The order status and the stock level transactions only read
from the database. The original benchmark defines a stan-
dard workload mix. We define a second mix with more
database writing activity than the standard workload mix.
We refer to this new workload mix as “High Write”. Ta-
ble 3 gives the transaction percentage for each of the TPC-C
workloads.

3.2 Experimental Configuration

TPC-W and RUBiS are set-up as multi-tiered systems
with a few clients accessing a Web server (Apache 2.0),

which forwards all the traffic to an application server (Tom-
cat 4.1), and down to the database server (MySQL 4.1).
The TPC-C benchmark, although it can be used in a sim-
ilar setting, is implemented as a single-tier benchmark, i.e.,
clients communicate directly with the database server via
SQL queries. The hardware used in our experimental set-
up is described in Table 4.

We use openly available benchmark distributions.
Specifically, we use the TPC-W distribution from the
PHARM project at University of Wisconsin [10], RUBiS
distribution from Rice University [15], and the TPC-C dis-
tribution from OSDL [17]. Since our focus is the storage
subsystem behavior, then we scaled each benchmark such
that the underlying databases do not fit entirely into the
available memory of the database server. Hence, our fo-
cus is on the out-of-memory databases, which character-
ize Web sites with large inventory of available items. The
sizes of our databases range from more than 512MB to 2GB
(see Tables 5 6 7). Given that our available memory in the
database server is only 512MB (see Table 4), it results that
the database sizes are from 1 to 4 times the size of the avail-
able memory. Similar studies, for even larger databases,
have also maintained a ratio of 1:1 to 1:4 between memory
and database size. Consequently, we consider our set-up a
realistic one.

Table Cardinality Row Size Table Size
Customer 1,446,126 260 Bytes 364 MB
Address 2,886,116 154 Bytes 301 MB
Orders 1,296,000 73 Bytes 85 MB

Order Line 3,888,203 132 Bytes 338 MB
CC Trans. 1,296,000 80 Bytes 106 MB

Items 1,000,000 520 Bytes 510 MB
Authors 250,000 370 Bytes 87 MB
Country 92 70 Bytes 3.1 KB

Table 5. Sizes of TPC-W database tables

The TPC-W database has eight tables, i.e., customer, ad-
dress, order, order line, credit card transactions, item, au-
thor, and country. TPC-W defines how the sizes of these
tables scale relative to each-other. We opt to emulate a
Web site with 1,000,000 items in stock which results in
a database size of 1.7GB. The table sizes in the TPC-W
database are given in Table 5.

The database in RUBiS consists of seven tables i.e.,
users, items, bids, buy now, comments, categories, and re-
gions. Similar to TPC-W, the benchmark defines the rela-
tive scaling between the tables in the database. The database
size is 0.5 GB and the table sizes are shown in Table 6.

The TPC-C database consists of nine tables: customers,
items, new order, orders, order line, stock, warehouse, dis-
trict, and history. The database size is 2.1 GB and the table
sizes are shown in Table 7.
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Component Software Processor Memory OS Kernel
Clients Emulated Web Browser Pentium 4, 2GHz 256MB Linux 2.4.20

Application Server Apache 2.0, Tomcat 4.1 Pentium III, 1.3GHz 2GB Linux 2.4.18
Database Server MySQL 4.1 Intel Xeon, 1.5GHz with HT 512MB Linux 2.6.16

Disk Seagate ST373453LC, SCSI, 15,000rpm, 73GB

Table 4. Software and hardware configuration of the experimental environments

Table Cardinality Avg. Row Size Table Size
Users 1,000,974 109 Bytes 104 MB
Items 533,507 3,347 Bytes 177 MB
Bids 3,786,484 33 Bytes 119 MB

Buy now 729 25 Bytes 18 KB
Comments 398,534 292 Bytes 111 MB
Categories 20 26 Bytes 516 B
Regions 62 26 Bytes 1.5 KB

Table 6. Sizes of RUBiS database tables

Table Cardinality Avg. Row Size Table Size
Customer 900,000 608 Bytes 522 MB

Items 100,000 82 Bytes 7.8 MB
New order 89,405 40 Bytes 3.4 MB

Orders 1,110,328 37 Bytes 39 MB
Order Line 10,746,128 72 Bytes 733 MB

Stock 2,975,627 316 Bytes 895 MB
Warehouse 30 113 Bytes 3.3 KB

District 300 120 Bytes 35 KB
History 977,725 58 Bytes 54 MB

Table 7. Sizes of TPC-C database tables

Among all databases that we experimented with, RUBiS
is the smallest one, then TPC-W, and TPC-C. Some of the
results, presented later in the paper are related to this fact.
In particular, the small number of block-level requests for
RUBiS, as well as the effect that workload changes have on
the IO subsystem behavior.

In this set-up, we instrumented collection of traces from
various logs. Specifically, we use

1 - the HTTP clients logs that contain the round-trip
times for each web request sent to the server and are used
to calculate user-level throughput,

2 - the application server servlet logs that contain the
round trip time for each servlet request sent to the database
server,

3 - the MySQL server logs that record the response time
for each SQL query

4 - strace logging of the block-level activity in the IO
subsystem of the database server. We use VMWare [19]
to host the database server and collect the IO trace by run-
ning strace on the host system where the IO traffic of the

database server appears as a single process thread.

4 Overall system Performance

For our measurements the IO subsystem is configured
with its default settings, i.e., the Ext3 file system, the Antic-
ipatory [9] IO scheduler, a maximum queue length of 4 at
the disk, and enabled WRITE-caching at the disk. Figure 1
plots the user-level throughput, measured in transactions per
minute, as a function of the number of clients (i.e., sessions)
in the system, for each benchmark and each workload de-
fined in Subsection 3.1. The results show that the workload
mix determines the capacity of the system, i.e., the sys-
tem has different capacities for different workloads. As a
general observation, the browsing workload mix for both
TPC-W and RUBiS and the standard workload for TPC-C
achieve lower throughput than the other workload mixes in
the benchmarks. Under browsing mix the IO traffic is more
read-intensive than the other workloads in each benchmark
and queries execute over a large set of data which easily
saturates the database server memory and its IO subsystem
despite the fact that browsing is mostly contained within
only a few tables in the database. The workloads with addi-
tional WRITE activity, such as ordering and bidding achieve
higher throughput because individual queries are executed
over small sets of data and the IO subsystem is configured to
improve WRITE performance (i.e, the disk has write-cache
enabled).

RUBiS benchmark experiences a sharp increase in the
user-level throughput as the number of clients increases
from 16 to 64 (see Figure 1), because RUBiS’s small
database mainly fits in the memory and adding more clients
increases workload locality and consequently the cache hit
ratio. The same effect is not seen in the TPC-W and TPC-
C benchmarks where out-of-memory databases experience
higher IO traffic as the number of clients increases in the
system (flattening the user-level throughput early on).

For the TPC-W and RUBiS benchmarks, where the sys-
tem is multi-tiered, we calculate the contribution of each
tier, i.e., Web server (as seen by the client), application
server, and database server in the average user-level request
round trip time. Figure 2 presents such decomposition of
round-trip times for the three workload mixes of the RU-
BiS benchmarks as a function of the number of clients (i.e.,
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Figure 1. Benchmarks scalability from left to right; TPC-W, RUBiS, and TPC-C.

Figure 2. Decomposition of round trip times among the three tiers for the three RUBiS workload
mixes (from left to right; browsing, bidding, and high bidding).

sessions) in the system. Results for TPC-W and TPC-C
are qualitatively the same and are omitted here for sake of
brevity.

The browsing workload mix for RUBiS utilizes mostly
the database server as, in average, every request spends
more than 80% of its time at the database server (see the
leftmost plot in Figure 2). As the number of clients in-
creases in the system the time spent at the database server
waiting for service approaches 100% of the overall round
trip time. For the other two RUBiS workloads, i.e., bidding
and high bidding mixes (see the middle and the rightmost
plots, respectively, in Figure 2), the database represents a
lower, but still high, overhead. In particular, for a small
number of clients, the application server contributes signif-
icantly to the overall round trip time and only when more
clients in the system cause the IO subsystem to be the bot-
tleneck, the relative application server overhead is reduced.

The user-level performance of all three benchmarks sug-
gests that system performance depends on the optimization
of the database tier where storage is an important compo-
nent. In the following, we show detailed characterization
of the IO subsystem workload under a range of user-level
workloads.

5 Storage Subsystem Behavior

An important aspect of storage performance is the ac-
cess pattern at the block level. It determines how effective
various IO optimization techniques such as request merging
and reordering are. We record the block (LBA) level trace
for each benchmark and workload mix using the strace
tool and plot the LBA of each IO request as a function of
the request issued time. Figures 3, 4, and 5 capture the disk
access patterns for the different workload mixes in TPC-W,
RUBiS, and TPC-C, respectively, for only one load level
(i.e., number of clients in the system).

For the TPC-W benchmark (see Figure 3), the major-
ity of block-level activity is associated with accesses to the
items table (i.e., the thickest horizontal band of dots in each
plot). The distinction between the different workloads in
TPC-W, with regard to the block access pattern, reflects the
changes in user activity. Specifically, when switching from
browsing (the leftmost plot in Figure 3) to shopping (the
middle plot in Figure 3, to ordering (the rightmost plot in
Figure 3) the footprint of the working set increases because
ordering activities require to access almost all tables in the
database which are not commonly accessed with the brows-
ing activities. This causes in-memory data in the shopping
and ordering mixes to be evicted faster than under brows-
ing. Consequently, there are more sequential scans of the
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items table (see the slanted lines in the thickest horizontal
band of each plot) for the shopping and ordering than for
the browsing workload.

For the RUBiS benchmark (see Figure 4), there are fewer
disk accesses than for the TPC-W benchmark (because the
database size is smaller than the TPC-W database resulting
in higher cache hit ratio). However, similarly to the TPC-
W access pattern, there are many accesses for the browsing
workload mix (leftmost plot in the figure) in the items ta-
ble. As bidding becomes more dominant in the bidding and
high-bidding workloads, then the working set increases be-
cause more tables dealing with orders become active.

The TPC-C benchmark (see Figure 5), is designed such
that the queries access mostly randomly all database tables.
Generally, under TPC-C, the queries do not generate the an-
swer based on a large set of data as the browsing queries in
TPC-W and RUBiS and although the database is the largest
among the three tested, we do not find the long sequential
scans as in the TPC-W browsing mix. Because visually
there is no difference between the two TPC-C workloads
Figure 5 plots the access pattern only for the standard mix.

The block-level trace is further analyzed to extract addi-
tional metrics that characterize the IO workload for all three
benchmarks, in addition to the high-level visualization of
the access pattern plots. Specifically, we estimate the num-
ber of sectors read and written, average request interarrival
times, length of sequential streams of READs and WRITEs
that can be detected and exploited for optimization purposes
at the disk level, and the sequentiality of READ and WRITE
traffic (after the Anticipatory IO scheduler has merged con-
secutive requests). Sequentiality is measured as the ratio
of the number of sequential requests over the total number
of requests (i.e., a fully random workload has zero sequen-
tiality and the larger the sequentiality metric the larger the
number of sequential streams detected in the workload). We
calculate such metrics for the READ-intensive workloads
i.e., browsing and the standard mix for TPC-W/RUBiS and
TPC-C, respectively, and WRITE-intensive workloads, i.e.,
ordering, high bidding, and high WRITE mixes for TPC-
W, RUBiS, and TPC-C, respectively. We present our find-
ings in Tables 8, 9, for the light load READ-intensive and
WRITE-intensive workload mixes, respectively, and in Ta-
bles 10 and 11 for the heavy load READ-intensive and
WRITE-intensive workload mixes, respectively.

Tables 8, 9, 10 and 11 indicate that READ traffic dom-
inates the overall disk traffic for all benchmarks. The only
exception is the high WRITE workload that we defined for
the TPC-C benchmark (as an extreme workload mix dom-
inated by WRITEs). For TPC-C workloads the ratio be-
tween READs and WRITEs oscillates between 60%/40%
for the standard workload to 40%/60% for the high WRITE
workload. For browsing workload mixes in TPC-W and
RUBiS this ratio is respectively 99.9% /0.1% and 99%/1%,

Figure 5. Disk access pattern for the TPC-C
benchmark under the standard workload mix
with 30 warehouses and 7 clients.

i.e., READs overwhelmingly dominate the workload. In-
tensifying the WRITE activity via either ordering or bid-
ding for the two benchmarks increases the WRITE portion
of the workload 10 times for TPC-W and 20 times for RU-
BiS (the respective READ/WRITE ratios are 99%/1% and
81%/19%). As load in the system increases (i.e., number of
clients or sessions) then the READ/WRITE ratios remain
the same for TPC-W and TPC-C but change for the RUBiS
benchmark. Specifically, under high load, RUBiS’s READ
traffic increases much more than the WRITE traffic, for both
workload mixes, but in particular for the READ-intensive
mix.

Changing the user activity in the workload from brows-
ing to ordering/bidding reduces the overall traffic in the IO
subsystems in particular for the RUBiS benchmark by 4 and
10 times for light and high load, respectively. Similarly the
TPC-W IO traffic reduces by 2 times for light load when
workload changes from browsing to ordering but increases
by 10% when the same change happens under high load.
TPC-C IO traffic increases by 30% and 40% when the stan-
dard workload is replaced by a WRITE-dominated one for
light and heavy load, respectively. The available memory
plays an important role in the changes seen at the block-
level trace when the workload mix switches from browsing
to ordering/bidding. In general this increases the footprint
of the working set and if the memory can accommodate the
increase, as it is the case for RUBiS, the overall IO traffic
reduces otherwise it increases, as it is the case for TPC-C
benchmark.

Workload locality is measured via the metric of sequen-
tiality. With a few exceptions, load increase is associated
with higher locality in the workload (mostly for READs
than WRITEs) for the three benchmarks. This is expected
because a workload mix determines the working set foot-
print in the block-level trace and even if only random re-
quests are added to that mix (i.e,, higher load) it will only
improve workload sequentiality (given that the database
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Browsing Mix Shopping Mix Ordering Mix

Figure 3. Disk access pattern for the TPC-W benchmark with 64 clients.

Browsing Mix Shopping Mix Ordering Mix

Figure 4. Disk access pattern for the RUBiS benchmark with 32 clients.

Benchmark Sectors
read

Sectors
written

Avg. Read
Stream Size

Avg. Write
Stream Size

Read
Seq.

Write
Seq.

Avg.
Interarrival
Time

TPC-W 11,327,714 11,352 36.69 11.62 0.46 0.88 3.06
RUBiS 659,653 7,400 9.48 11.97 0.09 0.99 11.97
TPC-C 1,356,551 940,036 12.58 8.79 0.14 0.07 7.83

Table 8. Block-level trace characteristics under light load and READ-intensive workloads (i.e, brows-
ing, browsing, and standard mixes for TPC-W, RUBiS, and TPC-C, respectively).

Benchmark Sectors
read

Sectors
written

Avg. Read
Stream Size

Avg. Write
Stream Size

Read
Seq

Write
Seq

Avg.
Interarrival
Time

TPC-W 6,751,063 20,840 35.99 14.02 0.49 0.33 4.21
RUBiS 118,549 27,184 9.11 11.82 0.05 0.22 40.33
TPC-C 1,159,496 1,592,638 14.40 9.69 0.12 0.09 6.32

Table 9. Block-level trace characteristics under light load and WRITE-intensive workloads (i.e, order-
ing, high bidding, and high WRITE mixes for TPC-W, RUBiS, and TPC-C, respectively).
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Benchmark Sectors
read

Sectors
written

Avg. Read
Stream Size

Avg. Write
Stream Size

Read
Seq

Write
Seq

Avg.
Interarrival
Time

TPC-W 10,075,511 12,688 51.93 11.19 0.53 0.79 4.51
RUBiS 4,018,828 7,752 21.31 11.43 0.35 0.99 5.79
TPC-C 1,049,287 875,084 15.03 9.50 0.15 0.07 8.78

Table 10. Block-level trace characteristics under heavy load and READ-intensive workloads (i.e,
browsing, browsing, and standard mixes for TPC-W, RUBiS, and TPC-C, respectively).

Benchmark Sectors
read

Sectors
written

Avg. Read
Stream Size

Avg. Write
Stream Size

Read
Seq

Write
Seq

Avg.
Interarrival
Time

TPC-W 13,460,872 26,640 56.53 13.51 0.56 0.31 3.23
RUBiS 440,200 21,880 13.18 14.01 0.19 0.31 15.99
TPC-C 1,368,204 1,652,168 14.00 10.84 0.12 0.14 6.04

Table 11. Block-level trace characteristics under heavy load and WRITE-intensive workloads (i.e,
ordering, high bidding, and high WRITE mixes for TPC-W, RUBiS, and TPC-C, respectively).

size is fixed). RUBiS has the highest locality gain as ex-
pected because the footprint is smaller as the database is
smaller. As workload switches from READ-intensive to
WRITE-intensive the footprint of the working set increases
and this causes, generally, for the workload locality to re-
duce for all workloads and in particular for the WRITE traf-
fic. The exceptions to this observation are related to the
database size and the cache hit ratio for the specific work-
load.

The request interarrival times are short for most TPC-W
and TPC-C scenarios captured in Tables 8, 9, 10 and 11.
RUBiS experiences lighter loads than TPC-C and TPC-W,
with the only exception of READ-intensive and heavy load
case where the average interarrival times are short for all
three benchmarks.

5.1 File System

We further evaluate storage subsystem performance un-
der the three benchmarks when different file systems man-
age the IO traffic. Ext2, Ext3, and ReiserFS are evaluated
as three popular Linux file systems, available in all recent
Linux distributions. The high-level distinction between the
file systems is

• Ext2 is a standard FFS-like file system, which uses
cylinder groups for placement and single/double/triple
indirect metadata blocks.

• Ext3 has data structures that are backwards compat-
ible with Ext2, but it uses a journal to enhance data
reliability and consistency.

• ReiserFS also has a journal, which is a single con-
tiguous file, and it uses a B+-tree structure to manage
metadata.

Figure 6 presents the user-level throughput measured in
transactions per minute as a function of the file system and
workload mix for the three benchmarks under our evalu-
ation. The measurements of Figure 6 are conducted un-
der heavy load scenarios, i.e, 64, 128, and 300 clients for
TPC-W, RUBiS and TPC-C, respectively. Results with light
load are available as well and qualitatively similar to those
presented in Figure 6. These results indicate that the file
system does not effect user-level throughput when system
is in overload as it is the case of TPC-W benchmark (re-
call that the interarrival times are short - between 3ms and
4ms). This observation holds also for the bidding and high-
bidding workloads in RUBiS but the reason is that RUBiS
with 128 clients represent heavy IO load only for the brows-
ing mix (i.e,, interarrival times of 5.79 ms) and light IO
load for the other two mixes (i.e, 15ms average interarrival
times). Similarly to browsing mix of RUBiS, the TPC-C
standard and high WRITE workloads represent heavy loads
but not overloads (as the TPC-W case) with interarrival
times 6 ms and 9 ms, respectively. As a result, the file sys-
tem does not effect user-level throughput for the IO light or
overload cases but it makes a difference for the heavy load
cases where effective optimization matters when it comes
to overall system performance.

The main difference between the three file systems is
journal maintenance. The lack of the journal for Ext2 means
that it has, in general, less work to complete, while Ext3
and ReiserFS maintain a journal of the written data enhanc-
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Figure 6. Throughput (in user transactions per minute) under different file systems and workload
mixes for the three benchmarks. From left to right plots represent TPC-W with 64 clients, RUBiS with
128 clients, and TPC-C with 64 clients. IO scheduling is Anticipatory.

ing data consistency and reliability. Efficient management
of the journal as it is the case of ReiserFS under heavy
loads results on higher user-level throughput under Reis-
erFS than Ext3 and Ext2 (under RUBiS). For TPC-C, with
more WRITEs and more metadata in the journal to be main-
tained, Ext2 performs slightly better than ReiserFS and by
factoring in the added data consistency and reliability in
ReiserFS, we consider it the best performing file system
among the three evaluated.

5.2 Effects of I/O Scheduling Algorithm

Finally, we evaluate the impact that various I/O schedul-
ing algorithms have on user-level throughput. We measure
performance of the four I/O schedulers supported in Linux
kernel 2.6:

- No-OP: first come first served with the benefit of re-
quest merging (only with the last request, to preserve fair-
ness).

- Deadline: behaves as a standard elevator, unless reads
and writes have been waiting longer than respective pre-
defined thresholds.

- Anticipatory (default): same as deadline, however
sometimes pauses, in order to avoid seeking, while waiting
for more sequential read requests (Non-Work Conserving)
to arrive.

- CFQ: elevator that attempts to give every process the
same number of I/Os (one queue per process)

All experiments use ReiserFS as file system and the user-
level throughput for the TPC-C benchmark is given in Fig-
ure 7. Figure 7 shows that the choice of the IO scheduling
algorithm impacts user-performance for the TPC-C bench-
mark with Deadline being the best performing IO scheduler.

The user-level throughput of TPC-W and RUBiS is not
effected by the IO scheduler choice. While one factor is
the load in the system, i.e, TPC-W and RUBiS generate
extreme loads (either very light or very heavy), another
cause might be the multi-tiered structure of the TPC-W and

Figure 7. Throughput (in user transactions
per minute) for different disk schedulers and
workload mixes for the TPC-C benchmark
with 300 clients. File system is ReiserFS.

RUBiS benchmarks. The user-level throughput for TPC-
C is measured at the database clients while the user-level
throughput for the TPC-W and RUBiS is measured at the
Web clients (i.e., two tiers up in the hierarchy). The ser-
vice at the Web server and application server in TPC-W and
RUBiS diminishes the effect of the IO scheduler in the user-
level throughput.

6 Conclusions

We conducted measurements on three different bench-
marks, i.e., TPC-W, TPC-C, and RUBiS, with the purpose
of emulating the behavior of the storage subsystem under
e-commerce applications. Our measurements indicated that
there are commonalities in the behavior of the storage sub-
system under such applications, that can be used in system
design and capacity planning. Generally, when a workload
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shifts from web-site browsing (i.e, reading) to transaction
processing (i.e writing), the IO traffic reduces, while the
footprint of the IO working set increases. Consecuently,
the block-level locality of requests under the ordering and
the bidding activities is reduced when compared with the
request locality under the browsing workload mix. As a re-
sult, the workload mixes dominated by transactions (order-
ing, bidding, shipping) demand more work from the storage
subsystem than the workload mixes dominated by brows-
ing, although the former consistes of fewer requests overall.
The file system and the device driver scheduling represent
elements in the IO path that for a given set of system re-
sources improve user-level throughput even further, under
medium or high load. These effects diminis for light load
or overload.
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