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Abstract

A common question in mathematics is whether a family of sets
has nonempty intersection, and it is useful to have criteria that help
answer these questions (for example, any chain of nonempty compact
sets in a metric space has nonempty intersection). These questions
can be recast in terms of approval voting, in which each voter has an
approval set (the set of options that the voter approves of). Having
an option that every voter approves of amounts to the approval sets
having nonempty intersection. If this fails, one can still ask whether
there is an option that a large proportion of the voters approve of.

Francis Su et al. have considered this problem in the case where
the approval sets are intervals on a line [1], and showed that if out of
every m voters, there are k who can agree on an option, then there is a
single option that at least (k − 1)/(m− 1) of the population approves
of. We consider the case where the approval sets are arcs on a circle,
and answer a question by Su by showing an analogous result: if out of
every m voters, there are k who can agree on an option, then there is
a single option that more than (k − 1)/m of the population approves
of.

1 Introduction

In approval voting systems, each voter indicates approval or disapproval for
each candidate or option (we will use the term platform), and the platform
with the most approval votes wins. What conditions guarantee that there
will be a platform with the approval of at least half (or all) the voters?
Without introducing any further assumptions, one can only reach trivial
conclusions, but in many situations, there is some underlying property of
the set of platforms and votes that allows for more interesting results. For
example, it is common to imagine a linear political spectrum from liberal
to conservative, with platforms lying along this spectrum, and to assume
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that for each voter, the set of platforms the voter approves of (which we call
the voter’s approval set) forms a subinterval of the spectrum. Or, suppose
a town is trying to determine a school budget; the interval [0,∞) forms
the spectrum of possible budgets (in dollars, say), and voters will typically
approve of some subinterval of this spectrum. In these linear societies, where
the spectrum is a line and the approval sets are intervals, Francis Su et al.
have shown that if, out of every 3 voters, there is a platform that at least 2
of them approve of, then there must be a platform with the approval of at
least 1/2 of all voters [1] (we call this an agreement proportion of at least
1/2). More generally, they showed that if among every m voters, k can
agree on a platform, then one can obtain an agreement proportion of at
least (k − 1)/(m− 1) (this is stated more precisely as Theorem 1.1 below).

In other situations, one might wish to consider circular societies, in which
the spectrum of platforms is a circle and the approval sets are arcs. For
example, some suggest that a circular political spectrum is a better model
than a linear spectrum. Sometimes there is something inherently circular
about the set of options at hand: a professional society might be trying to
determine what time of year to hold a recurring annual meeting; a committee
might want to determine the background hue for the cover of a report; a
group of scouts lost in the woods might need to choose a compass bearing;
etc. Or, one could have a linear spectrum, but allow approval sets to be
intervals or their complements (perhaps a voter finds a particular interval
unsavory, or just wants to cancel someone else’s vote); in this case, one
is essentially forming a circular spectrum by wrapping the linear spectrum
around a circle, and allowing arcs as approval sets. But most importantly,
if one seeks a general understanding of how Theorem 1.1 changes as one
changes the form of the spectrum and approval sets, then circular societies
are one of the first cases to be considered. During his invited address at the
2006 Joint Mathematics Meetings [4], Su posed the question of what analog
of Theorem 1.1 might hold for circular societies.

This paper answers Su’s question with Theorem 1.2, an analog of The-
orem 1.1 that applies to circular societies and has a strict lower bound of
(k−1)/m (instead of (k−1)/(m−1)) on the agreeement proportion. Despite
a strong resemblance in the statement of the two theorems, the proofs are
quite different. Su et al. use chromatic numbers of perfect graphs to prove
Theorem 1.1, while we prove Theorem 1.2 by exhibiting a class of easily
analyzed societies (the uniform societies) and showing that it is possible
to transform an arbitrary circular society, in a permissible way, into one of
these uniform societies.

In Section 1.1, we make the above notions precise, introduce notation,
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and state Theorems 1.1 and 1.2. In Section 1.2, we describe the general
context where these results reside, and pose some further questions. We
prove Theorem 1.2 in Sections 2–4.

1.1 Definitions and results

A society is a tuple S = (V,X,A), where V is a finite set of voters, X is
a set of platforms, and A : V → P(X) is a function that associates each
voter x ∈ V with a set Ax of platforms in X. We call X the spectrum of S,
and Ax the approval set of voter x. The intention is that the platforms are
options (or candidates) that the voters must choose among, and Ax is the
set of platforms that voter x approves of.

Some further notation is helpful. Given a platform p ∈ X, the support
supp(p) of p is the set of voters that approve of p, and the agreement number
a(p) of p is the number of voters that approve of p. We can also restrict
these notions to a subset W ⊆ V of voters: suppW (p) is the set of voters in
W that approve of p, and aW (p) is the number of voters in W that approve
of p. The agreement number a(S) of society S is the greatest number of
voters that can agree on a single platform. More formally:

supp(p) = {x ∈ V | p ∈ Ax },
suppW (p) = {x ∈W | p ∈ Ax },

a(p) = |supp(p)|,
aW (p) = |suppW (p)|,
a(S) = max

p∈X
a(p).

With any of this notation, if there is ambiguity about which society is in
question, we can include it as a superscript: ASx is the approval set of x in
society S, and so on. We will abuse notation and allow S to be treated as
its set of voters; in particular, we write x ∈ S for x ∈ V S and |S| for |V S |.

A society S is (k,m)-agreeable if 1 ≤ k ≤ m ≤ |S| and for every W ⊆ S
with |W | = m, there exists a platform p such that aW (p) ≥ k; in other
words, out of every m voters, there must be k among them who can agree
on a single platform. The agreement proportion of S is the fraction a(S)/|S|
of the voters who can agree upon a single platform.

The types of societies of immediate interest are linear societies and cir-
cular societies. A linear society is a society in which the spectrum is R (or
an interval of R) and approval sets are intervals. A circular society is a
society in which the spectrum is the circle S1, and approval sets are con-
nected subsets of the circle (typically arcs). Figure 1 gives an example of
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Figure 1: A circular society with voters A, B and C, drawn two ways: with
the spectrum as a circle, and with the spectrum as an interval.

a circular society T : we have 3 voters A, B, and C whose approval sets
intersect pairwise, but the intersection of the three approval sets is empty.
By unwrapping the circle to form an interval, we can present T as it appears
on the right in the figure; for clarity, we favor this latter form. Society T
is (2, 2)-agreeable: every pair of voters has overlapping approval sets. (It is
also (3, 2)-agreeable, but not (3, 3)-agreeable.) The agreement number of T
is a(T ) = 2 (we can get 2 voters to agree upon a single platform, but not
3); this gives T an agreement proportion of a(T )/|T | = 2/3.

The following theorem describes how (k,m)-agreeability affects agree-
ment proportion in linear societies.

Theorem 1.1 (Su et al.). If S is a (k,m)-agreeable linear society, then

a(S)
|S|
≥ k − 1
m− 1

, (1)

and this bound is best possible (in a sense that we do not make precise
here).

It is not hard to see that Theorem 1.1 does not apply to circular societies.
For instance, the society T of Figure 1 is (2, 2)-agreeable, but a(T )/|T | =
2/3 < (2−1)/(2−1). Experimentation with a few societies suggests (k−1)/m
as a lower bound on the agreement proportion of a (k,m)-agreeable circular
society. This turns out to be correct; the difficulty lies in proving it, and
the rest of the paper is devoted to the following theorem.

Theorem 1.2. (a) If S is a (k,m)-agreeable circular society, then

a(S)
|S|

>
k − 1
m

; (2)
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equivalently, a(S) ≥ bk−1
m |S|c+ 1.

(b) For every N ≥ m ≥ k ≥ 1, there is a (k,m)-agreeable circular society
S of size N with a(S) = bk−1

m Nc+ 1.

We prove the sharpness condition (b) in Section 2, and establish the
lower bound (a) in Section 4. (Section 3 discretizes societies, necessary for
Section 4.)

1.2 Further questions

Our interest in results like Theorems 1.1 and 1.2 is not just motivated by an
interest in approval voting. Rather, approval voting provides a convenient
presentation of a broader mathematical problem: given a family of sets,
is their intersection nonempty? Treating each set as the approval set of a
voter, this amounts to asking whether there is a single platform with the
approval of all voters. Or, even if a family of sets has empty intersection, is
there a sense in which many of the sets must have nonempty intersection?
Studying (k,m)-agreeability and its consequences is one line of approach to
these questions.

Let A be a family of subsets of a set X. An A-society is a society
with spectrum X and approval sets in A. What is the best lower bound
we can put on the agreement proportion of (k,m)-agreeable A-societies?
A few cases of interest are the connected subsets of a topological space
(particularly graphs), the open balls of a metric space, the convex subsets
of an affine space, and solid rectangles in Rn. (Linear societies can be seen
as a special case of any of these; circular societies are a special case of the
first two.)

Some known set-intersection theorems can be seen in this light. Su et
al. [1] point to Helly’s theorem [3] as an example, which we reproduce here.
An Rd-convex society is a society with spectrum Rd and convex approval
sets. Helly’s theorem (below) tells us that a (d+1, d+1)-agreeable Rd-convex
society has agreement proportion 1.

Theorem 1.3 (Helly). Suppose A1, . . . , An ⊆ Rd, d < n, are convex such
that the intersection of any d + 1 of these sets is nonempty. Then ∩iAi 6=
∅.

We would like to draw attention to graphs: given a graph G as spectrum,
and allowing connected subsets of G as agreement sets, what can one say
about (k,m)-agreeable societies of this form? (By a graph, we mean a 1-
dimensional cell complex [2], so that each edge is considered as a copy of the
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Figure 2: The uniform society U(7, 4). (Hollow circles denote open end-
points.)

unit interval.) Linear societies are the special case in which the graph takes
the form of a line segment; circular societies are the special case in which
the graph consists of a single cycle. The next step is to understand trees; in
particular, does Theorem 1.1 apply to trees? This appears to be the case,
but it is not known.

2 Sharpness and uniform societies

Before handling arbitrary circular societies, we will consider societies in
which the approval sets are spread as evenly as possible over the circle.
These societies will be enough to establish Theorem 1.2(b), and they will
arise again in our proof of Theorem 1.2(a).

Definition 2.1. For integers 1 ≤ h ≤ N , we define the circular society
U(N,h) as follows. First, we identify the circle S1 with the real numbers
modulo N . The set of voters in U(N,h) is {0, 1, . . . , N − 1}, though we will
generally think of this as the group ZN so that we can speak of voter 1−N ,
and so on. For voter i, we let Ai = [i, i+ h). Societies of the form U(N,h)
are called uniform societies. (An example appears in Figure 2.)

The first observation we make about U(N,h) is that every platform
appears in exactly h approval sets. In particular, a(U(N,h)) = h. The
following lemma describes which uniform societies are (k,m)-agreeable.

Lemma 2.2. For integers N ≥ m ≥ k ≥ 1 and h ≥ 1, the following are
equivalent.
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(i) U(N,h) is (k,m)-agreeable.

(ii) h ≥ bk−1
m Nc+ 1

(iii) k ≤ dmh/Ne

Proof. The equivalence (ii)⇔(iii) is straightforward:

h ≥ bk−1
m Nc+ 1 ⇐⇒ h > k−1

m N

⇐⇒ k < mh/N + 1
⇐⇒ k ≤ dmh/Ne

Now suppose k ≤ dmh/Ne. Choose any set W of m voters in U(N,h).
The average value of aW (p) is

1
N

∫ N

0
aW (p) dp =

1
N

∑
x∈W

∫ N

0
a{x}(p) dp

=
1
N

∑
x∈W

h

= mh/N.

It follows that aW (p) ≥ mh/N for some platform p; since aW (p) is an integer,
aW (p) ≥ dmh/Ne ≥ k. So U(N,h) is (k,m)-agreeable. This establishes
(iii)⇒(i).

It remains to establish (i)⇒(iii). We will do this by taking m voters in
U(N,h) who are spaced as evenly as possible, and showing that at most
dmh/Ne of them can agree on a single platform. Define v : Z → Z by
v(i) = biN/mc. Observe that for any k,

v(k + dmh/Ne)− v(k) = b(k + dmh/Ne)N/mc − bkN/mc
≥ b(k +mh/N)N/mc − bkN/mc
= bkN/m+ hc − bkN/mc
= h.

In particular, intervals of the form (p−h, p] (which arise below) can contain
at most dmh/Ne points from the range of v. Observe also that v(i+ km) =
v(i) + kN ; in particular, the range of v is closed under adding multiples of
N . The significance of this latter observation is what it contributes to the
robustness of the previous observation: if we project the real numbers down
to the real numbers modulo N , an interval (p−h, p] can still contain at most
dmh/Ne distinct points from the range of v.
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Suppose U(N,h) is (k,m)-agreeable, and let W = { v(i) | 0 ≤ i < m }.
Note that W , considered as a set of voters in U(N,h), contains m voters
that are spaced as evenly as possible. By the (k,m)-agreeability of U(N,h),
let p be a platform that at least k voters in W approve of. Each voter i in
U(N,h) has approval set [i, i+ h), and p ∈ [i, i+ h)⇔ i ∈ (p− h, p], so the
voters of U(N,h) that approve of p are those integers i that lie in (p− h, p].
As observed above, this interval can contain at most dmh/Ne points in the
range of v, so of the m voters in W , at most dmh/Ne approve of p. So,
k ≤ dmh/Ne. This establishes (i)⇒(iii).

Proof of Theorem 1.2(b). Let h = bk−1
m Nc+1. Then by Lemma 2.2, U(N,h)

is a (k,m)-agreeable society (of size N), and a(U(N,h)) = h = bk−1
m Nc+ 1.

3 Discretization

For the purposes of proving Theorem 1.2(a), we find it convenient to work
with discrete representations of circular societies. Before switching to dis-
crete representations, though, we make a few simplifying assumptions.

First, we may restrict our attention to societies in which no voter has an
empty approval set. For, suppose Theorem 1.2 applies to such societies, and
consider a (k,m)-agreeable circular society S in which i voters have empty
approval sets (call them implacable). Form the society S′ by throwing away
these voters; S′ must be (k,m − i)-agreeable: given m − i voters in S′,
combine them with the i implacable voters in S; by the (k,m)-agreeability
of S, there must be a platform that k of these voters approve of, and each
of these voters is in S′. (In particular, this shows that k ≤ m− i.) Since S′

is (k,m− i)-agreeable, and noting that a(S) = a(S′), we have

a(S)
|S|

=
a(S′)
|S′|

· |S
′|
|S|

>
k − 1
m− i

· |S
′|
|S|

=
k − 1
m
· m

m− i
· |S| − i
|S|

≥ k − 1
m

(since |S| ≥ m).

We may also assume that no voter’s approval set is the entire circle.
For any such voter, we could find a closed arc disjoint from the boundaries
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of the approval sets, and remove it from that voter’s approval set without
influencing a(S) or the society’s (k,m)-agreeability.

Now, each voter’s approval set is an arc along the circle. Making small
perturbations as necessary, we can assume that the endpoints of all these arcs
are distinct. (First, at any open endpoint, perturb it to make the interval
slightly shorter; this avoids introducing new overlaps between approval sets
without losing any existing overlaps. Then, at any closed endpoint, perturb
it to make the interval slightly longer; this preserves existing overlaps, and
does not introduce any new overlaps since the open endpoints were already
perturbed.) With all endpoints distinct, we may further assume that all the
approval sets are closed.

Thinking of the circle as an interval [0, N ], with 0 and N identified (and
N > 0), we can treat each approval set as an interval with a left and right
endpoint. Because of the circular nature, the left endpoint might nominally
be to the right of the right endpoint; for example, [2/3, 1/3] represents the
set [0, 1/3] ∪ [2/3, N ].

For our purposes, a society is sufficiently described by the order in which
the left and right endpoints of the voters are encountered as one moves
around the circle (or, more precisely, as one moves from 0 up to N). So,
each society may be represented by a string of symbols, where each symbol
represents a left or right endpoint of a particular voter’s approval set. For
a voter x, we will use the symbols [x〉 and 〈x] to denote the left and right
endpoints of Ax, respectively. For example, the society from Figure 1 would
have a string representation of [B〉〈A][C〉〈B][A〉〈C]. Of course, any string
representation can be rotated cyclically without changing the society.

We can disregard the platforms occurring at endpoints, because their
support will coincide with the support of platforms either immediately to
the left or right. Also, between two consecutive endpoints, any two platforms
will have the same support, so we only need to consider one platform between
two consecutive endpoints. So, between any two consecutive endpoints, we
fix one platform that we call a representative platform (r.p.), and we will
restrict our attention to r.p.’s. As a matter of notation, when we list a
string of endpoints, we may want to name any r.p.’s at hand, and we will do
so by allowing r.p.’s to be listed among endpoints; for example, the string
[x〉p〈y]q〈x]r represents a portion of a society in which [x〉, 〈y], and 〈x] appear
consecutively, p is the r.p. between [x〉 and 〈y], q is the r.p. between 〈y] and
〈x], and r is the r.p. immediately to the right of 〈x].

For a voter x in society S, we will let |ASx | denote the number of r.p.’s
in ASx ; we call this the approval length of x (and if we think of consecutive
endpoints as being spaced one unit apart, |ASx | coincides with the actual
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measure of Ax).

4 The lower bound

Lemma 2.2 shows that Theorem 1.2(a) applies to uniform societies. Know-
ing this, it should not be surprising that it would also apply to arbitrary
societies: non-uniform societies are going to be more “bunched up” in places,
which would tend to yield higher agreement numbers. Our proof will give
rigor to this intuition; we will start with an arbitrary (k,m)-agreeable so-
ciety, and smooth it out through transformations that do not break (k,m)-
agreeability and do not increase the agreement number, until we reach a
uniform society, to which we can apply Lemma 2.2.

Definition 4.1. For societies S and T , we say S validly transforms to T ,
and write S ⇀ T , if |S| = |T |, a(S) ≥ a(T ), and (S is (k,m)-agreeable)⇒(T
is (k,m)-agreeable) for all k, m. Observe that the relation ⇀ on societies
is reflexive and transitive (a preorder). An operation on societies is a valid
transformation if applying the operation to a society S always yields a so-
ciety S′ with S ⇀ S′.

The transformation of an arbitrary society into a uniform society will
occur in two phases. First, in Section 4.1, we will transform to a society in
which no voter’s approval set contains another’s. Then, in Section 4.2, we
will transform such a society into a uniform society.

4.1 Eliminating containment

Definition 4.2. A society S is containment-free if no voter’s approval set
contains another voter’s approval set.

Lemma 4.3. For any society S, there is a containment-free society T such
that S ⇀ T .

Proof. If S is containment-free, then we are done, so suppose that S is not
containment-free. Then Ay ⊆ Ax for some x 6= y, and (after rotating if
necessary) the string representation of S contains [x〉ρ[y〉σ〈y]τ〈x], where
ρ, σ, and τ are (possibly empty) strings of intervening endpoints. Let R
be the society that results from swapping 〈x] and 〈y]; that is, we replace
[x〉ρ[y〉σ〈y]τ〈x] with [x〉ρ[y〉σ〈x]τ〈y]. (See Figure 3.) Note that this only
affects the approval sets of x and y. We wish to show S ⇀ R (although R
will not necessarily be the promised society T ).
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Figure 3: Swapping endpoints to eliminate a containment

For any r.p. q, either the support of q is unchanged by this transfor-
mation, or x leaves the support and y enters the support; in either case,
aR(q) = aS(q). So a(R) = a(S).

Supposing that S is (k,m)-agreeable, we claim thatR is (k,m)-agreeable.
Let M ⊆ V S = V R be any set of m voters. We must show aRM (p) ≥ k for
some r.p. p. There is some tedium in considering all possible cases, but the
argument will stand on the following facts: aR{x,y}(p) = aS{x,y}(p) for all p
(used in case 2), ASy ⊆ ARy (used in case 1), and ASy ⊆ ARx (used in case 3).

Case 1: x 6∈ M . We can choose p with aSM (p) ≥ k (since S is (k,m)-
agreeable), and aRM (p) ≥ aSM (p) ≥ k, since ARz ⊇ ASz for all z 6= x.

Case 2: y ∈ M . Again, choose p with aSM (p) ≥ k. If p is one of
the platforms whose support was unchanged, then aRM (p) = aSM (p) ≥ k;
otherwise, p is a platform whose support lost x but gained y, and we have
aRM (p) ≥ aSM (p) ≥ k.

Case 3: x ∈ M , y 6∈ M . We will use the fact that ASy ⊆ ARx , by
swapping x and y before applying the (k,m)-agreeability of S, and then
swapping back. Let σ : V → V be the involution that swaps voters x and y
(and is otherwise the identity); σ induces an involution on the power set of
V by pointwise application. Since |σM | = |M | = m, we can choose p such
that aSσM (p) ≥ k. Let K = suppSσM (p); |K| ≥ k. Then σK ⊆ suppRM (p), so
aRM (p) ≥ k.

We have now established S ⇀ R. Of course, R is not necessarily
containment-free, but we can show that if we repeat the above transfor-
mation enough times, we must eventually reach a containment-free society.
Essentially, this is because the standard deviation of the approval lengths
decreases each time we apply the transformation, so we cannot keep apply-
ing the transformation forever; the following argument makes this precise.
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Define the square sum of a society Q to be∑
x∈Q
|AQx |2.

In S, let i, j, and k be the number of r.p.’s, respectively, between [x〉 and
[y〉, [y〉 and 〈y], and 〈y] and 〈x]. Then we have i, j, k > 0, |ASx | = i+ j + k,
|ASy | = j, |ARx | = i + j, and |ARy | = j + k. It is easy to verify that |ASx |2 +
|ASy |2 > |ARx |2 + |ARy |2. All other terms in the square sum are the same for
S and R, because ASz = ARz for z 6= x, y. Thus, the above transformation
decreases the square sum of a society. Noting that the square sum is a
positive integer, we see that the transformation can only be performed a
finite number of times before we reach a containment-free society T .

4.2 Left-right alternation

Definition 4.4. A society is left-right alternating if its sequence of endpoints
alternates between left and right endpoints.

Lemma 4.5. For any containment-free society S, there is a left-right alter-
nating containment-free society T such that S ⇀ T .

Proof. Suppose S is not left-right alternating. Then, since there is an equal
number of left and right endpoints, there must be a pair of consecutive
right endpoints somewhere. Continuing to the right, one must eventually
reach a left endpoint. Thus, there must be a sequence of endpoints of the
form p〈x]q〈y]r[z〉 somewhere in the society. (Note that x 6= y, since each
voter has only one right endpoint. We also have y 6= z; otherwise, we
would have a containment Ax ⊆ Ay.) Note that aS(p) = aS(q) + 1, because
suppS(p) = suppS(q) ∪ {x} (and x 6∈ suppS(q)); continuing this reasoning,
we have aS(p) = aS(q) + 1 = aS(r) + 2.

Let S′ be the society that results from swapping 〈y] and [z〉, so that
p〈x]q〈y]r[z〉 becomes p〈x]q[z〉r〈y]. (See Figure 4.) Since we are expanding
Ay and Az without altering any other agreement sets, this preserves (k,m)-
agreeability. This also does not introduce any containments: when we moved
[z〉 to the left, it did not pass any other left endpoints; similarly, when we
moved 〈y] to the right, it did not pass any other right endpoints.

This tranformation does not affect the agreement number of any rep-
resentative platform except for r. The agreement number of r increases
by two, because y and z have entered its support. So, we have aS

′
(r) =

aS(r) + 2 = aS(p). This shows that a(S′) = a(S): the only opportunity
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Figure 4: Swapping endpoints to achieve left-right alternation

for a(S′) to exceed a(S) would be from what happens at r, but we have
aS

′
(r) = aS(p) ≤ a(S). So, this transformation is valid. Furthermore, each

time it is applied, the sum of the lengths of the approval sets goes up. Be-
cause this sum is bounded and is always an integer, the transformation can
only be applied finitely many times before we reach a left-right alternating
society T , which will be containment-free since the transformation does not
introduce containments.

4.3 Uniform societies, again

Our definition of the uniform societies U(N,h) did not conform to the sim-
plifications made in Section 3; namely, the endpoints are not unique. So, we
define U ′(N,h) to be like U(N,h), except that we use [i, i+h−ε] in place of
[i, i+h), with ε = 1/2, say. This difference is minor enough that we immedi-
ately have a(U ′(N,h)) = a(U(N,h)) = h, and U ′(N,h) is (k,m)-agreeable if
and only if U(N,h) is, so Lemma 2.2 applies to U ′(N,h) as well as U(N,h).
The society U ′(N,h) can be discretized, and has string representation

[0〉 〈1− h] [1〉 〈2− h] · · · [N − 1〉 〈N − h].

(To see this, the reader might find it helpful to consider the cases h = 1 and
h = 2.) In particular, U ′(N,h) is left-right alternating, the left endpoints
appear in the order 0, 1, . . . , N − 1, and the right endpoints appear in the
same order, but rotated by 1−h: 1−h, 2−h, . . . , N −h. We are now ready
to finish.

Proof of Theorem 1.2(a). Let S0 be any (k,m)-agreeable circular society.
By Lemmas 4.3 and 4.5, we can validly transform S0 into a (k,m)-agreeable
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society S that is left-right alternating and containment-free. Letting N =
|S|, we may assume the voters of S are {0, 1, . . . , N − 1}. Renaming voters
as necessary, we may assume that the left endpoints of their approval sets
occur in the order [0〉, [1〉, . . . , [N − 1〉.

We claim that, up to a cyclic rotation, the right endpoints of the approval
sets occur in the same order: 〈0], 〈1], . . . , 〈N − 1]. Suppose not. Then there
must be distinct voters x, y, and z such that their left endpoints occur in
the order xyz while their right endpoints occur in the order xzy. Breaking
into cases, it is straightforward to show that there must be a containment,
a contradiction. So the claim holds.

We have established that S is a left-right alternating society whose left
endpoints occur in the order [0〉, [1〉, . . . , [N − 1〉 and whose right endpoints
occur in the same order, up to a cyclic rotation. Considering the discretiza-
tion of uniform societies, we can observe that S must have the same dis-
cretization as U ′(N,h) for some h. This yields a(S) = a(U ′(N,h)) = h,
and by Lemma 2.2, h ≥ bk−1

m Nc + 1. We now have a(S0) = a(S) = h ≥
bk−1
m Nc+ 1.
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