
Histogramming Data Streams with Fast

Per-Item Processing

Sudipto Guha ?, Piotr Indyk ??, S. Muthukrishnan? ? ?, and
Martin J. Strauss���

No Institute Given

Keywords: histograms, streaming algorithms
Track A, approximation algorithms

Abstract. A vector A of length N can be approximately represented
by a histogram H, by writing [0; N) as the non-overlapping union of
B intervals Ij , assigning a value bj to Ij , and approximating Ai by
Hi = bj for i 2 Ij . An optimal histogram representation Hopt consists of
the choices of Ij and bj that minimize the sum-square-error kA�Hk22 =P

i jAi�Hij2. Numerous applications in statistics, signal processing and
databases rely on histograms; typically B is (signi�cantly) smaller than
N and, hence, representing A by H yields substantial compression.

We give a deterministic algorithm that approximates Hopt and outputs
a histogram H such that

kA�Hk22 � (1 + �) kA�Hoptk22 :
Our algorithm considers the data items A0;A1; : : : in order, i.e., in one
pass, spends processing timeO(1) per item, uses total space B(log(N) log kAk =�)O(1),
and determines the histogram in time O((B log(N) log kAk =�)O(1). Our
algorithm is eminently suitable to emerging applications where signal is
presented in a stream, size of the signal is very large, and one must con-
struct the histogram using signi�cantly smaller space than the signal size.
In particular, our algorithm is suited to high performance needs where
the per-item processing time must be minimized. Previous algorithms
either used large space, i.e.,
(N), or worked longer, i.e., N log
(1)(N)
total time over the N data items. Our algorithm is the �rst that simul-
taneously uses small space as well as runs fast, taking O(1) worst case
time for per-item processing. In addition, our algorithm is quite simple.

1 Introduction

We study the problem of representing signals succinctly using histograms. The
signal is a vector A of length N . A histogram H on the signal is obtained by

? Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104, sudipto@cis.upenn.edu

?? MIT Laboratory for Computer Science; 545 Technology Square, NE43-373; Cam-
bridge, Massachusetts 02139-3594; indyk@theory.lcs.mit.edu

? ? ? AT&T Labs|Research, 180 Park Avenue, Florham Park, NJ 07932 USA, fmuthu,
mstraussg@research.att.com

writing [0; N) as the non-overlapping union of B intervals Ij and assigning a
value bj to Ij . The histogram H can be used to approximately represent the
signal A by approximatingAi as Hi = bj for i 2 Ij . Equivalently, a histogram is
a piecewise constant approximation to the signal. Histogram H takes only O(B)
values to store, namely, the Ij 's and bj 's, in contrast to the O(N) values needed
to store the signal A. Typically B � N in applications and thus H is a succinct
representation for A.

Histograms must nevertheless capture the trends in the signal. Numerous
measures evaluate how well a histogram achieves this; the most common form
is the sum-square-error, which measures the sum of the squares of the devation
from the signal. An optimal histogram Hopt, sometimes written HB

opt, is a B-
bucket histogram, i.e., choices of Ij and bj , that minimize the sum-square-error

kA�Hk22 =
P

i jAi �Hij2. The problem of interest therefore is to �nd Hopt

or to approximate it. An approximation factor of � would indicate kA�Hk22 �
� kA�Hoptk2.

Histogram representations are used extensively in signal processing, statis-
tics and databases. In database systems for example, they are used to approxi-
mate sizes of database operations which in turn help determine e�cient execu-
tion plans for complex queries (See [1] for an overview). Almost all commercial
database systems use histograms; �nding best histograms|and other succinct
representations such as wavelets or discrete fourier coe�cients of the signal|is
a thriving area of research in the database community (See proceedings of recent
ACM SIGMOD and VLDB conferences).

Our motivation lies in an emerging application scenario in large databases
and in processing massive data in general. Signals (such as timeseries of network
events, web accesses, IP tra�c patterns) are huge and appear in a stream. In most
cases, they are not captured in databases because they are far too volumnious.
(For an overview, see [2] for sizes, description of data feeds, etc.) Nevertheless,
there is a growing need (eg., for network management purposes) to summarize
the signals succinctly using histograms. Even when signals are small enough
to be stored in disks within databases, practitioners seek algorithms that read
the signal in one pass and compute (or estimate) functions of interest. This is
because multiple passes or random accesses to disk-resident data is expensive.
Thus, the focus in dealing with massive data is to seek algorithms that process
signals on a stream, be they available as a stream from the data source (as in IP
router or server logs) or read in one pass over stored data (as in large databases).
Systems researchers have extensively articulated the need for stream processing
(See [3{5] for references).

In the past few years, models have been developed to design, analyze and
study data stream algorithms. Speci�cally, algorithms are required to read each
item in the stream in turn, work using some additional workspace, and compute
functions of interest. No backtracking is allowed on the input data stream. There
are three parameters of performance: (1) time to process each data stream item,
(2) amount of workspace used, and (3) time to compute functions of interest.
Clearly the model is of interest only when the workspace provided is smaller than

2

the space needed to store the entire signal. Furthermore, with this restriction,
almost no function can be computed exactly (for example, computing the me-
dian of signal items is hard [6]). Hence, the emphasis is on estimating functions
accurately, rather than computing them exactly. Speci�cally, algorithms in data
stream model are designed with polylogarithmic workspace and they attempt
to optimize the other two parameters pertaining to speed. Data stream algo-
rithms have been designed for estimating norms [7{9], clustering [10], wavelet
and histogram estimations [11, 12, 14, 13], etc.

Our work involves designing data stream algorithms. Our departure from
previous work begins with observing that not all parameters above are equally
important in applications. In particular, the per-item processing time is highly
critical. This is because in data streaming instances such as IP routers that
generate logs of packets they forward,
ows and TCP connections they maintain
etc, work at blistering speeds, and process millions of items per second. It is
imperative that any per-item processing be very small in order to deal with this
deluge. Likewise, disk systems scan large databases at very high speeds and to
keep up with the pipeline, it is desirable that data stream algorithms minimize
per-item processing. Our work here is inspired by this requirement.

1.1 Our Result and Previous Work

The problem of constructing (near) optimal histograms has been investigated
theoretically. Most of the solutions (including ours) can be viewed as a streaming
algorithm, that actually consists of two algorithms: a sketching algorithm that
preprocess the input to some data structure and a reconstruction algorithm that
performs some computation on the structure to output the �nal approximation.
The total time is dominated by the preprocessing time to build (and maintain)
the data structure. Thus we will quote results in per-item time in context of
streaming algorithms. Since we can always store a set of elements and then
perform the entire computation required, the per-item time is meaningful only
if the space allowed is sublinear.

In [15], an O(N2B) time and O(NB) space dynamic programming based so-
lution was presented for optimal o�ine histogram computation. They also pre-
sented an approximate algorithm, that, when adopted to the streaming model,
use space O(B log kAk) space and O(logA) per-item processing time to output

a H of at most 3B intervals such that kA�Hk22 � 3

A�HB

opt

2
2
. Gilbert et

al [14] presented an algorithm that uses O(B logN) space and O(logN) per-
item processing time1 algorithm to output H using O(B logN) intervals with

kA�Hk22 � kA�Hoptk22 : The essential tradeo� however has been between
accuracy of the approximation and the number of buckets.

[11] presented a substantially more accurate algorithm taking (B2 log(N))=�
per-item processing and histogram computation time as well as (B2 log(N))=�

space to output a 1 + � approximation; that is an H such that kA�Hk22 �
1 This algorithm may be converted to use O(1) time per-item time using techniques
in this paper.

3

(1 + �) kA�Hoptk22 : Subsequently in [12] it was modi�ed to give a �(N) space,
O(N) total time algorithm. These results capture a tradeo� between space and
the time required for histogram construction.

Our result here improves both the tradeo� directions above and achieves
the best possible. We provide a 1 + � approximation in O(1) per-item time.
The work space we use is only B(logN log kAk =�)O(1) which is of independent
interest since previous algorithms used
(B2) space, a limiting condition. The
reconstruction time is polylogarithmic.

1.2 Overview of Our Techniques

Our approach uses signal processing techniques. Our overall algorithm divides
neatly into two modules. The �rst module reads over the stream and outputs
a certain number of wavelet coe�cients of A. Wavelet coe�cients are inner
products of the signal with dyadic basis vectors as de�ned in Section 2. This
module is deterministic and exact, taking only O(1) time for per-item process-
ing. The second module processes these coe�cients to construct H. It has two
major components. The �rst component involves constructing what we call a
robust histogram of A. A robust histogram has the property that re�nement by
further buckets does not decrease the overall error signi�cantly. The notion of
robust histogram was introduced in [13]; there the robust histogram had to be
constructed directly from the signal via sophisticated randomized techniques.
Here, we construct the robust histogram via wavelets, iteratively and determin-
istically, which we can do in our streaming model. The robust approximation is
already a good approximation to the �nal histogram, but has a few too many
intervals. The second major component involves culling the output histogram
using dynamic programming from the robust histogram. The overall algorithm
is quite simple. The crux throughout is the proof of various structural properties
of intermediate histograms that yields the �nal histogram.

1.3 Map

In Section 2 we present formal de�nitions and background. In Section 3, we
present the �rst module, namely, the streaming algorithm for computing various
wavelet coe�cients. In Section 4, we present the second module of constructing
robust histogram and culling the �nal histogram from it. In Section 5, we present
concluding remarks.

2 Preliminaries

We consider signals indexed on f0; 1; : : : ; N � 1g, where N is a power of 2. A
dyadic interval is an interval of the form [k2j ; (k + 1)2j), where j and k are
integers. The function that equals 1 on set S and zero elsewhere is denoted �S .

A (Haar) wavelet is a function on [0; N) of one of the following forms:

{ 1p
N
�[0;N)

4

{ 2�j=2
���[k2j�1;(k+1)2j�1) + �[(k+2)2j�1;(k+3)2j�1)

�
.

Example wavelets of the second type are

2�1=2(�1; 1; 0; 0; 0; 0; : : : ;);
2�1=2(0; 0;�1; 1; 0; 0; 0; 0; : : : ;); : : : ;
2�1(�1;�1; 1; 1; 0; 0; 0; 0; : : : ;) : : :

There areN wavelets altogether, and they form an orthonormal basis, i.e., h ; 0i
is 1 if = 0 and 0 otherwise.

Every signal can be reconstructed exactly from all its wavelet coe�cients (its
full wavelet transform, an orthonormal linear transformation), asA =

P
j hA; ji j ,

whence a formal linear combination of distinct wavelets is its own wavelet trans-
form.

Parsefal's equality states that the L2 norm of a signal is invariant under
orthonormal change of basis:

X
i

A2
i =

X
j

hA; ji2 :

It follows from Parsefal's equality that, for any set � of B wavelet terms, the
error in using those terms to approximate A is the sum of the squares of the
omitted terms. This is minimized when � contains the wavelet terms whose
coe�cients have the largest squares.

A simple classical wavelet algorithm computes the full wavelet transform in
linear time and space. In the �rst of several passes, compute and output N=2 of
the wavelets of the form A2i+1 �A2i. Also compute N=2 quantities of the form
A2i+1 +A2i, and recursively compute a wavelet decomposition of that.

Note that each wavelet is a piecewise-constant function of 4 pieces (3 bound-
aries). Conversely, each �I can be written as �I =

P
j h�I ; ji j , and there

are only 2 log(N) wavelets for which the dot product is zero|those wavelets
whose support intersects an endpoint of I , where the support of a vector is the
set of positions where it is non-zero. Thus wavelet representations simulate his-
tograms with at most a O(log(N)) blowup in the number of buckets/terms. It
follows that, using wavelets, one can easily �nd a O(B log(N))-bucket histogram
which approximates given signal as well as the best B-bucket histogram. Specif-
ically, the (6B log(N) + 1)-bucket histogram representation de�ned as the best
2B logN -term wavelet representation has this property.

In what follows, we �rst show how to �nd the top B0 wavelet coe�cients
quickly. For B0 = 2B log(N), this already gives an e�cient construction of a
O(B log(N))-bucket histogram. Next, we show how to output instead a B-bucket
histogram though the error of our histogram is worse than optimal by the factor
(1 + �).

5

3 E�cient Computation of Wavelet Coe�cients from a

Stream

We will be interested in �nding the largest B0 coe�cients of a wavelet decom-
position of the stream we receive.

It is easy to modify the log(N)-pass classical algorithm from the previous
section to work in one pass; the order in which the coe�cients are output is
altered only. We need to view the logN passes as happening concurrently. The
result of the �rst pass is the input to the second pass in a stream fashion and so
forth. Thus, with space O(logN), we can output a stream of wavelet coe�cients
of the original stream.

Lemma 1. There is an algorithm that reads in a stream A0;A1; : : : and outputs
the N wavelet coe�cients (in arbitrary order), using per-item time O(1) and
space O(log(N)).

We next show how to �nd the B0 largest items in a stream by an algorithm
that uses per-item time O(1) and space O(B0).

We maintain a list of size at most 2B0. Initially we store the �rst 2B0 elements
we receive. After we have 2B0 elements, we run a selection algorithm [6] which
�nds the median; we then retain only the elements larger than it. The process of
�nding the median of 2B0 elements and discarding the bottom half takes O(B0)
time. At this point we have only B0 elements; we store the next B0 elements
without any computation, then perform the reduction as above. We perform
O(N=B0) reductions on sets of size O(B0); altogether, this takes O(N) time with
worst-case per-item time O(B0). By bu�ering the input in a bu�er of size O(B0)
we can reduce the worst-case per-item time to O(1). (For example, upon reading
an item that grows our list to size 2B0, perform O(1) steps of the reduction
algorithm for each input, while incoming input sits in a bu�er of size B0. When
that bu�er �lls, we'll have completed the reduction, leaving a set of size B0,
which we combine with the input bu�er of B0 items.)

Lemma 2. There is an algorithm that takes B0 as input, reads in a stream
A0;A1; : : : and outputs the top B0 wavelet coe�cients, using per-item time O(1)
and space O(B0).

4 Wavelets to Histograms via Robust Representations

In this section, we show how to �nd a nearly optimal B-bucket histogram repre-
sentation, using the techniques of the previous section. There are two algorithmic
parts to this.

{ Construction of a \robust" approximation. Given B; �;M , and N , we de-
�ne a particular B0 � (B log(N) log(M)=�)O(1). We then show, for each

signal A with kAk2 � M , how to construct, greedily, an approximation
Hr from the top B0 wavelet coe�cients of A such that, if H re�nes Hr

6

by an additional B � 1 boundaries and H has optimal parameters, then
kA�Hrk2 � (1 + �r) kA�Hk2. That is, Hr is not signi�cantly improved
by additional boundaries.

{ Construction of our output, H, which is de�ned to be the best B-term rep-
resentation to Hr. We �rst give an e�cient construction of H and then we
show that kA�Hk2 � (1 + �) kA�Hoptk2, provided �r is chosen properly
given �. (They are polynomially related.)

4.1 Robust Histograms

De�nition 1 (see [13]). Fix a signal, A. A representation Hr is called a
(Br; �r)-robust approximation to A if, for any representation H on the bound-
aries of Hr and any other Br � 1 boundaries, with optimal parameters, we have

(1� �r) kA�Hrk2 � kA�Hk2 :

In [13], an algorithm for constructing a robust approximation was given. We
obtain the same result here, but in a signi�cantly simpler way, which is possible
in our model. We include a sketch of the construction here. In this paper, we will
need Br = B logn and �r = �4 to get a B-bucket histogram with error (1 + �)
times the optimal.

Lemma 3. Given Br; N; �r, andM , for any integer-valued signal A with kAk �
M , there exists a B0 � (Br log(N) log(M)=�r)

O(1) and a (B0)O(1)-time algorithm
to �nd a (Br; �r)-robust approximation to A from among the top B0 wavelet
coe�cients for A.

Proof. First note that the characteristic function �I can be written as the sum of
O(log(N)) wavelets|corresponding to those wavelets whose support intersects
an endpoint of I . Thus a B-bucket histogram can be viewed as a O(B log(N))-
term wavelet representation, re�nenment of a histogram by B � 1 boundaries
can be simulated by re�ning a wavelet representation by O(B log(N)) terms,
and it su�ces to �nd a wavelet representation that is not much improved by
O(Br log(N)) additional wavelet terms.

The algorithm is as follows. Start with the zero representation R. If R is not
already robust, then some Br log(N) wavelet terms improve it. The terms giving
the best improvement are, by Parsefal, those with the largest coe�cients not
already inR. It follows that the largest single coe�cient gives some improvement,
namely,

kA� (R+ hA; i)k2 �
�
1 +

�
�r

Br log(N)

���1

kA�Rk2 :

Replace R R + hA; i and remove from the list of available terms.
Repeat this procedure until the representation is robust. Observe that after

O
�
Br log(N) log(M)

�r

�
iterations, the value of kA�Rk2 has been reduced from

7

kAk2 by the factor 1
4M2 . Since we assumed that A is integer-valued and kAk �

M , it follows that a rounding of R to integer coe�cients (a legitimate wavelet
representation) equals A. Thus, at this iteration, one can choose A itself as a
robust representation.

Thus we put B0 = �
�
Br log(N) log(M)

�r

�
. We construct a (O(Br log(N)); �r)-

robust wavelet represntation (generalizing the de�nition of robustness from his-
tograms to wavelets in the obvious way), for which we need the top B0 wavelet
terms. The result can be viewed as a (Br; �r)-robust histogram approximation
with at most O(B0) buckets.

4.2 Approximating the Robust Histogram

In this section, we show how to �nd the best B-bucket approximation H to
Hr. (Later we will argue that H is, in fact, a good approximation to A.) We
will show that H only needs to use the boundaries in Hr, of which there are at
most O(B0). Thus a dynamic programming algorithm [15] will �nd H in time
polynomial in B0 using space O(B0).

Lemma 4. Given a (sparsely presented) B0-bucket histogram H0 on N � B0

numbers, the best B-bucket approximation H to H0 uses only the boundaries of
H0.

Proof. Suppose not. Let r1 < b < r2, where b is a boundary in H and r1 and r2
are consecutive boundaries in H0. Let c1 and c2 be the coe�cients in buckets to
the left and right of b and let d be the coe�cient in bucket [r1; r2). (See Figure 1.)

Suppose jc1 � dj � jc2 � dj. Then the result of moving b to the right to r2 is
no worse, since, in H, now more of [r1; r2) gets the value c1 and less gets c2.

Fig. 1. Illustration of histograms in Lemma 4.

H
c1

c2

H0

r1 b r1

d

4.3 Correctness of the Output

We now show that if Hr is a (B; �r)-robust approximation to A for suitable
B and �r, then the best B-bucket approximation to Hr is a nearly optimal

8

representation for A. We will have �r = �4=8 < �=8. Let H� denote the best
linear combination of Hr with Hopt. Since this is a re�nement of Hr by B � 1
boundaries,

(1� �r) kA�Hrk2 � kA�H�k2 � kA�Hoptk2 (1)

Lemma 5. Either kH�Hrk > �
2 kA�Hoptk � �r kA�Hoptk or kH�Ak2 �

(1 +O(�)) kHopt �Ak2.

Proof. Assume kH�Hrk � �
2 kA�Hoptk. Then, by the triangle inequality,

kH�Ak � kH�Hrk+ kHr �Ak
� �

2
kA�Hoptk+ kHr �Ak

� �

2
kA�Hoptk+ 1p

1� �r
kA�Hoptk

� (1 + �) kA�Hoptk :

Lemma 6. Fix a signal A, and let Hr be a (B; �r)-robust approximation to A.
Let H be the best B-bucket approximation to Hr. Then

kA�Hk2 � (1 +O(�)) kA�Hoptk2 ;

where �r = �(�4).

Proof. Assume that the inequality �
2 kA�Hoptk < kH�Hrk in Lemma 5

holds. Let bH be the best linear combination of H and Hr (see Figure 2). Thus

there are right angles at H� and at bH. In Equations (2) to (5), we show that

H�; bH, and Hr are all close together, so that, in that sense, the angles A-Hr-H
and A-Hr-H are close to right angles. We then give the conclusion.

Note that each of H� and bH re�nes Hr by B buckets, so, it follows that

 bH�Hr

2 = kA�Hrk2 �

A� bH

2

� �r kA�Hrk2 ; by robustness (2)

� �r(1 +O(�r)) kA�Hoptk2 ; by (1)

� 4�r(1 +O(�r))

�2
kH�Hrk2

� �2 kH�Hrk2 ; by Lemma 5. (3)

Similarly,

kH� �Hrk2 = kA�Hrk2 � kA�H�k2
� �2 kH�Hrk2
� �2 kHopt �Hrk2 ; by optimality of H for Hr (4)

9

Furthermore, it also follows that

 bH�H�

 �

 bH�Hr

+ kHr �H�k
� 2
p
�r kA�Hrk ; by (2)

� 2
p
�rp

1� �r
kA�H�k by (1)

� � kA�H�k : (5)

See Figure 2. Finally, we have:

kH�Ak2 =

H� bH

2 +

 bH�A

2

�
�
kH�Hrk+

Hr � bH

�2 +

 bH�A

2
� (1 + �)2 kH�Hrk2 +

 bH�A

2 ; by (3)

� (1 + �)2 kHopt �Hrk2 +

 bH�A

2 ; since H is optimal for Hr

� (1 + �)2 (kHopt �H�k+ kH� �Hrk)2 +

 bH�A

2

� (1 + �)4 kHopt �H�k2 +

 bH�A

2 ; by (4)

� (1 +O(�)) kHopt �H�k2 +
�

 bH�H�

+ kH� �Ak
�2

� (1 + �)4 kHopt �H�k2 + (1 + �)2 kH� �Ak2 ; by (5)

� (1 + �)4 kHopt �Ak2 ; by the Pythagorean theorem

� (1 +O(�)) kHopt �Ak2 :

4.4 Main Theorem

Combining the above results, we have

Theorem 1. There exists an algorithm that, given B;N and �, on input the
N values of an integer-valued signal A with kAk � M , outputs a B-bucket
histogram H with

kA�Hk22 � (1 + �) kA�Hoptk22 ;

where Hopt is the best possible B-bucket histogram representation to A. The
algorithm uses space B(log(N) log(M)=�)O(1). The algorithm requires two mod-
ules. The �rst (sketching) uses time O(N) and the second (reconstruction) uses
time in (B log(M) log(N)=�)O(1).

10

Fig. 2. Illustration of histograms, which are not necessarily coplanar. The histograms
indicated as colinear are, in fact colinear; the order of three histograms in a line is not
necessarily the order indicated. The points bH;Hr, and H� are all close can can be
roughly collapsed. Then, since kH�Hrk � kHopt �Hrk, it follows that kH�Ak2 �
(1 + �) kHopt �Ak2.

A

A
A
A
A
A
AAbH H

�2
p
� Hr

H�

�
�

�
�

�
��Hopt r

@
@
@
@@r

r

r rr

Proof. Use the classic wavelet algorithm to produce all coe�cients, reading
in a stream and spitting out a stream. Use the median algorithm to select
the B0 coe�cients with largest square. Use the greedy algorithm to produce
a (O(B log(N)); �(�4))-robust wavelet approximationHr, which is a (B;�(�4))-
robust histogram representation. Use dynamic programming to �nd the best
B-bucket histogram H to Hr, by observing that the boundaries of H are among
the boundaries of Hr. By Lemma 6, this output is correct.

5 Concluding Remarks

We have presented a simple algorithm that takes O(1) time to process each item
of a data stream and using B(log(N) log(M)=�)O(1) space and polylogarithmic
reconstruction time, obtains an 1 + � approximation to the optimal histogram.

A more general streaming model is one in which we are allowed to ob-
serve the signal only through updates (not necessarily left-to-right pass). Un-
der this model, the best known algorithm for histogram constructing takes
(B log(N) log(M)=�)O(1) resources for all three parameters [13]. Some of the
exponents involved are rather large, e.g., at least 6. It is an open problem to see
if per-item processing time can be reduced further in this model.

Our approach of �rst obtaining large wavelet coe�cients, then obtaining
a robust histogram from which the �nal histogram is culled, is of interest. For
example, in practice, one may experimentally compare each of these intermediate
and �nal representations in terms of their overall accuracy in capturing signal
trends. Our algorithm is simple and implementable, so this is a feasible study
for the future.

11

References

1. V. Poosala. Histogram techniques for databases. Ph. D Thesis, Univ. Wisconsin,
Madison, 1996.

2. Anja Feldmann, Albert G. Greenberg, Carsten Lund, Nick Reingold, Jennifer Rex-
ford, Fred True. Deriving tra�c demands for operational IP networks: methodology
and experience. SIGCOMM 2000: 257-270

3. http://www-db.stanford.edu/stream/
4. http://www.cs.cornell.edu/database/cougar/index.htm.
5. Fjording the Stream: An Architecture for Queries over Streaming Sensor Data. Sam

Madden and Michael J. Franklin, ICDE Conference, February, 2002, San Jose.
6. Selection and sorting with limited storage. J. I. Munro and M. S. Paterson. Theo-

retical Computer Science, pages 315-323, 1980.
7. Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream

Computation. Piotr Indyk: FOCS 2000: 189-197
8. The Space Complexity of Approximating the Frequency Moments. Noga Alon, Yossi

Matias, Mario Szegedy. STOC 1996: 20-29
9. An Approximate L1-Di�erence Algorithm for Massive Data Streams. Joan Feigen-

baum, Sampath Kannan, Martin Strauss, Mahesh Viswanathan. FOCS 1999: 501-
511

10. Clustering Data Streams. Sudipto Guha, Nina Mishra, Rajeev Motwani, Liadan
O'Callaghan. FOCS 2000: 359-366

11. Data-streams and histograms. Sudipto Guha, Nick Koudas, Kyuseok Shim. STOC
2001: 471-475

12. Approximating a Data Stream for Querying and Estimation: Algorithms and Per-
formance Evaluation. Sudipto Guha, Nick Koudas. ICDE 2002

13. Dynamic maintenance of histograms. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S.
Muthukrishnan and M. Strauss. To appear in STOC 2002.

14. Sur�ng Wavelets on Streams: One-Pass Summaries for Approximate Aggregate
Queries. Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, Martin Strauss.
VLDB 2001: 79-88

15. H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C.
Sevcik, Torsten Suel. Optimal Histograms with Quality Guarantees. VLDB 1998:
275-286.

12

