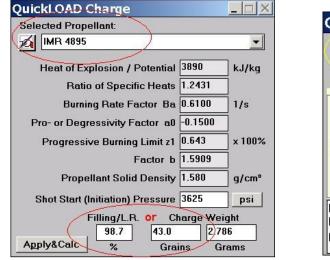
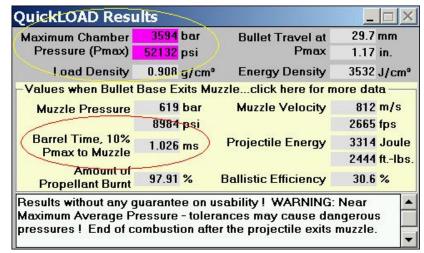
Objective: Layout a process for determining an OBT load using QuickLoad.


Setup the cartridge, The minimum criteria to select (circled in red) are the a bullet, cartridge case, length and barrel length.


QuickLOAD Cart	ridge Di	mensions			
Selected Bullet:		file:\308	Selected Cartridge:	\	
.308, 155, LAP Scene	ar GB491		.308 Win.)	•
Tail/Base Shaped	Erictio	n-proofed		psi	bar
	Inches	mm	Pmax (MAP)	60190	4150.0
Seating Depth	0.464	11.79	Meas. Method	Piezo CIP	
Shank Seat.Depth	0.464	11.79		Grains	Grams
Bullet Length	1.250	31.75	Bullet Weight	155.0	10.044
Bullet Diameter	0.308	7.82	Cross-sectional Bore Area	Sq. inches .073641	mm ² 47.51
Cartridge Length	2.800	71.12		Grains H2O	cm ^s
Case Length	2.014	51.16	Maximum Case Capacity, overflow		3.766
Groove Caliber	0.308	7.82	Volume Occupied by Seated Bullet	112471/0676	0.568
Barrel Length	20.0	508.0	Useable Case Capacity	49.256	3.198
Bullet Travel	18.45	468.63	Weighting Factor	0.5 A	pply&Calc

Look up an OBT for your rifle barrel's length. In this example I have selected 1.03 for my 20" barrel. I just happen to know from experience any faster OBT produces chamber pressures greater than I prefer.

Node / mS	1	2	3	4	5	6
16" bbl.	0.55	0.61	0.69	0.75	0.82	0.88
17'' bbl	0.58	0.65	0.73	0.79	0.87	0.94
18'' bbl	0.61	0.68	0.77	0.83	0.92	0.99
19'' bbl	0.64	0.72	0.81	0.88	0.98	1.04
20'' bbl	0.67	0.75	0.86	0.92	(1.03)	1.10
21'' bbl	0.71	0.79	0.90	0.97	1.08	1.15
22'' bbl	0.74	0.82	0.94	1.01	1.13	1.20
0001111	0.77	0.00	0.00	4.00	4.40	4.00

Select a powder. I usually start with IMR 4895. Then enter either a % fill or a charge weight in the QuickLoad Charge window to drive the barrel time to the match the selected OBT shown in the QuickLoad Results window. Note, 1.026 ms rounds up to the 1.03 ms OBT. I do not think getting down to .001 ms makes a significant difference.

Once a load is calculated that will generate the desired OBT the idea is to determine what other powder charges will generate the same OBT so you can interrogate those results to determine which one best fits the OBT load criteria. I

would like to mention at this point that my experience has been IMR 4895 always seems to come out as a top contender when working with the .308 Win. Consequently I use it as a starting powder when ever I am looking into a new .308 Win load. This may be true for other cartridges that are suited to a medium burn rate type of powders too, I simply do not have the experience to comment about it.

To get the list of powders open the Propellant Setup Table and select the radio button for "...the Barrel Time of Entry Load" then click on the "Apply and Exit" button. Notice too that I had selected 85% for the Minimum Loading Ratio and the Ba range was set from the minimum to the maximum setting. This will produce the largest selection of powders considering all burn rates that will occupy at least 85% of the case volume.

QuickLOA	D Propellant Table	Setup			X
– or use sli	ders that QuickLOAD will test, der bars to adjust values. Fas re low Ba values. A filling pero	st powde	rs have high	Balvalues, slov	N _
<- Slow	Set Ba-range to	Select F	owders		Fast->
	•				F
Min	imum Ba Value = 0.17		Maxim	um Ba Value	= 5.93
	Charge Table to Match.		psi 52666	bar 3631.25	-
a Nomina	l Maximum Pre <u>s</u> sure (NM	P) ± IC			
Useable g	<u>C</u> ase Capacity Filled up t	to 🔿	99	%	
<u>B</u> oth Setti	ngs Above (default)	0	fps	m/s	
Suggeste	d <u>M</u> uzzle Velocity	C	2600	792	
Total Cas	e Capacity Filled up to	0	100	%	
Above Se	et <u>P</u> max and Pmax Minus	0	15	%	
the Barrel	Time of Entry Load	۲	2 -	im Loading R	
Pressure	<u>Rise Time of Entry Load</u>	0		35 %	6
"NMP" ar	nd <u>V</u> elocity above, chang	je GuO	C <u>a</u> ncel&E	xit Apply	&Exit

The list, without printing the whole thing will look like this;

Cartridge	:	.308 Win.
Bullet	:	.308, 155, LAP Scenar GB491
Cartridge O.A.L. L6	:	2.800 inch or 71.12 mm
Barrel Length	:	20.0 inch or 508.0 mm

Predicted Data for Indicated Charges of the Following Powders. Matching Barrel Time: 1.026 milliseconds

These calculations refer to your specified settings in QuickLOAD 'Cartridge Dimensions' window. C A U T I O N : any load listed can result in a powder charge that falls below minimum suggested loads or exceeds maximum suggested loads as presented in current handloading manuals. Understand that all of the listed powders can be unsuitable for the given combination of cartridge, bullet and gun. Actual load ordering can vary, depending upon lot-to-lot powder and component variations. USE ONLY FOR COMPARISON !

60 loads produced a Loading Ratio below user-defined minimum of 85%. These powders have been skipped.

Powder type	Filling/Loading Ratio	Charge Grains	Vel. fps	Prop.Burnt	P max psi	P muzz psi	Btime ms	
Accurate XMR 4064	108.7	45.8	2741	99.9	57553	10398	1.026	! HOT LOAD !
Accurate XMR 2495	103.9	43.3	2739	100.0	58239	9903	1.026	! HOT LOAD !
Somchem S365	115.7	50.1	2725	97.9	51688	11443	1.026	! HOT LOAD !
Accurate XMR 4350	113.2	49.3	2718	94.8	53308	11278	1.026	! HOT LOAD !
Norma 203 old	109.3	46.6	2712	97.9	55124	10758	1.026	! HOT LOAD !
Norma 203B	102.9	44.8	2710	98.1	53999	10737	1.026	! HOT LOAD !
Rottweil R903	109.4	46.6	2709	97.7	55107	10744	1.026	! HOT LOAD !

This listing was set to sort on MV (Vel. fps). At this point I export the list to MS Excel where it is easier to sort and cull out the powders that exceed 103 % Loading Ratio, chamber pressures that exceed 56k psi, and powders that are not available which are generally those with names that I cannot pronounce. ⁽ⁱ⁾ This is the final list, sorted by "Prop. Burnt %", looks like this in Excel;

No.	Туре	mc (gr)	fill (%)	vel (fps)	Pmax (psi)	Z (%)	t (ms)
1	Vihtavuori N133	40.5	97	2602	55,466	100	1.0260
2	IMR 3031	41.8	100	2,704	53,610	100	1.0258
3	Hodgdon H322	40.1	89	2,654	54,088	100	1.0262
4	Ramshot X-Terminator	41.0	88	2,660	55,194	100	1.0258
5	Accurate No.2520	45.2	97	2,704	55,549	99	1.0259
6	Hodgdon H335	43.5	89	2,669	54,298	99	1.0260
7	Winchester 748	44.2	94	2,689	53,351	99	1.0259
8	Ramshot TAC	43.6	96	2,667	54,541	98	1.0260
9	Hodgdon BL-C2	45.3	93	2,689	54,939	98	1.0260
10	IMR 4895	43.0	99	2,665	52,123	98	1.0259
11	Alliant Reloder-15	44.7	103	2,692	54,523	96	1.0260
12	Ramshot BigGame	47.1	102	2,691	52,778	96	1.0262
13	Winchester 760	49.1	104	2,681	52,767	91	1.0260

As can be seen there are several powders to select from leaving the hand loader some latitude to apply subjective considerations for which powder to select. You know, things like company/powder reputation, brand loyalty or previous customer service experiences, etc. For this project, I also have the requirement to achieve a MV of 2650 fps in order to make the 155 fly on a trajectory line that is close to the 175 SMK when launched at 2675 fps.

It's a personal battle I've been engaged with to make the 20" 700P LTR perform on par with its bigger brother the 24 " bbl 700P, but I digress. Initially I focused directly on achieving the 2650 fps and I arrived at several selections (<u>http://home.comcast.net/~ltrdavid/155Scenar.pdf</u>) but going through this process I believe I struck upon a better selection.

Finally, I check the mfr recommended max loads and consider that information in my selection too.