Real Number System

After defining the different subsets of the real number system, students need to use the diagram and/or their notes to answer the questions on the accompanying page. NOTE: The first diagram page has blanks for the students to complete the definitions as they are discussed in class; the second diagram page has the definitions.

NOTE: This is the first introduction of irrational numbers. Although students may have been told that Pi is irrational, they have also used 3.14 or $\frac{22}{7}$ to represent Pi.and often struggle with the idea that it is irrational. One way to counter this is to go to <u>http://www.joyofpi.com/pi.html</u> to show students the first 10,000 digits of Pi.

Real Numbers

$\begin{array}{c} & & 6.74 \\ & & & 6.74 \\ & & & & & & \\ & & & & & \\ & & & & & $
Natural Numbers:
Whole Numbers:
Integers:
Rational Numbers:
Irrational Numbers:
Real Numbers:

Real Numbers

Natural Numbers: The counting numbers: {1, 2, 3 ...}

Whole Numbers: The set of counting numbers plus zero: $\{0, 1, 2, 3 \dots\}$

Integers: The set of natural numbers and their opposites plus zero:

 $\{\dots -3, -2, -1, 0, 1, 2, 3 \dots\}$ The set of integers does not include decimals or fractions.

Rational Numbers: Numbers that can be expressed as the ratio of two integers.

Decimal representations of rational numbers either terminate or repeat.

Examples: 2.375, 4, -0.25, -0.14

Irrational Numbers: Numbers that cannot be expressed as a ratio of two integers. Their decimal representations neither terminate nor repeat. Examples: $\mathcal{T}, \sqrt{3}, 0.1411411141114...$

Real Numbers: The set of rational and irrational numbers

Real Number System

- 1. How are the natural and whole numbers different?
- 2. How are the integers and rational numbers different?
- 3. How are the integers and rational numbers the same?
- 4. How are integers and whole numbers the same?
- 5. Can a number be both rational and irrational? Use the diagram to explain your answer.

Answer **True** or **False** to the statements below. If the statement is False, explain why.

6. -5 is a rational number.	6
7. 0 is an integer.	7
8. $\sqrt{16}$ is a natural number	8
9. $-3.\overline{25}$ is an integer	9
10. $\sqrt{8}$ is rational	10
11. $\sqrt{7}$ is a Real number	11
12. 18 is a whole number	12
13. $-\frac{2}{3}$ is an integer	13
14. 2.434434443 is a rational number	14
15. 6.57 is an integer	15
16. 5. $\overline{7}$ is rational.	16
17. All fractions are rational numbers.	17
18. All integers are whole numbers.	18
19. All irrational numbers are Real numbers	.19
20. All negative numbers are integers.	20

Real Number System Answer Key

- 1. How are the natural and whole numbers different? The whole numbers contain 0.
- 2. How are the integers and rational numbers different? *The integers are whole numbers while the rational numbers include fractions and decimals.*
- 3. How are the integers and rational numbers the same? *The rational numbers include all the integers*.
- 4. How are integers and whole numbers the same? *Both sets of numbers contain the negative and positive whole numbers, and zero.*
- 5. Can a number be both rational and irrational? Use the diagram to explain your answer. *No. The diagram illustrates this by having the irrational and rational numbers separated.*

Answer **True** or **False** to the statements below. If the statement is False, explain why.

6. -5 is a rational number.	6. <u>True</u>
7. 0 is an integer.	7. <u>True</u>
8. $\sqrt{16}$ is a natural number	8. <u>True</u>
9. $-3.\overline{25}$ is an integer	9False; the integers are negative whole numbers.
10. $\sqrt{8}$ is rational	10. <u>False, the square root of 8 is not a repeating or</u> <u>terminating decimal</u>
11. $\sqrt{7}$ is a Real number	11 <u>True</u>
12. 18 is a whole number	12. <u>True</u>
13. $-\frac{2}{3}$ is an integer	13False, integers do not include fractions or decimals
14. 2.434434443 is a rational number	14False, rational decimals must terminate or repeat
15. 6.57 is an integer	15False, integers do not include decimals or fractions
16. 5. $\overline{7}$ is rational.	16 <u>True</u>
17. All fractions are rational numbers.	17 <u>True</u>
18. All integers are whole numbers.	18False, integers include negative whole numbers
	which are not part of the whole number set.

- 19. All irrational numbers are Real numbers. 19. _____True_
- 20. All negative numbers are integers.
- 20. <u>False, negative fractions and decimals are not</u> integers