Our guide to current statistics and the supplement to our Heart \& Stroke Facts

2010 Update At-A-Glance

Statistical Fact Sheets

Information for the population groups and risk factors listed below is available at americanheart.org/statistics (click on "Statistical Fact Sheets")

Populations

African Americans and Cardiovascular Diseases American Indians/Alaska Natives and Cardiovascular Diseases Asian/Pacific Islanders and Cardiovascular Diseases aby Boomers and Cardiovascular Diseases Hispanics/Latinos and Cardiovascular Diseases International Cardiovascular Disease Death Rates

International Cardiovascular Disease Statistics

 Men and Cardiovascular Diseases Older Americans and Cardiovascular Diseases Whites and Cardiovascular Diseases Women and Cardiovascular Diseases Youth and Cardiovascular Diseases
Risk Factors

High Blood Cholesterol and Other Lipids
High Blood Pressure
Dverweight and Obesity
Physical Inactivity
Tobacco

Metabolic Syndrome

Miscellaneous

Congenital Cardiovascular Defects
Hospital Discharges for Cardiovascular Diseases
Leading Causes of Death
Nutrition and Cardiovascular Diseases
Out-of-Hospital (Sudden) Cardiac Arrest

American Heart Association 2020 Impact Goal

The American Heart Association has committed itself to the following 2020 Impact Goal: "By 2020, to improve the cardiovascular health of all Americans by 20 percent while reducing deaths from cardiovascular disease and stroke by 20 percent." The metrics for achieving this new cardiovascular health goal will include measures from nationally representative datasets (NHANES) on smoking uitting prevalence, weight, physical activity and a healthy diet score, as well as levels of cholesterol, fasting blood glucose and blood pressure. Cardiovascular and stroke death rates will be monitored annually.

Note on Morbidity Data

Population data used in the compilation of NHANES prevalence estimates will now agree with the latest year of the NHANES survey being used. Extrapolations for NHANES prevalence estimates are based on the census resident population for 2006 because this is the most recent year of NHANES data used in the Statistical Update. An exception is the provisional smoking data from the 2008 National Health Interview Survey.

Table Of Contents

At-A-Glance Summary Tables:	2
Males And Cardiovascular Diseases	2
Females And Cardiovascular Diseases	3
Ethnic Groups And Cardiovascular Diseases	4
Children, Youth And Cardiovascular Diseases	5
Cardiovascular Diseases	6
Coronary Heart Disease, Acute Coronary Syndrome And Angina Pectoris	12
Stroke (Cerebrovascular Disease)	14
High Blood Pressure (And End-Stage Renal Disease)	17
Congenital Cardiovascular Defects	19
Heart Failure	20
Peripheral Arterial Disease	21
Risk Factors	22
Physical Inactivity	22
Smoking/Tobacco	23
High Blood Cholesterol And Other Lipids	25
Overweight And Obesity	26
Diabetes Mellitus	26
Metabolic Syndrome	28
Nutrition	29
Quality Of Care	30
Medical Procedures	32
Economic Cost Of Cardiovascular Diseases	33
Glossary	34
Abbreviation Guide	36

About These Statistics

All statistics are for the most recent year available. Prevalence and hospitalizations are computed for 2006 unless otherwise indicated. Mortality data are final for 2006, unless otherwise indicated

Do not compare the prevalence or incidence statistics with those in past issues of this publication. It can lead to misinterpretation of time trends.
If you have questions about statistics or any points made in this booklet, please contact the Biostatistics Program Coordinator at the American Hert Association National Center, Nancy Hasse@heartorg, 214-706-1423. Direct all media inquiries to News Media Relations at inquiries@heart.org or 214-706-1173.

A more complete version of this update is available on our Web site, americanheart.org/statistics.

Acknowledgment

We would like to thank the members of the American Heart Association Statistics Committee and the Stroke Statistics Subcommittee for their contributions to this publication.

Suggested Citation

American Heart Association. Heart Disease and Stroke Statistics - 2010 Update. Dallas, Texas: American Heart Association; 2010. O2010, American Heart Association.

At-A-Glance Summary Tables Males And Gardiovascular Diseases						
Diseases and Risk Factors	Both Sexes	Total Males	White Males	Black Males	Mexican-American Males	
Total Cardiovascular Disease						
Prevalence, 2006*	81.1 M (36.9\%)	39.0 M (37.9\%)	38.1\%	44.6\%	28.5\%	
Mortaily, 2006 \dagger	831.3 K	398.6 K	340.6 K	48.0 K	NA	
Coronary Heart Disease						
Prevalence, CHD, 2006*	17.6 M (7.9\%)	$9.2 \mathrm{M}(9.1 \%)$	9.4\%	7.8\%	5.3\%	
Prevalence, M1, 2006*	$8.5 \mathrm{M}(3.6 \%)$	$5.0 \mathrm{M}(4.7 \%)$	5.1\%	3.6\%	2.6\%	
Prevalence, AP, 2006*	$10.2 \mathrm{M}(4.6 \%)$	$4.7 \mathrm{M}(4.6 \%)$	4.7\%	4.0\%	2.9\%	
New and recurrent CHD $\ddagger \S$	1.26 M	740.0 K	675.0 K	70.0 K	NA	
New and recurrent MI§	935.0 K	565.0 K	NA	NA	NA	
Incidence, AP (stable angina)\|		500.0 K	320.0 K	NA	NA	NA
Mortality, 2006, CHD \dagger	425.4 K	224.5 K	196.4 K	22.7 K	NA	
Mortailt, 2006, M1+	141.5 K	76.1 K	66.9 K	7.4 K	NA	
Stroke						
Prevalence, 2006*	$6.4 \mathrm{M}(2.9 \%)$	$2.5 \mathrm{M}(2.5 \%)$	2.3\%	3.8\%	2.8\%	
New and recurrent strokes \dagger	795.0 K	370.0 K	325.0 K	45.0 K	NA	
Mortaily, 2006t	137.1 K	54.5 K	45.2 K	7.4 K	NA	
High Blood Pressure						
Prevalence, 2006*	$74.5 \mathrm{M}(33.6 \%)$	35.7 M (34.4\%)	34.3\%	43.0\%	25.9\%	
Mortaily, 2006†	56.6 K	24.4 K	17.6 K	6.1 K	NA	
Heart Failure						
Prevalence, 2006*	$5.8 \mathrm{M}(2.6 \%)$	$3.1 \mathrm{M} \mathrm{(3.1} \mathrm{\%)}$	3.2\%	3.0\%	1.7\%	
Mortaily, 2006†ๆ	282.8 K	123.6 K	110.3 K	10.9 K	NA	
Smoking						
Prevalence, 2008\#	46.0 M (20.6\%)	24.8 M (23.1\%)	23.5\%	25.6\%	NA	
Blood Cholesterol						
Prevalence, 2006:						
Total cholesterol $\geq 200 \mathrm{mg} / \mathrm{LL}^{*}$	102.2 M (46.8\%)	47.7 M (45.2\%)	45.0\%	40.2\%	51.1\%	
Total cholesterol $\geq 240 \mathrm{mg} / \mathrm{LL}^{*}$	35.7 M (16.2\%)	15.9 M (15.0\%)	15.3\%	10.9\%	16.8\%	
LDL cholesterol $\geq 130 \mathrm{mg} / \mathrm{LL} *$	$71.2 \mathrm{M}(32.6 \%)$	34.9 M (33.1\%)	31.5\%	34.4\%	42.7\%	
HDL cholesterol < $40 \mathrm{mg} / \mathrm{dL}$ *	$35.1 \mathrm{M}(16.2 \%)$	$26.4 \mathrm{M}(25.0 \%)$	25.4\%	14.7\%	29.3\%	
Physical Activity**						
Prevalence, 2008\#	32.5\%	34.8\%	NA	NA	NA	
Overweight and Obesity						
Prevalence, 2006: Overweight and obesity,						
BMI $225.0 \mathrm{~kg} / \mathrm{m}^{2+}$	144.1 M (66.3\%)	75.5 M (71.7\%)	71.4\%	71.4\%	75.1\%	
Obesity, BMI $\geq 30.0 \mathrm{~kg} / \mathrm{m}^{2 *}$	$71.6 \mathrm{M}(32.9 \%)$	33.6 M (31.8\%)	31.6\%	35.2\%	29.1\%	
Diabetes Mellitus						
Prevalence, 2006:						
Physician-diagnosed diabetes*	$17.2 \mathrm{M}(7.7 \%)$	$7.9 \mathrm{M}(7.6 \%)$	6.4\%	12.8\%	11.8\%	
Undiagnosed diabetes*	6.1 M (2.8\%)	$3.8 \mathrm{M}(3.8 \%)$	3.7\%	3.8\%	3.2\%	
Prediabetes*	$63.2 \mathrm{M}(29.0 \%)$	37.5 M (35.9\%)	35.9\%	26.4\%	33.3\%	
Incidence, diagnosed diabetes*	1.6 M	NA	NA	NA	NA	
Moralalit, 2006 \dagger	72.4 K	36.0 K	29.1 K	5.8 K	NA	

Note: CVD indicates cardiovascular disease; M, millions; K, thousands; $N A$, Not available; $C H D$, coronary heart disease (includes heart attack, angina pectoris [chest pain] or botth); $M I$, myocardial infarction (heart tattack); AP, angina pectoris (chest pain); HBP, high blood pressure;; HF, heart failure; mg/dL, milligrams per deciliter; LDL, low densith lipoporotein; HDL, high density lipoporotein; PA, physical activity; BMI, body mass index;; and kg/m², kilograms per meter squared. *Age ≥ 20 years, $\uparrow A l /$ Ages, $\#$ New and recurrent $M 1$ and fatal $C H D, S A g e \geq 3$. ears. |lto ≥ 45 years 9 Any mentions, the >18 years **Regular leisure-time PA, tthispanic
Sources: See summary tables for each chapter in this update. For data on men in other ethnic groups, see other chapters and Statistical Fact Sheets.

At-A-Glance Summary Tables Females And Gardiovascular Diseases

Diseases and Risk Factors Both Sexes Total Females White Females Black Females Mexican-American Females Total Cardiovascular Disease

Prevalence, 2006*	81.1 M (36.9\%)	42.1 M (35.7\%)	34.4\%	46.9\%	34.5\%	
Mortalit, 2006 \dagger	831.3 K	432.7 K	372.8 K	50.8 K	NA	
Coronary Heart Disease						
Prevalence, CHD, 2006*	17.6 M (7.9\%)	8.4 M (7.0\%)	6.9\%	8.8\%	6.6\%	
Prevalence, M1, 2006*	8.5 M (3.6\%)	$3.5 \mathrm{M}(2.6 \%)$	2.6\%	2.9\%	2.0\%	
Prevalence, AP, 2006*	$10.2 \mathrm{M}(4.6 \%)$	$5.5 \mathrm{M}(4.6 \%)$	4.5\%	5.4\%	4.8\%	
New and recurrent CHD \ddagger §	1.26 M	515.0 K	445.0 K	65.0 K	NA	
New and recurrent MI§	935.0 K	370.0 K	NA	NA	NA	
Incidence AP (stable angina)\|		500.0 K	180.0 K	NA	NA	NA
Mortaily, 2006, CHD \dagger	425.4 K	200.9 K	175.0 K	21.8 K	NA	
Mortaily, 2006, M1 \dagger	141.5 K	65.4 K	56.6 K	7.4 K	NA	
Stroke						
Prevalence, 2006*	$6.4 \mathrm{M}(2.9 \%)$	3.9 M (3.2\%)	3.1\%	4.3\%	3.1\%	
New and recurrent strokest	795.0 K	425.0 K	365.0 K	60.0 K	NA	
Moralali, 2006 \dagger	137.1 K	82.6 K	70.7 K	9.6 K	NA	
High Blood Pressure						
Prevalence, 2006*	74.5 M (33.6\%)	38.8 M (32.6\%)	31.1\%	44.8\%	31.6\%	
Mortaily, $2006 \dagger$	56.6 K	32.2 K	24.9 K	6.5 K	NA	
Heart Failure						
Prevalence, 2006*	$5.8 \mathrm{M}(2.6 \%)$	$2.7 \mathrm{M}(2.1 \%)$	2.1\%	3.6\%	1.8\%	
Mortaity, 2006+ף	282.8 K	159.2 K	142.4 K	14.2 K	NA	
Smoking						
Prevalence, 2008\#	$46.0 \mathrm{M}(20.6 \%)$	$21.1 \mathrm{M}(18.3 \%)$	20.6\%	17.8\%	NA	
Blood Cholesterol						
Prevalence, 2006:						
Total cholesterol $\geq 200 \mathrm{mg} / \mathrm{dL}{ }^{*}$	102.2 M (46.8\%)	54.5 M (47.9\%)	48.7\%	41.8\%	49.0\%	
Total cholesterol $\geq 240 \mathrm{mg} / \mathrm{LL}^{*}$	35.7 M (16.2\%)	19.7 M (17.2\%)	18.1\%	13.1\%	14.3\%	
LDL cholesterol $\geq 130 \mathrm{mg} / \mathrm{dL}{ }^{*}$	$71.2 \mathrm{M}(32.6 \%)$	36.3 M (32.0\%)	33.8\%	28.6\%	30.4\%	
HDL cholesterol $<40 \mathrm{mg} / \mathrm{dL}$ *	35.1 M (16.2\%)	8.7 M (7.9\%)	7.9\%	6.5\%	11.7\%	
Physical Activity**						
Prevalence, 2008\#	32.5\%	30.6\%	NA	NA	NA	
Overweight and Obesity						
Prevalence, 2006: Overweight and Obesity,						
BMI $225.0 \mathrm{~kg} / \mathrm{m}^{2 *}$	$144.1 \mathrm{M}(66.3 \%)$	68.6 M (61.0\%)	57.5\%	79.6\%	74.1\%	
Obesity, BMI $230.0 \mathrm{~kg} / \mathrm{m}^{2 *}$	$71.6 \mathrm{M}(32.9 \%)$	$38.0 \mathrm{~m}(34.0 \%)$	31.3\%	53.2\%	41.8\%	
Diabetes Mellitus						
Prevalence, 2006:						
Physician-diagnosed diabetes*	$17.2 \mathrm{M}(7.7 \%)$	9.3 M (7.9\%)	6.4\%	13.0\%	13.1\%	
Undiagnosed diabetes*	$6.1 \mathrm{M}(2.8 \%)$	2.3 M (1.9\%)	1.8\%	2.3\%	3.8\%	
Prediabetes*	63.2 M (29.0\%)	$25.7 \mathrm{M}(22.2 \%)$	21.7\%	22.3\%	26.6\%	
Incidence, diagnosed diabetes*	1.6 M	NA	NA	NA	NA	
Mortalit, 2006 \dagger	72.4 K	36.4 K	28.1 K	7.0 K	NA	

Note: CVD indicates cardiovascular disease; M, millions; K, thousands; NA, Not available; CHD, coronary heart disease (includes heart attack, angina pectoris [chest pain] or bott); MI, myocardial infarction (heart attack); AP, angina pectoris (chest pain); HBP, high hlood pressure; HF, heart failure; mg/LL, milligrams per deciliter; LDL, low density lipoprotein. HDL, hign
 elar reisure-time PA, tthispanic.
Sources: See summary tables for each chapter in this update. For data on women in other ethnic groups, see other chapters and Statistical Fact Sheets.

Diseases and Risk Factors	$t-A-G$ nic Groups	anc			mar Diseas	$\underset{e s}{y} T_{i}$	able							
	Both Sexes	Whites		Blacks		Mexican Americans		Hispanics/ Latinos		$\frac{\text { Asians }}{\text { Both Sexes }}$	American Indians/ Alaska Natives			
		Males	Females	Males	Females	Males	Females	Males	Females		Both Sexes			
Total Cardiovascular Disease														
Prevalence 2006*	81.1 M (36.9\%)	38.1\%	34.4\%	44.6\%	46.9\%	28.5\%	34.5\%	NA	NA	NA	NA			
Mortality 2006 \dagger	831.3 K	340.6 K	372.8 K	48.0 K	50.8 K	NA	NA	NA	NA	NA	NA			
Coronary Heart Disease														
Prevalence, CHD, 2006**	17.6 M (7.9\%)	9.4\%	6.9\%	7.8\%	8.8\%	5.3\%	6.6\%		/l\|tt	2.9\%\|	tt	6.6\%\|	tt	
Prevalence, M1, 2006*	$8.5 \mathrm{M}(3.6 \%)$	5.1\%	2.6\%	3.6\%	2.9\%	2.6\%	2.0\%	NA	NA	NA	NA			
Prevalence, AP, 2006*	10.2 (4.6\%)	4.7\%	4.5\%	4.0\%	5.4\%	2.9\%	4.8\%	NA	NA	NA	NA			
New and recurrent CHD \ddagger §	1.26 M	675.0 K	445.0 K	70.0 K	65.0 K	NA	NA	NA	NA	NA	NA			
Mortality, CHD, 2006†	425.4 K	196.4 K	175.0 K	22.7 K	21.8 K	NA	NA	NA	NA	NA	NA			
Mortailit, M1, 2006 \dagger	141.5 K	66.9 K	56.6 K	7.4 K	7.4 K	NA	NA	NA	NA	NA	NA			
Stroke														
Prevalence, 2006*	$6.4 \mathrm{M}(2.9 \%)$	2.3\%	3.1\%	3.8\%	4.3\%	2.8\%	3.1\%		光\|t	1.8\%\|	t \dagger	3.9\%\|	tt	
New and recurrent strokest	795.0 K	325.0 K	365.0 K	45.0 K	60.0 K	NA	NA	NA	NA	NA	NA			
Mortality, 2006 \dagger	137.1 K	45.2 K	70.7 K	7.4 K	9.6 K	NA	NA	NA	NA	NA	NA			
High Blood Pressure														
Prevalence, 2006*	$74.5 \mathrm{M}(33.6 \%)$	34.3\%	31.1\%	43.0\%	44.8\%	25.9\%	31.6\%		\%\|lt \dagger	21.0\%\|	tt	25.3\%\|ltt		
Mortality, 2006 \dagger	56.6 K	17.6 K	24.9 K	6.1 K	6.5 K	NA	NA	NA	NA	NA	NA			
Heart Failure														
Prevalence, 2006*	$5.8 \mathrm{M}(2.6 \%)$	3.2\%	2.1\%	3.0\%	3.6\%	1.7\%	1.8\%	NA	NA	NA	NA			
Mortaily, 2006+9	282.8 K	110.3 K	142.4 K	10.9 K	14.2 K	NA	NA	NA	NA	NA	NA			
Smoking														
Prevalence, 2008\|		$46.0 \mathrm{M}(20.6 \%)$	23.5\%	20.6\%	25.6\%	17.8\%		4.9\%	20.7\%	10.7\%	9.9\%	24.3\%		
Blood Cholesterol														
Prevalence, 2006:														
Total cholesterol $\geq 200 \mathrm{mg} / \mathrm{LL}$ *	$102.2 \mathrm{M} \mathrm{(46.8} \mathrm{\%)}$	45.0\%	48.7\%	40.2\%	41.8\%	51.1\%	49.0\%	NA	NA	NA	NA			
Total cholesterol $\geq 240 \mathrm{mg} / \mathrm{LL}$ *	$35.7 \mathrm{M}(16.2 \%)$	15.3\%	18.1\%	10.9\%	13.1\%	16.8\%	14.3\%		\%\%	29.2\%	31.2\%			
LDL cholesterol $\geq 130 \mathrm{mg} / \mathrm{dL}^{*}$	$71.2 \mathrm{M}(32.6 \%)$	31.5\%	33.8\%	34.4\%	28.6\%	42.7\%	30.4\%	NA	NA	NA	NA			
HDL cholesterol < $40 \mathrm{mg} / \mathrm{dL}{ }^{*}$	35.1 M (16.2\%)	25.4\%	7.9\%	14.7\%	6.5\%	29.3\%	11.7\%	NA	NA	NA	NA			
Physical Activity**														
Prevalence, 2008\|		32.5\%		9\%		4.8\%	NA	NA		2\%	NA	NA		
Overweight and Obesity														
Prevalence, 2006:														
Overweight and obesity,														
BMI $225.0 \mathrm{~kg} / \mathrm{m}^{2 *}$	144.1 M (66.3\%)	71.4\%	57.5\%	71.4\%	79.6\%	75.1\%	74.1\%		\%\|lt \dagger	40.7\%\|lt	69.6\%\|lt			
Obesity BMI $\geq 3.0 \mathrm{~kg} / \mathrm{m}^{2 *}$	71.6 M (32.9\%)	31.6\%	31.3\%	35.2\%	53.2\%	29.1\%	41.8\%		\%\|lt	9.4\%\|	tt	42.1\%\|lt		
Diabetes Mellitus														
Prevalence, 2006:														
Physician-diagnosed diabetes*	$17.2 \mathrm{M}(7.7 \%)$	6.4\%	6.4\%	12.8\%	13.0\%	11.8\%	13.1\%		\%\|	t \dagger	8.0\%\|	t \dagger	15.0\%\|	t†
Undiagnosed diabetes*	$6.1 \mathrm{M}(2.8 \%)$	3.7\%	1.8\%	3.8\%	2.3\%	3.2\%	3.8\%	NA	NA	NA	NA			
Prediabetes*	63.2 M (29.0\%)	35.9\%	21.7\%	26.4\%	22.3\%	33.3\%	26.6\%	NA	NA	NA	NA			
Incidence, diagnosed diabetes*	1.6 M	NA												
Mortaily, 2006 \dagger	72.4 K	29.1 K	28.1 K	5.8 K	7.0 K	NA	NA	NA	NA	NA	NA			
Note: CVD indicates cardiovascular disease; M, millions; K, thousands; NA, Not available; CHD, coronary heart disease (includes heart attack, angina pectoris [chest pain] or both); MI, myocardial infarction (heart attack); AP, angina pectoris (chest pain); HBP, high blood pressure; HF, heart tailure; mg/dL, milligrams per deciliter; LDL, low density lipoprotein. HDL, high density lipoprotein; PA, physical activity; BMI, body mass index; and kg/m², kilograms per meter squared. *Age ≥ 20 years, $\dagger A /$ Ages, \ddagger New and recurrent $M 1$ and fatal $C H D$, $\S A g e \geq 35$ years, \|	Age ≥ 18 years, \boldsymbol{q} Any mentions, \#Behaviorial Risk Factor Survelliance System., **Regular leisure-time PA, $t+2008$ NIH. Sources: See summary tables for each chapter in this update. For data on other ethnic groups, see other chapters and Statistical Fact Sheets.													
Heart Disease and Stroe Statisicics - 2010 Update, American Heart Assocition														

Diseases and Risk Factors	At-A-Glance Summary Tables Children, Youth And Gardiovascular Diseases							-	
	Both Sexes	Total		Whites		Blacks		Mexican Americans	
		Males	Females	Males	Females	Males	Females	Males	Females
Congenital Cardiovascular Defects									
Mortaili, 2006*	3.5 K	2.0 K	1.6 K	1.5 K	1.2 K	0.4 K	0.3 K	NA	NA
Mortaily, 2006 (age <15)	1.9 K	1.1 K	0.9 K	0.8 K	0.6 K	0.2 K	0.2 K	NA	NA
Smoking									
High school students, grades 9 to12:									
Current cigarette smoking, 2007	20.0\%	21.3\%	18.7\%	23.8\%	22.5\%	14.9\%	8.4\%	18.7\% \dagger	14.6\% \dagger
Current cigar smoking, 2007	13.6\%	19.4\%	7.6\%	22.0\%	7.4\%	13.2\%	6.7\%	16.3\% \dagger	9.0\% \dagger
Smokeless tobacco use, 2007	7.9\%	13.4\%	2.3\%	18.0\%	2.5\%	2.0\%	0.5\%	6.7\% \dagger	2.7\% \dagger
Blood Cholesterol									
Mean total cholesterol, mg/dL									
Ages 4 to 11	165.1	164.6	165.6	165.2	166.1	165.6	164.9	161.7	163.1
Ages 12 to 19	161.1	157.5	164.8	155.8	166.3	161.3	162.9	158.9	162.3
Mean HDL cholesterol, mg/dL									
Ages 4 to 11	55.7	56.7	54.7	55.9	54.0	60.9	58.0	54.5	52.9
Ages 12 to 19	52.4	49.4	55.6	47.6	55.2	54.8	57.7	49.6	53.8
Mean LDL cholesterol, mg/dL									
Ages 12 to 19	89.2	87.5	90.9	87.1	91.5	89.0	91.5	88.7	91.6
Physical Activity \ddagger									
Prevalence, grades 9 to12, 2007§ Met currently recommended									
Overweight and Obesity									
Prevalence, 2006:									
Children and adolescents, ages	$23.5 \mathrm{M}$	$12.3 \mathrm{M}$	$11.2 \mathrm{M}$	31.9\%	29.5\%	30.8\%	39.2\%	40.8\%	35.0\%
Students in grades 9 to $12 \S$ (overweight only)	15.8\%	15.1\%	9.6\%	15.7\%	12.8\%	16.6\%	21.4\%	18.3\% \dagger	17.9\%†

Note: CVD indicates cardiovascular disease; K, thousands; $N A$, data not available; mg/dL, milligrams per deciliter; HDL, high-density lipoprotein; LLLL, low-density lipoprotein; PA, physica activity; and M, millions. Overweight indicieates a bodyt mass index in the 95 th percentile of the Centers for Disease Control and Prevention 2000 growth chart. *All ages, thispanic, सRegu lar leisurue-time PA, SCenters for Disease Control and Prevention.
Sources: See summary tables for releated conthapters in this updatat. For more data on congenital defectr, see Chapter 7 , and our S tatistical F Fact Sheets.

2
 Cardiovascular Diseases

(ICD/9 390-459, 745-747) (ICD/10 I00-199, Q20-028; see Glossary for details and definitions)

Prevalence

An estimated 81,100,000 American adults (more than one in three) have one or more types of cardiovascular disease (CVD). Of these, $38,100,000$ are estimated to be age 60 or older. Total CVD includes diseases in the bullet points below except for congenital CVD. Due to overlap, it is not possible to add these conditions to arrive at a total.

- High blood pressure (HBP) - 74,500,000. (Defined as systolic pressure 140 mm Hg or greater and/or diastolic pressure 90 mm H or greater, taking antihypertensive medication or being told at least twice by a physician or other health professional that you have HBP.)
- Coronary heart disease (CHD) - 17,600,000.
- Myocardial infarction (MI, or heart attack) - 8,500,000 - Angina pectoris (AP, or chest pain) - 10,200,000.
- Heart failure (HF) - $5,800,000$.
- Stroke - 6,400,000
- Congenital cardiovascular defects - 650,000-1,300,000
- The following prevalence estimates are for people age 18 and older from NCHS/NHIS, 2008: (Vital Health Stat 10.No.242.2009.)
-Among whites only, 12.1 percent have heart disease, 6.5 percent have CHD, 23.3 percent have hypertension and 2.7 percent have had a stroke.
-Among blacks or African Americans, 10.2 percent have heart disease, 5.6 percent have CHD, 31.8 percent have hypertension and 3.6 percent have had a stroke.
-Among Hispanics or Latinos, 8.1 percent have heart disease 5.7 percent have CHD, 21.0 percent have hypertension and 2.6 percent have had a stroke.
-Among Asians, 5.2 percent have heart disease, 2.9 percent have CHD, 21.0 percent have hypertension and 1.8 percent have had a stroke.
Among Native Hawaiians or other Pacific Islanders, 19.7 percent have hypertension (estimate may be unreliable; other prevalence estimates not available).
-Among American Indians or Alaska Natives, 12.1 percent have heart disease, 6.6 percent have CHD (estimate may be unreliable), 25.3 percent have hypertension, and 3.9 percent have had a stroke (estimate may be unreliable).
- Asian Indian Adults (9 percent) are about two-fold more likely than Korean adults (4 percent) to have ever been told they have heart disease. (Advance Data from Vital and Health Statistics. No. 394. 2008)

Incidence
Based on the NHLBl's Framingham Heart Study (FHS) original and offspring cohort (1980-2003)... (Incidence and Prevalence: 2006 Chart Book on Cardiovascular and Lung Diseases. Bethesda, Md.: National Heart, Lung, and Blood Institute, May 2006))
-The average annual rates of first major cardiovascular events rise from three per 1,000 men at ages $35-44$ to 74 per 1,000 at ages $85-94$. For women, comparable rates occur 10 years later in life. The gap narrows with advancing age.
Before age 75, a higher proportion of CVD events due to CHD occur in men than in women, and a higher proportion of events due to stroke occur in women than in men.

- Data from the FHS indicate that the lifetime risk for CVD is two in three for men and more than one in two for women at age 40 . Personal communication, Donald Lloyd-Jones, MD, Northwestern University, Chicago, III.)

Mortality

- Final mortality data show that CVD ($100-199$, Q20-Q28) as the underlying cause of death (including congenital cardiovascular defects) accounted for 34.3 percent $(831,272$) of all $2,426,264$ deaths in 2006 or one of every 2.9 deaths in the United States. CVD any mention deaths ($1,347,000$ deaths in 2006) accounted for about 56 percent of all deaths in 2006. (NCHS. Health Data Interactive)
- In every year since 1900, except 1918, CVD accounted for more deaths than any other major cause of death in the United States. (NCHS)
- Nearly 2,300 Americans die of CVD each day, an average of one death every 38 seconds. CVD claims more lives each year as cancer, chronic lower respiratory diseases and accidents combined (NCHS. Health Data Interactive)
- The 2006 overall death rate from CVD (I00-199) was 262.5 . The rates were 306.6 for white males and 422.8 for black males; 215.5 for white females and 298.2 for black females. From 1996-2006, death rates from CVD (ICD/10 IOO-199) declined 29.2 percent. In the same 10-year period, actual CVD deaths decline 2.9 percent. (Appropriate comparability ratios were applied.) (NCHS. Health Data Interactive)
- Other causes of death in 2006 - cancer, 559,888 ; accidents, 121,599; Alzheimer's disease, 72,432; HIV (AIDS), 12,113. (NCHS Health Data Interactive)
- Final 2006 CVD death rates were 313.3 for males and 221.6 for females. Cancer (malignant neoplasms) death rates were 220.1 for males and 153.6 for females. Breast cancer claimed the lives of 40,821 females in 2006; lung cancer claimed 69,385. Death rates for females were 23.5 for breast cancer and 40.0 for lung cancer One in 30 female deaths was from breast cancer, while one in six was from CHD. By comparison, one in 4.5 female deaths was of cancer while one in 2.8 was of CVD. Based on 2006 mortality, CVD caused about a death a minute among females - 432,709 female lives in 2006. That's more female lives than were claimed by cancer, chronic lower respiratory diseases, Alzheimer's diseas and accidents combined. (NCHS. Health Data Interactive)
- More than 151,000 Americans killed by CVD (100-199) in 2006 were under age 65 . In 2006, nearly 33 percent of deaths from CVD occurred prematurely (i.e., before age 75 , which is well below the average life expectancy of 77.7 years). (NCHS. Health Data Interactive)
- In 2006, the leading causes of death in women age 65 and older were diseases of the heart (№. 1), cancer (No. 2), stroke (№. 3) and chronic lower respiratory diseases (No. 4). In older men, they were diseases of the heart (No. 1), cancer (No. 2), chronic lower espiratory diseases (No. 3) and stroke (No. 4). (NCHS. Health Data Interactive; Centers for Disease Control and Prevention. WISQARS eading causes of death reports, 1999-2006.)

Out-of-Hospital Cardiac Arrest

- Each year there are an estimated 295,000 emergency medica services-treated out-of-hospital cardiac arrests occur in the United States. (JAMA. 2008;300:1423-1431.)

About 60 percent of unexpected cardiac deaths are treated by EMS (JAm Coll Cardiol. 2004;44:1268-75.)

- On average, 31.4 percent of out-of-hospital cardiac arrests receive bystander cardiopulmonary resuscitation (CPR). (Personal communication with Graham Nichol, M.D.)

CPR Awareness

- Seventy-nine percent of the lay public are confident that they know what actions to take in a medical emergency. Ninety-eight percent recognize an automated external defibrillator as a device that administers an electrical shock to restore the heart beat of sudden cardiac arrest victims, and 60 percent are familiar with CPR. (Harris Interactive Survey conducted on behalf of the American Heart Association, Jan. 8, 2008 through Jan. 21, 2008.$)$

Risk Factors/Family History Heathy Lifestyle

- In respondents ages 18-74, data from the 2000 BRFSS showed the prevalence of "healthy lifestyle characteristics" (HLC) was as follows: nonsmoking, 76.0 percent; healthy weight, 40.1 percent; five fruits and vegetables per day, 23.3 percent; and regular physica activity, 22.2 percent. The overall prevalence of the healthy lifestyle indicator (i.e., having all four HLCs) was only 3 percent, with little variation among subgroups. (Arch Intern Med. 2005;165:854-857.)
- According to data from the Framingham Heart Study, the occurrenc of a premature atherosclerotic CVD event in a parent or sibling is ssociated with about a two-fold increased risk of CVD, independen f other risk fa 294:3117-23)
- In a study of 7,900 men and women, at age 50 those with an "optimal" risk factor burden (blood pressure below $120 / 80 \mathrm{~mm} \mathrm{Hg}$, total cholesterol below $180 \mathrm{mg} / \mathrm{dL}$, absence of diabetes, nonsmoker) ad a median life expectancy 10 or more years longer than those with two or more major risk factors. (Circulation. 2006;113:791-8.)
- In people ages 70-90, eating a Mediterranean-style diet and greater physical activity are associated with 65-73 percent lower rates of -cause mortality, as well as mortality due to CHD, CVD and cancer (JAMA. 2004;292:1433-1439.)

The NHANES II Mortality Follow-UP Study indicates that the relative isk for fatal CHD was 51 percent lower for men and 71 percent ower for women with none of three major risk factors (hypertension, current smoking and elevated total cholesterol $\geq 240 \mathrm{mg} / \mathrm{dL}$)

Hospital Discharges/Ambulatory Care Visits/Nursing Home Visits

- From 1996-2006, the number of inpatient discharges from shortstay hospitals with CVD as the first listed diagnosis increased from $6,107,000$ to $6,161,000$ discharges. In 2006, CVD ranked highest among all disease categories in hospital discharges. (2006 National Hospital Discharge Survey. National Health Statistics Reports. No. 5.)
- In 2007, there were $79,697,000$ physician office visits, hospital emergency department visits and outpatient visits with a primary diagnosis of CVD. (National Ambulatory Medical Care Survey 2007 Summary.)
- In 2007, there were $4,048,000$ visits to emergency departments with a primary diagnosis of CVD. (National Ambulatory Medical Car Survey: 2007 Emergency Department Summary)
- In 2007, there were 7,929,000 outpatient department visits with a primary diagnosis of CVD. (Vital Health Stat13. June 2009; (1677:1-155.)
- In 2005, about one of every six hospital stays was due to CVD. (AHRQ, NIS)

Source: NCHS
Note: May not add to 100% due to rounding.

Operations and Procedures

- In 2006, an estimated 7,235,000 inpatient cardiovascular operations and procedures were performed in the United States; 4.1 million wer performed on males and 3.1 million were performed on females. (NHDS, NCHS and NHLBI.)

Cost

- The estimated direct and indirect cost of CVD for 2010 is $\$ 503.2$ billion.

2006 Age-Adjusted Death Rates for Cardiovascular Disease (CVD), Coronary Heart Disease (CHD)
and Stroke by State (includes District of Columbia and Puerto Rico)

State	CVD*			CHD**			Stroke\#		
	Rank\#\#	Death Rate	\% Change+ 1996 to 2006	Rank\#\#	Death Rate	\% Change+ 1996 to 2006	Rank\#\#	Death Rate	\% Change+ 1996 to 2006
Alabama	51	330.9	-17.2	25	121.7	-32.4	51	55.5	-18.8
Alaska	11	227.5	-28.5	4	87.4	-38.2	34	46.8	-31.9
Arizona	5	215.4	-28.9	24	120.8	-31.1	3	34.5	-39.6
Arkansas	48	311.0	-23.8	47	160.1	-22.0	52	58.8	-35.1
California	29	257.3	-27.8	34	139.0	-36.3	29	44.9	-32.3
Colorado	4	212.8	-29.2	6	96.3	-35.9	13	38.7	-35.2
Connecticut	18	232.3	-35.1	13	110.0	-42.3	8	36.5	-37.7
Delaware	27	255.4	-26.1	37	140.8	-31.4	18	41.8	-24.0
District of Columbia	50	325.7	-19.1	52	193.5	+7.0	10	37.6	-45.9
Florida	10	227.4	-30.1	28	129.2	-37.2	4	35.3	-33.3
Georgia	41	288.8	-28.2	12	108.7	-41.5	43	51.4	-33.6
Hawaii	2	206.2	-30.9	3	85.2	-40.2	22	43.2	-32.9
Idaho	20	238.5	-25.3	14	110.2	-34.0	44	51.6	-27.3
Illinois	33	268.2	-29.8	31	134.8	-39.4	31	45.4	-33.0
Indiana	40	288.7	-27.7	35	139.7	-36.0	39	49.1	-34.8
lowa	22	246.7	-29.6	39	141.6	-36.2	20	42.9	-31.6
Kansas	28	255.4	-26.1	17	114.1	-35.0	33	46.7	-28.0
Kentucky	44	307.7	-25.6	42	148.6	-32.2	42	50.5	-30.4
Louisiana	46	308.4	-22.4	33	138.3	-32.4	46	52.1	-24.7
Maine	17	232.2	-33.1	15	112.2	-43.3	17	41.3	-28.6
Maryland	32	266.6	-25.4	40	141.7	-29.7	23	43.6	-31.6
Massachusetts	8	224.0	-31.3	9	105.6	-39.9	11	37.7	-28.2
Michigan	42	291.7	-27.8	45	156.6	-35.2	28	44.5	-34.5
Minnesota	1	190.9	-35.9	2	79.7	-45.5	14	39.3	-40.1
Mississippi	52	348.8	-23.4	41	146.8	-38.1	49	53.7	-25.7
Missouri	43	293.2	-27.4	44	155.2	-34.2	41	49.4	-27.3
Montana	7	223.3	-30.2	7	99.0	-36.1	16	41.2	-33.9
Nebraska	13	228.8	-34.5	5	89.9	-44.0	25	43.9	-29.5
Nevada	39	287.7	-22.0	23	119.5	-38.5	15	39.7	-33.8
New Hampshire	16	230.1	-34.4	21	116.3	-42.7	5	35.4	-47.4
New Jersey	26	254.1	-30.1	38	141.2	-36.1	6	35.9	-33.8
New Mexico	9	224.0	-24.4	18	114.6	-30.8	9	37.5	-35.9
New York	37	278.6	-30.9	51	181.2	-32.9	1	29.7	-37.2
North Carolina	34	268.2	-30.4	27	126.1	-39.3	47	52.4	-36.0
North Dakota	23	246.7	-28.8	30	133.7	-26.6	40	49.2	-29.8
Ohio	38	283.8	-28.0	43	154.0	-32.6	30	45.2	-28.1
Oklahoma	49	322.0	-21.2	50	177.4	-23.2	48	53.3	-23.0
Oregon	14	228.8	-29.6	8	99.2	-40.2	36	48.0	-38.8
Pennsylvania	35	268.8	-29.9	32	136.0	-37.4	24	43.6	-30.0
Puerto Rico++	6	219.4	-27.5	10	106.6	-23.7	26	43.9	-25.0
Rhode Island	24	249.8	-25.7	48	162.4	-27.3	2	31.4	-38.4
South Carolina	36	270.5	-33.1	22	119.2	-43.0	45	51.6	-41.8
South Dakota	19	235.6	-30.0	36	140.0	-27.7	19	42.4	-30.9
Tennessee	45	307.7	-25.1	49	167.8	-30.0	50	54.6	-31.2
Texas	31	262.8	-28.6	29	132.2	-37.4	37	48.3	-30.5
Utah	3	208.2	-28.0	1	77.5	-44.0	7	36.2	-40.7
Vermont	15	229.3	-33.0	26	124.5	-37.8	12	37.8	-39.7
Virginia	30	258.1	-31.1	20	115.6	-36.8	38	49.0	-33.5
Washington	12	228.0	-28.7	19	114.7	-31.7	21	42.9	-39.0
West Virginia	47	309.2	-27.4	46	158.7	-35.8	35	47.6	-21.7
Wisconsin	21	241.8	-30.9	16	113.9	-39.2	27	44.3	-38.9
Wyoming	25	250.1	-26.6	11	107.1	-36.5	32	45.4	-37.2
Total United States		262.5	-29.5		135.0	-35.9		43.6	-32.7

$0=$ data not available * CVD is defined here as ICD/10 100-199. **CHD is defined here as ICD/10 $120-125$. \# Stroke is defined here as ICD/10 160-169. \#\# Rank is lowest to to ighest. + Percent change, is based on log linear slope of rates for each year, 1996-2006. For stroke, the death rates in 1996-1998 were comparability modified, using the ICD/10 to ICD/9 .
Source: NCHS compressed mortality file 1979-2006. Data provided by personal communication with NHLB1.

Death Rates by State - Statistics (Includes District of Columbia)

2006 Total Cardiovascular Disease Age-Adjusted Death Rates by State

2006 Coronary Heart Disease Age-Adjusted Death Rates by State
Death Rates Per
100,000 Population

2006 Stroke Age-Adjusted Death Rates by State
Death Rates Per
100,000 Population
$\square 29.7$ to 38.7

\square	29.7 to 38.7
	39.3 to 43.9

44.3 to 49.1
49.2 to 58.8

Heart Disease and Stroke Statistics - 2010 Update, American Heart Association

3
Coronary Heart Disease, Acute Coronary Syndrome and Angina Pectoris

Coronary Heart Disease (CHD) (ICD/9 410-414, 429.2) (ICD/10 I20-I25; see Glossary for details and definitions)

Prevalence

- On the basis of data from NHANES 2003 to 2006, an estimated 17,600,000 American adults age 20 and older have coronary heart disease (CHD). Total CHD prevalence is 7.9 percent in U.S. adults age 20 and older (9.1 percent for men and 7.0 percent for women).
- Among U.S. adults age 20 and older, the overall prevalence of myocardial infarction (MI, or heart attack) is 3.6 percent (4.7 percent for men and 2.6 percent for women).

Incidence

This year an estimated 785,000 Americans will have a new coronary attack and about 470,000 will have a recurrent attack. It is estimated hat an additional 195,000 silent heart attacks occur each year. (Hurst's The Heart, Arteries and Veins. 10th ed. New York, NY: McGraw-Hill, 2001: -7; Am J Cardiol. 2002;90:927-931.)

- The estimated annual incidence of heart attack (myocardial infarction, MII) is 610,000 new attacks and 325,000 recurrent attacks annually ((Hurst's The Heart, Arteries and Veins. 10th ed. New York, NY: McGraw-Hill, 2001: 3-7; Am J Cardiol. 2002;90:927-931.)
- The average age of a person having a first heart attack is 64.5 for men and 70.3 for women. ((Hurst's The Heart, Arteries and Veins. 10th ed. New York, NY: McGraw-Hill, 2001: 3-7; Am J Cardiol. 2002;90:927-931.)
- Based on the NHLBl's Framingham Heart Study (FHS). - CHD makes up more than half of all cardiovascular events in men and women under age 75. Hurst's The Heart, Arteries and Veins. 10th ed. New York, NY: McGraw-Hill, 2001: 3-7.)
The men and 32 percent for women. (Lancet. 1999;353:89-92.)

Mortality

- CHD caused about one of every six deaths in the United States in 2006. It is the largest major killer of American males and females (NatI Vital Stat Rep. 2009;57-1-80.)
- Final 2006 CHD mortality was 425,425 (224,510 males, 200,915 females). CHD any mention mortality in 2006 was 587,000 (see glossary for definition of "any mention" mortality). (Vital Statistics of the United States, NCHS.)
- Final 2006 MI mortality was 141,462 (76,089 males, 65,373 females) MI any mention mortality in 2006 was 181,000 (see glossary for definition of "any mention" mortality). (Vital Statistics of the United States, NCHS.)
- About every 25 seconds, an American will suffer a coronary event, and about every minute someone will die from one. (AHA computation based on latest available mortality data.)

According to BRFSS findings, patients with CHD are less likely to comply win physical activity recommendations than people withou CHD. (Am J Cardiol. 2008;101:557-561.)

- In 2005, among BRFSS participants from 14 states and Washington D.C., only 27 percent could name five heart attack warning signs. (MMWR Morb Mortal Wkly Rep. 2008;57:175-179.)

Aftermath

Depending on their gender and clinical outcome, people who survive he acute stage of a heart attack have a chance of illness and death hat's $1.5-15$ times higher than that of the general population. (Hursts The Heart, Arteries and Veins. 10th ed. New York, NY: McGraw-Hill,
2001: 3-7.)

- Based on pooled data from the FHS, ARIC and CHS studies of the NHLBI, within one year following a first MI: will die ages $40-69,8$ percent of white men, 12 percent of white women, 14 percent of black men and 11 percent of black women will die wond older, 27 percent of white men, 32 percent of white will die
will die
in part, because women have heart attacks at older ages than men do, they're more likely to die from them within a few weeks.
Within five years following a first MI:
at age 40 and older, 33 percent of men and 43 percent of women will die
-at ages 40-69, 15 percent of white men, 22 percent of white women, 27 percent of black men and 32 percent of black women will die at age 70 and older, 50 percent of white men, 56 percent of white women, 56 percent of black men and 62 percent of black women will die.

Hospital Discharges

and Ambulatory Care Visits
From 1996-2006, the number of inpatient discharges from shortstay hospitals with CHD as the first listed diagnosis decreased from 2,272,000 to 1,760,000. (NHDS/NCHS.)

Cost

The estimated direct and indirect 2010 cost of CHD is $\$ 177.1$ billion.
Operations and Procedures

- In 2006, an estimated 1,313,000 inpatient percutaneous coronar intervention procedures, 448,000 inpatient bypass procedures, 1,115,000 inpatient diagnostic cardiac catheterizations, 114,000 inpatient implantable defibrillators and 418,000 pacemaker procedures were performed in the United States. (Natl Health Stat Rep. 2008;5:1-20.)

Acute Coronary Syndrome (conecocoses 40.411$)$

The term "acute coronary syndrome" (ACS) is increasingly used to describe patients who present with either acute MI or unstable angina (UA). (UA is chest pain or discomfort that usually occurs while at rest. The discomfort may be more severe and prolonged than typical angina.) - A conservative estimate for the number of discharges with ACS from hospitals in 2006 is 733,000 . Of these, an estimated 401,000 are male and 332,000 are female. This estimate is derived by adding he first-listed inpatient hospital discharges for $\mathrm{MI}(647,000)$ to those for UA (86,000). (NHDS, NCHS))

Angina Pectoris (ICD/9 413) (ICD/10 120)

Incidence

- Only 18 percent of coronary attacks are preceded by longstanding angina. (NHLBI computation of Framingham Heart Study follow-up since 1986.)
- The annual rates per 1,000 population of new episodes of angina for non-black men are 28.3 for ages 65-74, 36.3 for ages 75-84 and 33.0 for age 85 and older. For non-black women in the sam age groups, the rates are 14.1, 20.0 and 22.9 , respectively. For black men, the rates are 22.4, 33.8 and 39.5, and for black women, the rates are 15.3, 23.6 and 35.9, respectively. (Incidence and Prevalence: 2006 Chart Book on Cardiovascular and Lung Diseases, Bethesda, Md.: National Heart, Lung, and Blood Institute, May 2006.

Mortality

small number of deaths due to CHD are coded as being from AP. These are included as a portion of total deaths from CHD.

Prevalence

- Among adults age 20 and older, the estimated prevalence of stroke 2006 was $6,400,000$ (about $2,500,000$ males and $3,900,000$ females). (NHANES 2003-06, NCHS and NHLBI.)

Incidence

- Each year about 795,000 people experience a new or recurrent troke. About 610,000 of these are first attacks, and 185,000 ar recurrent attacks. (GCNKSS, NINDS, NHLBI)

On average, every 40 seconds someone in the United States has a stroke. (AHA computation based on latest available data.)

Each year, about 55,000 more women than men have a stroke (GCNKSS, NINDS)

- Men's stroke incidence rates are greater than women's at younger ages but not at older ages. The male/female incidence ratio is 1.25 at ages 55-64; 1.50 for ages $65-74 ; 1.07$ at $75-84$ and 0.76 at 85 and older. (ARIC and CHS studies.)

Blacks have almost twice the risk of first-ever stroke compared with whites. The age-adjusted stroke incidence rates at ages 45-84 are 6.6 per 1,000 population in black males, 3.6 in white males, 4.9 black females and 2.3 in white females (NHLBI. Incidence and Prevalence: 2006 Chart Book on Cardiovascular and Lung Diseases,

The Brain Attack Surveillance in Corpus Christi project (BASIC/NINDS) learly demonstrated an increased incidence of stroke among Mexican Americans compared with non-Hispanic whites. The crude cumulative incidence was 168/10,000 in Mexican Americans and 36/10,000 in non-Hispanic whites. Specifically, Mexican Americans have an increased incidence of intracerebral hemorrhage and subarachnoid hemorrhage compared with non-Hispanic whites, well as an increased incidence of ischemic stroke and TIA at younger ages. (Am J Epidemiol. 2004;160:376-383.)

Of all strokes, 87 percent are ischemic, 10 percent are intracerebra arrage, and 3 percent are subarachnoid hemorrhage. GCNKSS, NINDS)

Mortality

Stroke accounted for about one of every 18 deaths in the United States in 2006. Stroke mortality for 2006 was 137,119 (54,524 males, 82,595 females). Stroke any mention mortality in 2006 was about 232,000 (see glossary for definition of "any mention mortality") (NHLBI; NCHS public use data file.)
-When considered separately from other cardiovascular diseases stroke ranks No. 3 among all causes of death, behind diseases of the heart and cancer. (NCHS mortality data.)

- On average, every four minutes someone dies of a stroke (NCHS, NHLBI)
- Among people ages $45-64,8$ to 12 percent of ischemic strokes and 37 to 38 percent of hemorrhagic strokes result in death within 30 days, according to the ARIC study of the NHLBI. (Stroke 1999;30:736-743.)
- From 1996-2006, the stroke death rate fell 33.5 percent and the actual number of stroke deaths declined 18.4 percent. (NCHS, CDC Compressed Mortality File Underlying Cause of Death htp:// wonder.cdc.gov/mortSol. htm/)
- The 2006 final death rate for stroke was 43.6 per 100,000 . Death rates were 41.7 for white males and 67.1 for black males; 41.1 for white females and 57.0 for black females. (NCHS, CDC. Compresse Mortality File: Underlying Cause of Death; hittp:// wonder.clc. gov/ mortSQL.html/ Death rates were 35.9 for Hispanic or Latino males and 32.3 for females; 39.8 for Asian or Pacific Islander males and 34.9 for females; and 25.8 for American Indian/ Alaska Native males and 30.9 for females. (NCHS. Health, United States, 2007.)
- Because women live longer than men and stroke occurs at older ages, more women than men die of stroke each year. Women accounted for 60.6 percent of U.S. stroke deaths in 2006. (AHA computation based on latest mortality data.)

Stroke Risk Factors

The risk of ischemic stroke in current smokers is about double that of nonsmokers after adjustment for other risk factors. (FHS, CHS HHP, NHLBI)

- Atrial fibrillation (AF) is an independent risk factor for stroke, increasing risk about five-fold. (Stroke. 1991;22:983-988.)
- High blood pressure is a powerful determinant of risk for both ischemic and intercranial hemorrhage. (stroke. 1997;28:1840-1844.) Subject with blood pressure lower than $120 / 80 \mathrm{~mm} \mathrm{Hg}$ have about half the lifetime risk of stroke compared to subjects with high blood pressure. (Stroke. 1991;22: 983-88; JAMA. 2003; 290:1049-56.)
- A study of over 37,000 women age 45 and older participating in the Women's Health Study suggests that a healthy lifestyle consisting of abstinence from smoking, low BMI, moderate alcohol consumption, regular exercise and healthy diet was associated with a significantly reduced risk of tota and ischemic stroke but not
- The risk of ischemic stroke or intracerebral hemorrhage during pregnancy and the first six weeks postpartum was 2.4 times greater than for nonpregnant women of similar age and race, according the Baltimore-Washington Cooperative Young Stroke Study (N Engl J Med. 1996;335:768-774.)

Among postmenopausal women, the Women's Health Initiative primary prevention clinical trial found that estrogen plus progestin PremPro) increased ischemic stroke risk by 44 percent, with no effect on hemorrhagic stroke. (JAMA. 2003;289:2673-2684.)

- Analysis of data from the Framingham Heart Study found tha women with menopause before age 42 had twice the stroke risk compared with all other women in different age groups. (Stroke. 2009;40:1044-1049.)
- In the Framingham Heart Study, among participants younger than age 65 , the risk of stroke/TIA was 4.2 times higher in subjects with symptoms of depression. (Stroke. 2007;38:16-21.)

Physical Activity
 and Stroke Prevention

- Physical activity reduces stroke risk. Results from the Physicians Health Study showed a lower stroke risk associated with vigorous exercise among men. The Harvard Alumni Study showed a decreas total stroke risk in men who were highly physically active $(\mathrm{RR}=$..82). (Stroke. 1999;30:1-6.)
- The Northern Manhattan Study (NOMAS) - which included white, black and Hispanic men and women in an urban setting - showed a decrease in ischemic stroke risk associated with physical activity evels across all racia/etlnic and age groups and for each gender (odds ratio = 0.37). (Stroke. 1998;29:380-387.)

Awareness of Stroke Warning Signs and Risk Factors

- According to 2005 BRFSS data in 14 states, 38.1 percent of respondents were aware of five stroke warning signs and would first call $9-1-1$ if they thought someone was having a heart attack or stroke. (MMWR Morb Mortal Wkly Rep. 2008;57:481-5.)
- Spanish-speaking Hispanics are less likely to know all stroke symptoms, and far less likely to know all heart attack symptoms an Enclish-speaking Hispanics, non-Hispanic black Hispanic whites. (Am J Prev Med. 2006;30:189-196.)

In the Reasons for Geographic and Racial Differences in Stroke Study (REGARDS/NINDS), black participants were more aware an whites of their hypertension and more likely to be undergoing reatment if aware of their diagnosis, but among those treated for hypertension, they were less likely than whites to have their blood pressure controlled. (Stroke. 2006;37:1171-8.)

- A study of patients who have had a stroke found that only 60.5 percent were able to identify one stroke risk factor and only 55.3 percent were able to identify one stroke warning sign. (Heart Lung. 2007;36:25-34.)

- Stroke is a leading cause of serious, long-term disability in the United States. (SIPP; MMWR Morb Mortal Wkly Rep.
- Based on pooled data from the FHS, ARIC and CHS studies of the NHLB: The percent who die one year following a first stroke: - at age 40 and older, 21 percent of men and 24 percent of women. - at ages 40-69: 14 percent of white men, 20 percent of white women, 19 percent of black men and 19 percent of black women. -at age 70 and older: 24 percent of white men, 27 percent of white women, 25 percent of black men and 22 percent of black women

The median survival time (in years) following a first stroke is: - at ages 60-69: 6.8 for men and 7.4 for women.
-at ages 70-79: 5.4 for men and 6.4 for women.

- at age 80 and older: 1.8 for men and 3.1 for women
- After stroke, women have greater disability than men. A Michigan based stroke registry found that 33 percent of women had moderate-to-severe disability at discharge compared with 27 percent of men. In an analysis of 108 stroke survivors from the Framingham Heart Study, 34 percent of women were disabled six months after their stroke compared to 16 percent of men. (Stroke 2003;34:1581-5; Stroke. 2007;38:2541-8.)
- Black stroke survivors report higher activity limitations than white survivors, according to data of the Centers for Disease Control and Prevention. (MMWR Morb Mortal Wkly Rep. 2005;54:3-6.)

Hospital Discharges/
 Ambulatory Care Visits

From 1996-2006, the number of inpatient discharges from shortstay hospitals, with stroke as the first listed diagnosis declined from 956,000 to 889,000 . This decrease was observed in adults ag 65 and older. (NHDS/NCHS.)

2006 data from the Hospital Discharge Survey of the NCHS showed the average length of stay for discharges with stroke as the first listed diagnosis was 4.9 days. (2006 National Hospital Discharge Survey. National Health Statistics Reports, No. 5.)

- The estimated direct and indirect cost of stroke for 2010 is $\$ 73.7$ billion.
- The mean lifetime cost of ischemic stroke in the United States is estimated at $\$ 140,048$. This includes inpatient care, rehabilitation and follow-up care necessary for lasting deficits. (All numbers converted to 1999 dollars using the medical component of CPI.) (Stroke. 1996;27:1459-1466.)

Stroke in Children

- According to the National Center for Health Statistics, from 1990 to 1998, the rate of stoke in infants less than 30 days of age (per 100,000 births) was 26.4. (Pediatrics. 2002;109:116-123.)
- Compared to the stroke risk of white children, black children have a higher relative risk of 2.12, Hispanics have a lower relative risk of .76 , and Asians have a similar risk. Boys have a 1.28 -fold higher risk of stroke than girls. There are no ethnic differences in stroke severity or case-fatality, but boys have a higher case-fatality rate for ischemic stroke. (Neurology. 2003;61:189-194.)
- Cerebrovascular disorders are among the top 10 causes of death in children, with rates highest in the first year of life. Stroke mortality children younger than age 1 has remained the same over the las 40 years. (Neurology. 2006;67:1390-95.)

Transient Ischemic Attack (TIA) (A TIA is a mini-stroke that lasts less than 24 hours.)

The prevalence of transient ischemic attacks (TIA) increases with age. (Cerebrovasc Dis. 1996;6[suppl 1]:26-33.)

- About 15 percent of strokes are preceded by a TIA. (Cerebrovase Dis. 1996;6[suppl 1]:26-33.)
- About half of patients who experience a TIA fail to report it to their healthcare providers. (Neurology. 2003;60:1429-1434.)
After TIA, the 90 -day risk of stroke is 3 to 17.3 percent, highest within the first 30 days. (Stroke 2004:35:1842-6. Stroke 2005;36:720-3; BMJ. 2004;328:326; Neurology. 2003;60:1429-34.)

Within a year of TIA, up to a quarter of patients will die. (Neurology 2004:62:S20-S21, Stroke 2005,36:720-3)

People who have a TIA have a 10 -year stroke risk of 18.8 percent. (J Neurol Neurosurg Psychiatry.2003:74:577-80.)

(ICD/9 401-404) (ICD/10 I10-115)

Prevalence

- The estimated 2006 prevalence for high blood pressure (HBP) was $74,500,000$ ($35,700,000$ males, $38,800,000$ females). HBP is efined as:
untreated systoic pressure of 140 mm Hg or higher, or diastolic pressure of 90 mm Hg or higher or taking antihypertensive medicine
r being told at least twice by a physician or other heath professional that you have HBP. (NCHS/NHLBI. NHANES 2003-06.)
- One in three U.S. adults has HBP. (Hypertension. 2004;44:398-404.)
- A higher percentage of men than women have HBP until age 45 . From ages 45-54 and 55-64, the percentage of men and women is similar. After that, a much higher percentage of women have HBP than men. (Health, United States, 2007.)
- The prevalence of diagnosed and undiagnosed hypertension (from 1999 to 2002) was 78 percent for older women and 64 percent for older men. (NHANES/NCHS, 2007.)
- HBP is two to three times more common in women taking oral contraceptives, especially in obese and older women, than in women not taking them. (Hypertension. 2003:42:1206-1252.)
- According to the 2007 BRFSS study, the percentage of adults age 18 and older who had been told they had HBP ranged from 19.7 percent in Utah to 33.8 percent in Tennessee. The median percentage was 27.8 percent. (cdc.gov/brfss/index.htm)

Race/Ethnicity and HBP

- The prevalence of HBP in blacks in the United States is among he highest in the world, and it is increasing. From 1988-94 to 999-2002, the prevalence of HBP increased from 35.8 percent 041.4 percent among black adults, and it was particularly high among black women (44.0 percent). Prevalence among whites also increased, from 24.3 percent to 28.1 percent. (Arch Intern Med. 2005;165:2098-2104.)
- Compared with whites, blacks develop HBP earier in life and their average blood pressures are much higher. As a result, compared with whites, blacks have a 1.3 -times greater rate of nonfatal stroke, a 1.8 -times greater rate of fatal stroke, a 1.5 -times greater rate of heart disease death and a 4.2 -times greater rate of end-stag kidney disease. (JNC 5 and 6)
- Among blacks, rates of high blood pressure vary substantially Those with the highest rates are more likely to be middle-aged or der, less educate, overwigh or obese, physically nacive, and ave diabetes. (Arch

Some studies suggest that Hispanic Americans have rates of HBP that are similar to or lower than those of non-Hispanic whit Americans. According to In , 2002 , black Prchins were at ilighy greater nisk of

According to a CDC analysis of death certificate data from 1995 to 2002, among Hispanics, Puerto Rican Americans had the highest hypertension-related death rate among all Hispanic subpopulations (54.0) and Cuban Americans had the lowest (82.5). (MMWR Morb Mortal Wkly Rep. 2006;55:177-180.)

2006, HBP mortality was 56,561 (24,382 males, 32,179 females) HBP any mention mortality in 2006 was about 326,000 (see glossary for definition of "any mention mortality"). (NCHS and NHLBI)

- From 1996 to 2006, the age-adjusted death rate from HBP
 48.1 percent. (NCHS and NHLBI)
- The 2006 overall death rate from HBP was 17.8. Death rates were 5.6 for white males, 51.1 for black males, 14.3 for white females 37.7 for black females. (NCHS Compressed Mortality File: nderlying causes of death, 1979 to 2006; http://wonder.cdc. gov/ morsQL.htm|)

Aftermath

- About 69 percent of people who have a first heart attack, 77 percent who have a first stroke, and 74 percent with congestive heart failure have blood pressure higher than $140 / 90 \mathrm{~mm} \mathrm{Hg}$. (NHLBI unpublished estimates from ARIC, CHS and FHS Cohort and Offspring Studies.)
- Data from the NHLBI's Framingham Heart Study indicate that HBP is associated with shorter overall life expectancy as well as shorter life expectancy free of cardiovascular disease (CVD) and years longer for men with normal blood pressure and 4.9 years orser for women with normal blood pressure than in those with hypertension. (Hypertension 2005•46.280-286)

Awareness and Control

Data from NHANES 2003-06 showed that of those with hypertension age 20 and older, 77.6 percent were aware of their condition, 67.9 percent were under current treatment, 44.1 percent it under control and 55.9 percent did not have it controlled. (NCHS and NHLBI)

- Analysis of NHANES/NCHS data from 1999-2004 through 2005-06 revealed substantial increases in awareness and treatment of hypertension. Control rates increased in both sexes, non-Hispanic blacks and Mexican Americans. (NCHS. Hypertension Awareness, Treatment and Control: Continued Disparities in Adults, United States, 2005-06. NCHS Data Brief No. 3, 2008.)
- According to 2005-06 data from NCHS, blood pressure control rates were lower among Mexican Americans (35.2 percent) than non-Hispanic Whites (46.1 percent) and non-Hispanic blacks (46.5 percent). (NCHS Data Brief No. 3; 2008.)

Cost

The estimated direct and indirect cost of HBP for 2010 is $\$ 76.6$ billion.
"Prehypertension" is untreated systolic pressure of $120-139 \mathrm{~mm}$ Hg , or untreated diastolic pressure of $80-89 \mathrm{~mm} \mathrm{Hg}$, and not being told on two occasions by a doctor or other health professional that you have hypertension.

- Based on NHANES 2005-06 data, it is estimated that about 25 percent of the U.S. population age 20 and older has prehypertension, including $32,400,000$ men and $21,200,000$ women. Other published sources give a higher estimate - 37 ercent - based on different study inclusion criteria. (NCHS. Disparities in Adults, United States, 2005-06. NCHS Data Brief No. 3, 2008.)
- In a study of NHANES 1999-2000, people with prehypertension were 1.65 times more likely to have above-normal cholesterol evels, overweight/obesity or diabetes, than those with normal blood pressure levels. (Arch Intern Med. 2004;164:2113-2118.)

End-Stage Renal Disease (ESRD)

ESRD (also called end-stage kidney disease) is a condition that is mos commonly associated with diabetes and/or high blood pressure, and occurs when the kidneys can no longer function normally on their own.

- According to the U.S. Renal Data System, the 2006 prevalence of ESRD was 506,256. (U.S. Renal Data System. 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States.)
- According to data from the U.S. Renal Data System, in 2006: 10,854 new cases of ESRD were reported 87,654 patients died from ESRD.
-More than 18,000 kidney transplantations were performed.
- According to estimates of the U.S. Renal Data System, by 2020, more than 700,000 Americans will have ESRD or a requirement for chronic dialysis or kidney transplantation. (JAm Soc Nephrol 2005;16:3736-3741.)

Diabetes is the most common cause of ESRD, followed by hypertension and glomerulonephritis. From 1994 to 2004, these hree conditions accounted for 80 percent of all cas MMWR Morb Mortal Wkly Rep. 2007:56:253-256.

CVD is the leading cause of death for those with ESRD, and CVD mortality is five to 30 times higher in dialysis patients than in subjects from the general population. (Circulation. 2003:108:2154 2169: Am J Kidney Dis. 2006:48:392-401.)

- As of 2005 , the total annual cost of treating ESRD in the United States was about \$33 billion. (MMWR Morb Mortal Wkly Rep. 2008;57:309-12.)
ongenital cardiovascular defects, also known as congenital heart defects, are structural problems arising from abnormal formation of the heart or major blood vessels. Common complex defects include:
-tetralogy of Fallot (9-14 percent)
- transposition of the great arteries ($10-11$ percent)
- atrioventricular septal defects (4-10 percen)
- coarctation of the aorta (8-11 percent)
- hypoplastic left heart syndrome (4-8 percent)
-

Many close spontaneously, but VSDs still account for 14-16 percent of defects requiring an invasive procedure within the first year of life.

Prevalence

As of 2002, the prevalence of congenital cardiovascular disease adults in the United States was estimated to range from 650,000 to 1.3 million. (Am Heart J. 2004;147:425-439.)

- From 1940 to 2002, about 2 million patients with congenital cardiovascular defects were born in the United States. (Am Heart J. 2004:147:425-439.)
- Currently, no measured data are available to estimate the prevalence of congenital cardiovascular defects in U.S. adults.

Incidence

- Nine defects per 1,000 live births, or 36,000 infants, are expected per year in the United States. (Surgery of Congenital Heart Disease Pediatric Cardiac Care Consortium 1984-1995. Armonk NY. Futura Publishing Co; 1998:20.)

Some studies suggest that as many as 5 percent of newborns, or 200,000 per year, are born with tiny muscular ventricular septal defects, almost all of which close spontaneously. These defects nearly never require treatment. (J Am Coll Cardiol. 1995;26:15451548; Arch Dis Child Fetal Neonatal Ed. 1999;81:F61-F63.)

Mortality

- In 2006, mortality from congenital cardiovascular defects was 3,531 In 2006, any mention mortality (see glossary for definition of "any mention mortality") from congenital cardiovascular defects was 6,883
- Congenital cardiovascular defects are the most common cause of infant death from birth defects; more than 29 percent of infants whi die from a birth defect have a heart defect. (NVSS Final Data for 2005.)
- The 2006 death rate for congenital cardiovascular defects was 1.2 Death rates were 1.3 for white males, 1.3 for black males, 1.0

(ICD/9 745-747) (ICD/10 Q20-Q28)
 (ICD/9 745-74) (ICD/10 Q20-

for white females and 1.7 for black females. Crude infant death ates (under 1 year) were 36.5 for white infants and 52.5 for black infants. (Centers for Disease Control and Prevention. Compressed Mortality File: Underlying Cause of Death, 1979-2006; http:// wonder.cdc.gov/mortSQL.htmI)

- In 2005, 192,000 life-years were lost before age 55 due to deaths from congenital cardiovascular defects. This is more than the life years lost from leukemia, prostate cancer and Alzheimer's disease combined. (Centers for Disease Control and Prevention. Compresse Mortality File: Underlying Cause of Death, 1979-2005; http:// wonder.cdc.gov/mortSQL.htm)
- From 1996-2006, death rates for congenital cardiovascular defects declined 33.3 percent, while the actual number of deaths declined 26.7 percent. (Centers for Disease Control and Prevention Compressed Mortality File: Underlying Cause of Death, 1979-2006 http://wonder.cdc.gov/mortSQL.htmI)

Congenital Cardiovascular Defects

	Estimated Prevalence All Alges	Mortaily 2006	Hiscrital Disharges 2006 All Ages
Population Group			

Hospitalizations/Cost

- In 2004, hospital costs for these conditions were $\$ 2.6$ billion. Healthcare Cost and Utilization Project [HCUP] Statistical Brief \#24: Hospitalizations for Birth Defects, 2004. Rockville, Md.: Agency for Healthcare Research and Quality, 2007.)
- According to 2003 data from the Heathcare Cost and Utilization Project 2003 Kids' Inpatient Database, the most expensive average neonatal hospital charges were for hypoplastic left heart (\$199,597) and common truncus arteriosus ($\$ 192,781$). Coarctation of the aorta and transposition of the great arteries were also associated with cosis above \$150,000. (MMWR Morb Mortal Wkly Rep. 2007;56:25-29.)

7
 Heart Failure

(ICD/9 428) (ICD/10 I50)

Prevalence

- The estimated 2006 prevalence of heart failure (HF) in adults age 20 and older: $5,800,000$ ($3,100,000$ males, $2,700,000$ females) (NHANES 2003-06, NCHS and NHLBI.)

Incidence

- Data from the NHLBI's Framingham Heart Study indicate that (Circulation. 2002;106:3068-3072).

Heart failure (HF) incidence approaches 10 per 1,000 population after age 65.
Seventy-five percent of HF cases have antecedent hypertension. women is one in five.
At age 40 , the lifetime risk of $H F$ occurring without antecedent heart attack is one in nine for men and one in six for women. The lifetime risk doubles for people with blood pressure (BP greater han than $140 / 90 \mathrm{~mm} \mathrm{Hg}$.

- A study conducted in Olmsted County, Minnesota, showed that the incidence of HF (ICD9/428) has not declined during two decades, but survival after onset has increased overall, with less improvement among women and elderly persons. (JAMA. 2004;292:344-350.)
- The annual rates per 1,000 population of new HF events for white men are 15.2 for those 65 to 74 years of age, 31.7 for those 75 to 84 years of age, and 65.2 for those 85 years of age and older. For 456 respectively. For black men, the rates are 16.9 . 255 , 19 , and 50. and for respectively. (*Estimate may be unreliable.) (CHS, NHLBI)

Risk Factors

- Data from the Framingham Heart Study indicate that hypertension is a very common risk factor for HF that has contributed to a larg roportion of heart failure cases among the study's participants, followed closely by antecedent MI. (JAMA. 1996;275:1557-1562.)
- A study of the predictors of HF among postmenopausal women with coronary heart disease found that diabetes was the strongest risk coronary heart disease found that diabetes
-The prevalence of diabetes is increasing among older persons with HF, and diabetes is a significant independent risk factor for death in these individuals. Mayo Clinic researchers found that the odds of having diabetes for those first diagnosed with HF in 1999 was nearly four times higher than for those diagnosed 20 years earlier (Am J Med. 2006;119:591-599.)

Mortality

2006, HF any mention mortality was 282,754 (see glossary for definition of "any mention mortality"). HF was listed as the underlying cause (see glossary for definition of "underlying cause") in 60,337 of hose deaths. (NCHS and NHLBI)

- Based on follow-up of the NHLBl's Framingham Heart Study origina and offspring cohort:
- The one-year mortality rate for HF is high, with one in five dyying. After HF is diagnosed, survival is poorer in men than in women: 59 percent of men and 45 percent of women will die within five years.
- The 2006 overall any mention death rate for HF was 89.2 per 100,000 population. Any mention death rates were 103.7 for white males, 105.9 for black males, 80.3 for white females and 84.4 for black females. (NCHS and NHLBI)

Hospital Discharges

- Hospital discharges for HF rose from 877,000 in 1996 to $1,106,00$ in 2006. (NHDS 2006, NCHS.)

Cost

- The estimated direct and indirect cost of HF in the United States for 2010 is $\$ 39.2$ billion.

Peripheral arterial disease (PAD) affects about 8 million Americans and is associated with significant morbidity and mortality (JAMA. 2001;286:1317-1324.)

- PAD prevalence increases dramatically with age and disproportionately affects blacks. (Circulation. 2004;110:738-743.)
- Most studies suggest that PAD prevalence is similar between men and women. (J Vasc Surg. 2007: Suppl S:S5-S67.)
- PAD affects 12 to 20 percent of Americans age 65 and older. (J Am Geriatr Soc. 2007;55:583-589.) Despite its prevalence and ardiovascular risk implications, only 20 to 30 percent of PAD patients are undergoing treatment. (JAMA. 2006•295:180-189.)
- In the general population, only about 10 percent of persons with PAD have the classic symptom of intermittent claudication (intermittent leg pain). About 40 percent do not complain of leg pain, while the remaining 50 percent have a variety of leg symptoms different from classic claudication. (JAMA. 2001;286:1317-1324; JAMA. 2001;286:1599-1606.) However, in an older, disabled population of women, as many as two-thirds of individuals with PAD had no eg symptoms associated with exercise or exertion. (Circulation. 2000;101:1007-1012.)
- Intermittent claudication is present in less than 1 percent of individual under age 50 and approximately 5 percent or more in those ove age 80. (Circulation. 2006 Mar 21;113[11]:e463-e654.)
- The risk factors for PAD are similar but not identical to those for coronary heart disease, although diabetes and cigarette smoking are particularly strong risk factors for PAD. (Circulation. 2006 Mar 21;113(11):e463-654.)
- Persons with PAD have impaired function and quality of life. This is true even for persons who do not report leg symptoms. Furthermor PAD patients, including those who are asymptomatic, experience ignificant decline in lower extremity functioning over time. (A Intern Med. 2002;136:873-883; JAMA. 2004;292:453-461.
- High blood levels of lead and cadmium may increase the risk of PAD, according to data from the NHANES 1999-2000 of the . moke The risk was 2.8 for high levels of cadmium and 2.9 for high levels of lead The odds ratio of PAD for current smokers was 13 compared to people who had never smoked. (Circulation 2004;109:3196-3201.
- The prevalence of PAD in persons of Hispanic origin is similar to or slightly higher than in Caucasians, according to available evidence. (Circulation. 2005;112:2703-2707; Am J Prev Med. 2007;32:328-333.
- Among patients with PAD, higher levels of daily physical activity re associated with better overall survival, a lower risk of death from cardiovascular disease and slower rates of functional decline. (Circulation. 2006;114:242-248; Circulation. 2009;119:251-256.)
- In a telephone survey of more than 2,500 adults age 50 and older 26 percent of respondents said they were familiar with PAD. Of these respondents, half were not aware that diabetes and smoking ncrease the risk of PAD. One in four knew that PAD is associated with increased risk of heart attack and stroke. Awareness levels come and education levels. (Circulation. 2007;116:2086-2094.)

9
 Risk Factors

Physical Inactivity

Prevalence

Youth

- According to the 2007 YRBS survey of students in grades 9-12, 31.8 percent of females and 18 percent of males did not engage the minutes of moderate-to-vigorous physical activity even once so daily) (MWWR Survill Sum 2008. 57:1 131) do so daily). (MMWR Surveill Summ. 2008; 57:1-131.) anic (35:2 percen) feral compard with whicent) and pared with white females (28.2 percent).
61.5 percent of children ages 9-13 don't participate in any organized physical activity during their nonschool hours, and 22.6 ercent don't engage in any free-time physical activity, according 02002 data from the Youth Media Campaign Longitudinal Study (YMCLS) of the CDC. Non-Hispanic black and Hispanic children are significantly less likely than non-Hispanic white children to report involvement in organized activities, as are children with parents who have lower incomes and education levels. (MMWR Morb Mortal Wkly Rep. 2003;52:785-8.)
- By the age of 16 or 17,31 percent of white girls and 56 percent of black girls report no habitual leisure-time activity. (N Engl J Med. 2002;347:709-15.)
- Lower levels of parental education are associated with greater decline in activity for white girls at both younger and older ages For black girls, this association is seen only at the older ages. - Cigarette smoking is associated with decline in activity among white girls. Pregnancy is associated wecline in activity among black girls but not among white girls.
ater decline in activity among girls of both races.
- According to the 2007 YRBS survey of students in grades 9-12, more than one-fourth of all students spent three or more hours er day using computers outside of school time (24.9 percent) or said they met current recommendations for physical activity (43.7 percent of males and 25.6 percent of females). (MMWR Surveill Summ. 2008;57:1-131.)

Adults

- The 2008 prevalence of regular leisure-time physical activity among adults age 18 and older is 32.5 percent (males, 34.8 percent, females, 30.6 percent). (National Health Interview Survey, 2008.)
- According to 2007 BRFSS/CDC data, 64.5 percent of adults age 18 and older (68.9 percent of men and 60.4 percent of women) engage in 30 or more minutes of moderate physical activity five or more days per week, or engage in more than 20 minutes of vigorous physical activity three or more days per week. (Behavioral Risk Factor Surveillance System. Prevalence and trends data, physical activity, 2007.)
- In 2005, 10.3 percent of adults reported no vigorous-to-moderate physical activity in leisure time, as part of their job or for transportation Barnes P. Centers for Disease Control and Prevention. Physical activity among adults: United States, 2000 and 2005.)

Physical Activity

and Coronary Heart Prevention

- The relative risk of coronary heart disease associated with physical inactivity ranges from 1.5-2.4, an increase in risk comparable to that observed for high blood cholesterol, high blood pressure or cigarette smoking. (JAMA. 1995;273:402-407.)
- A study of over 72,000 female nurses indicates that moderateintensity physical activity, such as walking, is associated with a substantial reduction in risk of total and ischemic stroke. (JAMA. 2000;283:2961-2967.)
- Physical inactivity is responsible for 12.2 percent of the global burden of heart attack after accounting for other cardiovascular risk factors. (Lancet. 2004;364:937-52.)States, 2007.)

Smoking

Prevalence
Youth

- In 2007, in grades 9-12, 21.3 percent of male students and 18.7 percent of female students reported current tobacco use, 19.4 percent of males and 76 percent of females reported current cigar use, and 13.4 percent of males and 2.3 percent of females reported current smokeless tobacco use. (MMWR Surveill Summ 2008;57:1-131.)
- From 1980 to 2007, the percentage of high school seniors who smoked in the past month decreased 29.2 percent. This percentage decreased by 13.8 percent in males, 41.3 percent in females, 18.7 percent in whites and 57.9 percent in blacks. (NCHS; Health, United States, 2008.)
- Among youths ages 12-17 in 2007, 3.1 million (12.4 percent) used a tobacco product in the past month, and 2.5 million (9.8 percent) used cigarettes. The rate of cigarette use in the past month declined from 13.0 percent in 2002 to 9.8 percent in 2007. (Results from the 2007 National Survey on Drug Use and Health: National Findings. stance Abuse and Mental Health Services
Administration, 2008.)

Results from the 2008 Monitoring the Future survey of the NH showed a considerable drop in "ever use" of cigarettes among eighth graders. From 1991 to 2008, it dropped from 44 percent to 20.5 percent. (National Institute on Drug Abuse. Monitoring the Future Study, 2009.)

- Data from the YRBS among high school students indicate that (YRBS: National Trends in Risk Behaviors; www.cdc.gov ealthyYouth/yrbs/trends. htm .
The percentage of students ever trying cigarettes declined from 70.4 percent in 1999 to 50.3 percent in 2007.
0.4 percent in 1097 to 20 in the prior 30 days declined from .4 per 20 percent in 2007.
The perd fro 16.8 pered 109 least 20 of the prior 30 day The percentage of current tobacco users (cigarettes, cigars, smokeless tobacco) declined from 43.5 percent in 1997 to 25.7 declined from 43.5 percent in 1997 to 25.7 percent in 2007

Adults

- In 2008, the prevalence for smoking (age 18+) was 46,000,000 ($24,800,000$ males; $21,100,000$ females). This represents 20.6 percent of the adult population. (NCHS)
- From 1965 to 2007, smoking in the United States declined by 50.4 percent among people age 18 and older. (NCHS)
- In 2008, among Americans age 18 and older, 23.1 percent of men and 18.3 percent of women were cigarette smokers, putting them a increased risk of heart attack and stroke. (National Health Interview Survey, 2008.)
- Use of any tobacco product in 2006 by people age 12 and older was 31.4 percent for non-Hispanic whites only, 29.1 percent for non-Hispanic blacks only, 42.3 percent for non-Hispanic American Indians or Alaska Natives only, 16.0 percent for non-Hispanic Asians only and 24.4 percent for Hispanics or Latinos of any race. (Health, United States, 2008.)
- BRFSS/CDC 2008 data showed that among adults age 18 and older he median percentage of current smokers among the states was 18.3 percent. The highest percentage was in West Virginia (26.5 percent), and the lowest was in Utah (9.3 percent). (Centers for isease Control and Prevention. Prevalence and trends data, tobacco use.Behavioral Risk Factor Surveillance System Survey, 2009.)

Incidence

- In 2007, about 2.2 million people age 12 or older smoked cigarette for the first time. This averages out to about 6,100 new smokers every day. Most new smokers (59.7 percent) were under age 18 when they first smoked cigarettes. (Results from the 2007 Nationa

- Data from 2002 to 2004 suggest that about one in five nonsmokers ages 12 to 17 is likely to start smoking. (MMWR Morb Mortal Wkly Rep. 2006;55:1275-1277.)
- From 2000 to 2004 , cigarette smoking resulted in an estimated 443,000 premature deaths each year from smoking-related illnesses, and about 49,000 of those deaths was from secondhand smoke. (MMWR Morb Mortal Wkly Rep. 2008;57:1226-1228.)
- On average, male smokers die 13.2 years earlier than male nonsmokers and female smokers die 14.5 years earlier than female nonsmokers. (The Health Consequences of Smoking: A Report of the Surgeon General, 2004. www.cdc.gov/tobacco/sgr/sgr 2004/index. htm)
- Each year from 2000 to 2004 , smoking caused 3.1 million years of potential ife lost for men and 2.0 million years for women; smoking during pregnancy resulted in an estimated 776 infant deaths annually. (MMWR Morb Mortal Wkly Rep. 2008;57:1226-1228.)
- Cigarette smoking results in a two-to-three-fold risk of dying from CHD. (Tobacco-Related Mortality, Fact Sheet. www.cdc.gov/tobacco.)

Source: MMWR Morb Mortal WKly Rep.2007;56:1157-61.

Secondhand Smoke

- Data from The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General (2006) indicate - Nonsmokers exposed to secondhand smoke at home or at work increase their risk of heart disease by 25 to 30 percent.
-Almost 60 percent of children ages 3-11 (almost 22 million) are exposed to secondhand smoke.
-Short exposures to secondhand smoke can cause blood platelets to become stickier, damage the lining of the blood vessels and decrease coronary flow velocity, potentially increasing the risk of heart attack.

Aftermath

- Information from the "CDC Health Effects of Cigarette Smoking Fac Sheet" (Updated January 2008):
- Cigarette smokers are two to four times more likely to develop coronary heart disease than nonsmokers.
- Cigarette smoking approximately doubles a person's risk for stroke.
- Cigarette smokers are more than 10 times as likely as nonsmokers to develop peripheral vascular disease.

Cost

- Direct medical costs ($\$ 96$ billion) and lost productivity costs associated with smoking (\$97 billion) total an estimated \$193 billion per year. (CDC. Smoking and tobacco use: fast facts.)
- Healthcare costs associated with exposure to secondhand smoke average $\$ 10$ billion annually. (CDC. Smoking and tobacco use: fast facts.)

High Blood Cholesterol and Other Lipids

Prevalence

Youth

- Among children ages 4 to 11 , the mean total blood cholesterol level is $165.1 \mathrm{mg} / \mathrm{dL}$. For boys, it is $164.6 \mathrm{mg} / \mathrm{dL}$; for girls, it is $165.6 \mathrm{mg} / \mathrm{dL}$. (NHANES 2003-06)

Among adolescents ages 12 to 19 , the mean total blood cholestero level is $161.1 \mathrm{mg} / \mathrm{dL}$. For boys, it is $157.5 \mathrm{mg} / \mathrm{dL}$; for girls, it is $164.8 \mathrm{mg} / \mathrm{dL}$. (NHANES 2003-06)

- About 10.2 percent of adolescents ages 12-19 have total cholesterol levels exceeding $200 \mathrm{mg} / \mathrm{dL}$. (NHANES 2003-06) Adults
- The 2006 prevalence of total cholesterol (in adults age 20 and older) at or above $200 \mathrm{mg} / \mathrm{dL}$ was $102,200,000$ ($47,700,000$ males; $54,500,000$ females). This represents about 46.8 percent of the adult population. (NHANES 2003-06)
- The 2006 prevalence of total cholesterol (in adults age 20 and older) at or above $240 \mathrm{mg} / \mathrm{dL}$ was $35,700,000$ ($15,900,000$ males; $19,700,000$ females). This represents about 16.2 percent of the adult population. (NHANES 2003-06)
- According to data from NHANES 2005-06, between 1999-2000 and 2005-06, mean serum total cholesterol levels in adults age 20 and older declined from $204 \mathrm{mg} / \mathrm{dL}$ to $199 \mathrm{mg} / \mathrm{dL}$. (NCHS Data Brief No. 2. December 2007.)
- A 10 percent decrease in total cholesterol levels (population-wide) may result in an estimated 30 percent reduction in the incidence of CHD. (MMWR Morb Mortal Wkly Rep. 2000;49[33]:750-5.)
- 2007 data from the BRFSS survey showed that overall, 37.6 percent (median) of adults had been told that they had high blood cholesterol. The highest percentage was in West Virginia (42.4 percent) and the lowest was in Minnesota (32.4 percent). (www.cd gov/brfss/)

Adherence

Based on data from the Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: (Circulation. 2002;106:3143-3421.)

- Less than half of persons who qualify for any kind of lipidmodifying treatment for coronary heart disease (CHD) risk reduction are receiving it.
- Less than half of even the highest-risk persons, those with symptomatic CHD, are receiving lipid-lowering treatment. Only about a third of treated patients are achieving their LDL goal less than 20 percent of CHD patients are at their LDL goal

_DL (Bad) Cholesterol Levels

Youth

- Among adolescents ages $12-19$, the mean LDL cholesterol level is . $2 \mathrm{mg} / \mathrm{dL}$ For boys it is $87.5 \mathrm{mg} / \mathrm{dL}$ and for gis it is 00.9 moll (NHANES 2003-06)

Adults

The 2006 prevalence (in adults age 20 and older) of LDL cholestero $130 \mathrm{mg} / \mathrm{dL}$ or higher was $71,200,000$ ($34,900,000$ males; $36,300,000$ females). This represents about 32.6 percent of the adult population. (NHANES 2003-06)

- The mean level of LDL cholesterol for American adults age 20 and older is $115 \mathrm{mg} / \mathrm{dL}$. Levels of $130-159 \mathrm{mg} / \mathrm{dL}$ are considered borderline high. Levels of $160-189 \mathrm{mg} / \mathrm{dL}$ are classified as high, and levels of $190 \mathrm{mg} / \mathrm{dL}$ and higher are very high. (NHANES 2003-06)

HDL (Good) Cholesterol Levels
Youth

- Among children and adolescents ages $4-11$, the mean HDL cholesterol level is $55.7 \mathrm{mg} / \mathrm{dL}$. For boys, it is $56.7 \mathrm{mg} / \mathrm{dL}$ and for girls, it is $54.7 \mathrm{mg} / \mathrm{dL}$. (NHANES 2003-06)
- Among adolescents ages $12-19$, the mean HDL cholesterol level is $52.4 \mathrm{mg} / \mathrm{dL}$. For boys, it is $49.4 \mathrm{mg} / \mathrm{dL}$ and for girls, it is $55.6 \mathrm{mg} / \mathrm{dL}$. (NHANES 2003-06)

Adults

- The 2006 prevalence (in adults age 20 and older) of HDL cholestero less than $40 \mathrm{mg} / \mathrm{dL}$ was $35,100,000(26,400,000$ males; $8,700,000$ females). This represents about 16.2 percent of the adult population (NHANES 2003-06)
-The mean level of HDL cholesterol for American adults age 20 and older is $54.3 \mathrm{mg} / \mathrm{dL}$. (NHANES 2003-06)

Triglyceride Levels

Youth

- Among adolescents ages $12-19$, the mean triglyceride level is 92.4 $\mathrm{mg} / \mathrm{dL}$. For boys it is $92.4 \mathrm{mg} / \mathrm{dl}$ and for girls it is $92.4 \mathrm{mg} / \mathrm{dL}$. (NHANES 2003-06)

Adults

- The mean triglyceride level for American adults age 18 and older is $144.2 \mathrm{mg} / \mathrm{dL}$ (men, $156.5 \mathrm{mg} / \mathrm{dL}$; women, $132.1 \mathrm{mg} / \mathrm{dL}$) (NHANES 2003-06)

Prevalence

Youth

- Nearly 10 million children and adolescents ages $6-19$ are considered overweight, based on the 95th percentile or higher of BMI-for-age values in the 2000 CDC growth chart for the United States. (NHANES [2003-06], NCHS)
- Based on data from NHANES, the prevalence of overweight (BMI at or above the 95th percentile of the CDC growth charts) in children ages $6-11$ increased from 4.0 percent in $1971-74$ to 17.0 percent 2003-06. The prevalence of overweight in adolescents ages
 States, 2008, NCHS; JAMA. 2008:299:2401-5.

In 2003-06, just over 12 percent of preschool children ages 2-5 were overweight. (JAMA. 2008;299:2401-5.)

Among preschool children, the following were overweight 107 percent of non-Hispanic whites, 14.9 percent of non-Hispanic blacks and 16.7 percent of Mexican Americans.
-Among children ages $6-11$, the following are overweight: 15.0 percent of non-Hispanic whites, 21.3 percent of non-Hispanic blacks and 23.8 percent of Mexican Americans.
Among adolescents ages 12-19, the following are overweight: . 0 prcent of non-Hispanic whites, 22.9 percent of non-Hispanic blacks and 21.1 percent of Mexican Americans.

- Overweight adolescents have a 70 percent chance of becoming overweight adults. This increases to 80 percent if one or both parents are overweight or obese. (www.surgeongeneral.gov/topics/ obesity/calltoaction/fact_adolescents.htm)
- Data from the CDC's YRBS 2007 survey showed that the prevalenc of being overweight was higher among non-Hispanic black (19.0 percent) and Hispanic (18.1 percent) than non-Hispanic white (14.3 percent) high school students; higher among non-Hispanic black emale (21.4 percent) and Hispanic female (17.9 percent) than on-Hispanic white female (12.8 percent) high school students; and
 high school students. (CDC. YRBS Survey 2007.)
- On the basis of 2003 to 2006 data from NHANES (NCHS), the prevalence of overweight and obesity in children 2 to 5 years of age, based on a BMI-for-age value at or above the 85th percentile of the 2000 CDC growth charts, was 25.4% for non-Hispanic white boys and 20.9% for non-Hispanic white girls, 23.2% for non-Hispanic black boys and 26.4% for non-Hispanic black girls, and 32.4% for Mexican American boys and 27.3% for Mexican American girls. In children 6 to 11 years of age, the prevalence was 31.7% for n-Hispanic white boys and 31.5% for non-Hispanic white girls, 3.8% for non-Hispanic black boys and 40.1% for non-Hispanic ack girls, and 47.1\% for Mexican American boys and 38.1\% for Mexican American girls. In children 12 to 19 years of age, the prevalence was 34.5% for non-Hispanic white boys and 31.7%

Hon-Hispanic white girs, 32.1\% for non-Hispanic black boys and 44.5% for non-Hispanic black girls, and 40.5% for Mexican American boys and 37.1% for Mexican American girls. (JAMA. 2008;299:2401-2405.)

Adults

- In 2006, an estimated 144,100,000 U.S. adults (age 20 and older) were overweight or obese ($75,500,000$ males; $68,6000,000$ females.) This represents 66.3 percent of the adult population (NHANES 2003-06.)
- In 2006, an estimated 71,600,000 U.S. adults (age 20 and older) were obese ($33,600,000$ males; $38,000,000$ females). This represent about 32.9 percent of the adult population.(NHANES 2003-06.)
- According to 2008 data from the BRFSS/CDC survey based on self reported height and weight, 26.6 percent (median) of adutts were obese. The highest prevalence of obesity was in Mississippi (33.3 percent) and the lowest was in Colorado (19.1 percent). (BRFSS, CDC, 2008; MMWR Morb Mortal Wkly Rep. 2008;57:765-768.)

The WHO estimates that by 2015, the number of overweight people worldwide will increase to 2.3 billion, and more than 700 million will be obese. In 2005, at least 20 million children worldwide under age 5 were overweight. (WHO. Obesity and Overweight. Fact Sheet No. 311. www.who.int/mediacentre/factsheets//s311/en/print.html)

Cost

- According to one study, annual medical spending on overweight and obesity could be as high as $\$ 147$ billion in 2008 dollars, which would represent almost 10 percent of U.S. health expenditures. (Health Aff [Millwood]. 2009;28:w822-w831.)

Diabetes Mellitus (ICD/9 250) (ICD/10 E10-E14)

Prevalence

Youth

- About 186,000 people under age 20 have diabetes. Each yea about 15,000 people under 20 are diagnosed with type 1 diabetes. Healthcare providers are finding more and more children with ype 2 diabetes, a disease usually diagnosed in adults age 40 type 2 diabetes, a disease usually diagnosed in adults age 40 overweight or obese and have a family history of diabetes. Most are merican Indian, black, Asian, or Hispanic/Latino. (Diabetes Care 2009;32[Suppl 2]:5133-5140.)

Among adolescents ages 10-19 diagnosed with diabetes, 57.8 percent of blacks were diagnosed with type 2 versus type 1 diabetes, compared with 46.1 percent of Hispanic and 14.9 percent of Caucasian youth. (JAMA. 2007;297:2716-24.)

Adults

- The 2006 prevalence (among adults age 20 and older) of physiciandiagnosed diabetes was 17,200,000 (7,900,000 males; 9,300,000 females). This represents about 7.7 percent of the adult population. (NHANES 2003-06.)
- The 2006 prevalence (among adults age 20 and older) of undiagnosed diabetes was $6,100,000$ ($3,800,000$ males; $2,300,000$ females). This represents about 2.8 percent of the adult population. (NHANES 2003-06.)
- The 2006 prevalence (among adults age 20 and older) of prediabetes was $63,200,000$ ($37,500,000$ males; 25,700,000 emales). This represents about 290 percent of the adult population. (NHANES 2003-06.)
- Based on projections from NHANES/NCHS studies between 1984 and 2004, the total prevalence of diabetes in the United States is xpected to more than double from 2005 to 2050 (from 5.6 percent 12.0 percent) in all age, sex and race/ethnicity groups. (Diabetes Care. 2006;29:2114-6.)

The prevalence of diabetes for all age groups, worldwide, was estimated to be 2.8 percent in 2000 and a projected 4.4 percent in 2030. The total number of people worldwide with diabetes is亚ected to rise from 171 miliion in 2000 to 366 million in 2030 Diabetes Care. 2006;27:1047-53.)

- Type 2 diabetes accounts for 90 to 95 percent of all diagnosed cases of diabetes. (diabetes.nidak.nih.gov/dm/pubs/statistics/index.htm)

Incidence

Data from the FHS indicate a doubling in the incidence of diabete over the past 30 years, and most dramatically during the 1990s. FHS participants who attended a routine examination in the 1970s, 1980s, or 1990s were followed up for the eight-year incidence of diabetes across decades for participants $40-55$ years of age in eac decade. The age-adjusted eight-year incidence rate of diabetes was 2.0 percent, 3.0 percent and 3.7 percent among women and 1080s and 1900s, respetively. (Circtation 2000:113:2914-2018,

- In 2006, a total of $1,600,000$ new cases of diabetes were diagnosed in people age 20 and older. (National Institute of Diabetes and in people age 20 and older. National Institute of Diabetes and Sheet: General Information and National Estimates on Diabetes in the United States, 2007.)

Mortality

- Diabetes mortality in 2006 was 72,449 . Any mention mortality (see glossary for definition of "any mention mortality") in 2006 was 231,000. (NCHS and NHLBI
-The 2006 overall death rate from diabetes was 23.3. Death rate (per 100,000 persons) were 25.4 for white males, 49.7 for black males, 17.9 for white females and 41.6 for black females. (Deaths. final data for 2006. Natl Vital Stat Rep. 2009;57. Available at: http:// www.cdc.gov/nchs/data/nvsr/hvsr57/hvsr57_14.pdf.)
- At least 65 percent of people with diabetes mellitus die of some form of heart disease or stroke. (NIDDK/NIH)
- Heart disease death rates among adults with diabetes are two to four times higher than the rates for adults without diabetes. (diabetes.niddk.nih.gov)

Awareness

- The NIDDK estimates that 20.8 million Americans have diabetes and that about 30 percent are unaware they have it. (NIDDK. National Diabetes Statistics Fact Sheet. General Information and Nationa Estimates on Diabetes in the United States, 2005.)

Cost

- In 2007, the direct (\$116 biliion) and indirect (\$58 biliion) cost attributable to diabetes was $\$ 174$ billion. (NIDDK. National Diabetes Statistics, 2007 Fact Sheet.)

Trends in Prevalence of Overweight Among U.S. Children and Adolescents by Age and Survey
NHANES: 1976-80, 1988-94 and 2003-06

Source: Health, United States, 2008:
With Speecial Focus on Young Adults. (NCHS)

1 - Metabolic Syndrome

- The term "metabolic syndrome" refers to a cluster of risk factor associated with cardiovascular disease (CVD) and type 2 diabetes. Several different definitions for metabolic syndrome (MetS) are nuse; in the United States, the National Cholesterol Education Program's (NCEP) ATP III definition and its two subsequent revisions have been the most commonly used. By this definition, MetS is diagnosed when three or more of the following five risk factors are present: (Circulation 2005. 112;2375-2752.)
- Fasting plasma glucose of $100 \mathrm{mg} / \mathrm{dL}$ or higher or undergoing treatment for elevated glucose
- HDL cholesterol below $40 \mathrm{mg} / \mathrm{dL}$ in men or below $50 \mathrm{mg} / \mathrm{dL}$ in women or undergoing treatment for reduced HDL cholesterol Triglycerides of $150 \mathrm{mg} / \mathrm{dL}$ or higher or undergoing treatment for elevated triglycerides
-Waist circumference of 102 cm or higher in men or 88 cm or higher in women
- Systolic blood pressure of 130 mm Hg or higher, or diastolic pressure of 85 mm Hg or higher, or drug treatment for hypertension, or antihypertensive drug treatment in a patient with a history of hypertension
- Based on NHANES 2003-06 data, about 34 percent of adults age 20 and older met the criteria for MetS (35.1 percent for men and 32.6 percent for women). (NCHS/NHSR No. 13)
- Based on NHANES 1999-2002 data, the prevalence of MetS in adolescents ages 12-19 was 9.4 percent, representing about 2.9 mililion persons. The prevalence was 1.2 percent in males and 5.3 percent in females; 10.7 percent in whites, 5.2 percent in blacks and 11.1 percent in Mexican Americans. (J Pediatr. 2008;152:165-70.)
- Among overweight or obese adolescents (based on NHANES 19992002 data), 44 percent had MetS. (J Pediatr. 2008;152:165-70.)

Food and Nutrition

Adults

According to data from NHANES 2005-06:

- Average consumption of whole grains by white and black men and women was between 0.5 and 0.7 servings per day, with only 3 to 5 percent of white and black adults consuming three or more servings per day. Average whole grain consumption by Mexican Americans was about two servings per day, with 22 to 28 percent consuming three or more servings per day.
- Average fruit consumption ranged from 1.1 to 1.8 servings per day among white, black and Mexican-American adults. Eight to 11 percica wies, 6 to erican 100 prcent fruit juices wero included servins When 100 percent fruit jui approximately doubled.
- Average vegetable consumption ranged from 1.2 to 2.1 servings per day. Eleven to 14 percent of whites, 5 to 10 percent of blacks and 3 to 5 percent of Mexican American adults consumed five or mor ervings per day. Including vegetable juices and sauces had little effect on these consumption patterns.
- Average consumption of nuts, legumes and seeds was about two servings per week among black women, black men and white women, three servings per week among white men, and six and eight servings per week among Mexican-American women and men, respectively. About 18 percent of whites, 14 to 17 percent of blacks and 38 to 46 percent of Mexican Americans consumed four or more servings per week
- Average consumption of processed meats was lowest among Mexican-American women (1.5 servings per week) and highest among black men (3.7 servings per week). Between 40 percent (Mexican-American women) and 68 percent (black men) of adults consumed one or more servings per week.
- Average consumption of sugar-sweetened beverages ranges from about six servings per week among white women to 18 servings per week among Mexican-American men. About 51 and 32 percent of white men and women, 76 and 66 percent of black men and women, and 78 and 61 percent of Mexican-American men and women, respectively, consumed 36 or more ounces (4.5 eightounce servings) per week.
- Average consumption of sweets and bakery desserts ranged from about four servings per day (Mexican-American men) to eight servings per day (white men). About two-thirds of white and black men and women and half of Mexican-American men and women consumed 25 or more servings per week

Children and Adolescents

Based on data from NHANES 2005-06:

Average whole grain consumption was low, ranging from 0.4 to 0.5 servings a day

- Fruit consumption was low: 1.3 to 1.5 servings a day among children ages 5 to $9,1.3$ servings a day among children ages to to 14 , and 0.8 servings a day among adolescents ages 15 to 19 . When 100 percent fruit juices were included, servings approximately doubled or tripled.
- Average vegetable consumption was low: 0.8 to 0.9 servings a day, with only 2 percent of children in any age or sex subgroup consuming five or more servings a day.
- Average consumption of nuts, legumes and seeds ranged from 1.0 to 1.2 servings per week among adolescents ages 15 to 19 to 1.4 to 1.7 servings per week at younger ages.
- Average consumption of processed meats ranged from 2.1 to 3. servings a week.
- Average consumption of sugar-sweetened beverages was about eight servings per week in children ages 5 to 9,11 to 14 servings in children ages 10 to 14 , and 15 to 23 servings in adolescents ages 15 to 19
- Average consumption of sweets and bakery desserts was about 10 servings per week in children ages 5 to 9 and 10 to 14 , and six to nine servings in adolescents ages 15 to 19 .

Dietary Patterns/Dietary Supplements/ Energy Balance

- In 1999-2004, only 19.4 percent of hypertensive U.S. adults were following a DASH-type diet, a decrease from 26.7 percent of hypertensive adults in 1988-94. (Arch Intern Med. 2008;168:308-314.)
- NHANES data indicate that between 1971 and 2004, average total energy consumption increased by 22 percent in women (from 1,542 to 1,886 calories per day) and 10 percent in men (from 2,450 to 2,693 calories per day). These increases are largely attributable to greater average carbohydrate intake, particularly of starches, refined grains and sugars. (JAMA. 2003;289:450-453.)
- In 2001-04, about half (53 percent) of U.S. adults used dietary supplements, with the most common supplement being multivitamins or multiminerals (67 percent of supplement users). (Am J Epidemiol. 2004;160:339-34; Health, United States, 2008.)
- Multiple trials of most dietary supplements, including folate, vitamia C , and vitamin E , have generally shown no significant effect on cardiovascular risk The major exceptions are long-chain omega-3 fatty acids, for which three large randomized, controlled trials have shown significant reductions in risk of cardiovascular disease event when taken at doses of 1 to $2 \mathrm{~g} / \mathrm{d}$. (Lancet. 1999;354:447-455; Lancet. 2007;369:1090-1098; Lancet. 2008;372:1223-1230.)

12 Quality of Care

merican Heart Association GWTG-CAD Program. Get With The Guidelines ${ }^{\text {SM }}$-Coronary Artery Disease (CAD) is a national quality mprovement initiative of the AHA to help hospitals redesign systems of care to improve adherence to guidelines in patients admitted with a cardiovascular event. Table 18-1 summarizes performance with regar to the selected quality-of-care indicators for CAD events. These were collected from 72,910 patients who were admitted to 317 hospitals collected from 72,91 patients who were admitted to 317 hospitals Dec. 31, 2008.

uality of Care by Race/Ethnicity and Sex

in the GWTG-CAD Program

Quality of Care Measure (\%)	White	Black	Hispanic	Men	men
Aspirin a a amission*	97.6	97.2	97.9	98.0	96.7
Aspirin at discharge*	94.8	92.9	90.8	95.3	92.6
Beta locker at discharge*	95.1	95.2	92.0	92.0	95.4
ACE inhibitor at discharge	63.2	67.5	64.3	65.3	59.1
ACE inhibitor at discharge for AMI patients	66.2	69.7	70.8	68.4	62.1
ACE inhibitor in LVSD patients	83.5	84.8	81.5	84.5	80.4
ACE inhibitor/ARB for LVSD patients at discharge*	92.7	93.7	90.1	92.2	92.8
Lipid therapy at discharge	84.2	78.0	71.9	85.0	78.7
Lipid therapy at discharge if LDL $>100 \mathrm{mg} / \mathrm{dL}^{*}$	92.5	91.7	84.7	93.5	88.3
Patients with last BP < 140/90	81.4	72.3	77.7	82.3	76.5
Smoking cessation counseling*	98.4	98.4	98.3	98.6	98.1
Referral to cardiac rehabilitation for AMI patients	55.8	56.4	64.3	53.8	50.8
Composite quality of care measure*	95.5	95.0	92.6	95.9	94.2

Indicates the 5 key y achievement measures targeted in GwTG-CAD.
The composite uualty-ot-care measure ind
of care. Itis computted by s summing the numeratotos for or each key an achievevement measurue across the population of interesst to create a composite numerator (all the care t that was siven), sumning the denominators sor each measure to torm a composite denominator (all the care that should hax
been given) and reporting the ratio (the percentage of al the neededed care that was siven

American Heart Association/American Stroke Association GWTG-Stroke Program. Get With The Guidelines ${ }^{\text {sm }}$ (GWTG)-Stroke is an American Heart Association/American Stroke Association program for the improvement of quality of care. Participating hospitals are involved in initiatives specifically designed to increase adherence to key quality indicators in patients admitted with an ischemic stroke or transient ischemic attack. The table below summarizes performance o the selected treatment and quality-of-care indicators for acute stroke and secondary prevention. There were 275,728 clinically identified patients who were admitted to 1,155 hospitals participating in the GWTG-Stroke program from Jan. 1, 2008-Dec. 31, 2008.

Quality of Care by Race/Ethnicity and Sex

in the GWTG-Stroke Program
Quality of Care Measure (\%) Overall White Black Hispanic Men Wom

Antithrombotics $<48 \mathrm{hr}$ after admission*	95.9	96.1	95.5	95.0	96.4	95.6
DVT prophylaxis by second hospital day*	92.2	92.1	92.5	91.2	92.5	92.0
Antithrombotics at discharge*	96.9	97.2	96.0	96.2	97.2	96.7
Anticoagulation for atrial fibrillation at discharge ${ }^{*}$	93.1	93.2	92.9	91.2	93.5	92.8
Therapy at discharge if LDL $>100 \mathrm{mg} / \mathrm{dL}$ or LDL not measured or on therapy at admit* ${ }^{*}$	82.1	82.0	82.4	82.1	85.0	79.6
Counseling for smoking cessation*	94.2	94.8	93.3	92.6	94.3	94.1
Stroke education provided	65.5	65.5	67.4	63.4	66.4	64.7
Stroke erhabilitaion referral	94.2	94.1	94.9	93.5	93.8	94.6
Composite quality of care measure	91.7	91.7	91.5	90.9	92.6	90.9

-hospital mortahty for the overall patient population was 7.03% and mean length of hospitas stay
nalicates the 7 key performance measurres targeeted in GWTG-Strook.

American Heart Association GWTG-HF Program. Get With The Guidelines ${ }^{\text {SM }}$ (GWTG)-Heart Failure (HF) is an American Heart Association program for the improvement of quality of care. Participating hospitals re involved in initiatives specifically designed to increase adherence key quality indicators in patients admitted with heart failure. The able below summarizes performance on the selected quality-of-care indicators. These were collected from 66,259 patients who were admitted to 310 hospitals participating in the GWTG-HF program from Jan. 1, 2008-Dec. 31, 2008.

Quality of Care by Race/Ethnicity and Sex

in the GWTG-HF Program

Quality of Care Measure (\%)	White	Black	Hispanic	Men	Women
Complete set of discharge instructions*	88.1	90.3	90.2	89.1	85.4
Measure of LV function*	97.0	97.9	94.9	${ }^{97.3}$	99.8
ACE or ARB at discharge for patients with LVSD, no contraindications*	90.5	92.9	92.4	91.4	91.2
Smoking cessation counseling, current smokers*	96.7	98.0	97.6	97.2	96.9
Beta blockers at discharge for patients with LVSD, no contraindications*	93.3	92.7	90.1	93.3	92.6
Hydralazine/nitrates at discharge for patients with LVSD, no contraindications	NM	15.7	NM	17.7**	12.9**
Anticoagulation for atria fibrillation or atrial flutter no contraindications	60.5	58.8	57.4	61.3	52.3
Composite quality of care measure	93.0	94.2	92.5	93.4	93.1

12 Medical Procedures

Total Procedures

- From 1996 to 2006, the total number of inpatient cardiovascular operations and procedures increased 33 percent from 5,444,000 to 7,235,000 annually. (AHA computation.)

Cardiac Catheterization and

Percutaneous Coronary Intervention

- From 1996-2006, the number of cardiac catheterizations decrease from 1,161,000 to 1,115,000 annually. (NHDS, NCHS)
- In 2006, an estimated 1,313,000 percutaneous coronary intervention (previously referred to as percutaneous transluminal oronary angioplasty) procedures were performed in the United States. (NHDS, NCHS)
- In 2006, about 76 percent of stents implanted during percutaneous coronary interventions were drug-eluting as opposed to bare-metal tents (24 percent). (U.S. Food and Drug Administration, Circulatory System Devices Panel. Meeting minutes, Dec. 8, 2006.)

Coronary Artery Bypass Surgery

- The National Center for Health Statistics estimates that in 2006 448,000 coronary artery bypass procedures were performed on 253,000 patients in the United States.
Heart Transplantations
- In 2008, 2,163 heart transplantations were performed in the United States. There are 251 transplant hospitals in the United States, 126 of which perform heart transplantations. (http://www.unos.orgh -In the United States, 72.4 percent of heart transplantation patients are male, 65.5 percent are white, 26.4 percent are younger than age $35,19.4$ percent are ages $35-49$, and 54.2 percent are age 50 or older.
-As of June 5,2009 , the one-year survival rate for males was 88.0 percent and for females it was 86.2 percent; the three-year survival rate was 79.3 percent for males and 77.2 percent for females, and the five-year rate was 73.1 percent for males and 69.0 percent for females.

As of June 5, 2009, there were 2,791 heart patients on the transplant waiting list.

2007 National Healthcare Cost and Utilization Project Statistics: Mean Hospital Charges and In-Hospital Death Rates for Various Procedures

Procedure	Mean Hospital Charges	In-Hospital Death Rate, \%
Total Vascular and Cardiac Surgery and Procedures	$\$ 58,559$	3.34
CABG	$\$ 112,377$	1.95
PCI	$\$ 51,445$	0.80
Diagnostic cardiac catheterization	$\$ 31,181$	0.79
Pacemaker $\$ 51,188$ 1.15 Implantable defibrillator $\$ 115,763$ 0.49 Endarterectomy $\$ 28,584$ 0.37 Valves $\$ 157,888$ 4.77$\$.4$		

Source: Agency for Heathtcare Research and Ouaitiy, Heathcare Cost and vtirization Project.

- The total direct and indirect cost of cardiovascular diseases and stroke in the United States for 2010 is estimated at $\$ 503.2$ billion This figure includes health expenditures (direct costs, which include the cost of physicians and other professionals, hospital and nursing home services, medications, home health care and other medical durables) and lost productivity resulting from morbidity and mortality (indirect costs). By comparison, in 2008 the estimated cost of all cancer and benign neoplasms was $\$ 228$ billion ($\$ 93$ billion in direct costs, $\$ 19$ billion in morbidity indirect costs and $\$ 116$ billion in mortality indirect costs). (National Heart, Lung, and Blood Institute. Personal communication.)

Estimated Direct and Indirect Costs (in Billions of Dollars) of CVD and Stroke: United States: 2010

	Heart Diseases*	Goronary Heart Disease	Stroke	Hypertensive Disease	Heart Failure	Total Gardiovascular Disease†
Direct costs						
Hospital	\$110.2	\$56.6	\$21.0	\$8.5	\$20.9	\$155.7
Nursing home	\$24.7	\$13.0	\$17.1	\$5.1	\$4.7	\$50.8
Physicians/other professionals	\$24.7	\$13.9	\$3.8	\$13.9	\$2.5	\$48.1
Drugs/other						
Medical durables	\$21.5	\$10.0	\$1.3	\$24.7	\$3.2	\$50.7
Home health care	\$8.3	\$2.5	\$5.0	\$2.7	\$3.8	\$18.8
Total expenditures \dagger	\$189.4	\$96.0	\$48.2	\$54.9	\$35.1	\$324.1
Indirect costs						
Lost productivity/morbidity	\$25.6	\$11.3	\$7.5	\$9.0	...	\$41.7
Lost productivity/mortality \ddagger	\$101.4	\$69.8	\$18.0	\$12.7	\$4.1	\$137.4
Grand totals \dagger	\$316.4	\$177.1	\$73.7	\$76.6	\$39.2	\$503.2

Ellipses (..) indicate data not avaiable
 This category includes $c H 0, H$ HF, parto ft fhyeertensive elisease, cardiac dyshyythmias, theumatic heart disease, cardiomyopathy, pulmonary heart disease, and other or ill-definined "heart" diseases

Sources:

1. Hodgson TA, Cohen AJ. Medical care expenditures for selected circulatory diseases: opportunities for reducing national health exxenditures. Med Care. 1999;37:994-1012
2. Centers for Medicicar \& Mediciad Services, officic of the Actuary. National Heatht Expenditure Projections 2008-2018. Battimore, Ma: Centers for Meicicare and Medicaid Services; 2008. Available at: http:/1

3. US Census Sureau, Housing and Household Economic Statisticis Division. Historical income tables: people. Washington, DC: US Census Bureaur: 2008. Available at htorp//wwu census. gov hhess wwwinincome

15 Glossary

- Age-Adjusted Rates - Used mainly to compare the rates of two or more communities, population groups or the nation as a whole, over time. The American Heart Association uses a standard population (2000), so that these rates aren't affected by changes or differences in the age composition of the population. Unless otherwise noted, death rates in this publication are age-adjusted per 100,000 population and are based on underlying mortality.
- AHRQ - Agency for Healthcare Research and Quality - A part of the U.S. Department of Health and Human Services, this is the lead agency charged with supporting research designed to improve the quality of health care, reduce its cost, improve patient safety, decrease medical errors, and broaden access to essential services.
- Any Mention Mortality - In a given year, the total number of death certificates in which a disease or condition is listed as the underlyin cause of death or as a contributing (secondary) cause of death
- Bacterial Endocarditis - An infection of the heart's inner lining (endocardium) or the heart valves. The bacteria that most often caus endocarditis are streptococci, staphylococci, and enterococci.
- Body Mass Index (BMI) - A mathematical formula to assess body weight, relative to height. The measure correlates highly with body fat. Calculated as weight in kilograms, divided by the square of the height in meters (kg/m²).
- Centers for Disease Control and Prevention/National Center for Health Statistics (CDC/NCHS) - An agency within the US Department of Health and Human Services (USDHHS). The CDC conducts the: -Behavioral Risk Factor Surveillance System (BRFSS), an ongoing study. The NCHS conducts or has conducted the:
National Ambulatory Medical Care Survey (NAMCS).
National Health Examination Survey (NHES).
National Health and Nutrition Examination Survey I (NHANES I, 1971-74).
National Health and Nutrition Examination Survey II (NHANES II, 1976-80).
- National Health and Nutrition Examination Survey III (NHANES III, 1988-94) -National Health and Nutrition Examination Survey (NHANES, 1999-....) National Hospital Ambulatory Medical Care Survey (NAMCS) National Heatth Examination survey (NHES)
National Heath Interview Survey (NHIS)
- National Home and Hospice Care Survey
- National Hospital Discharge Survey (NHDS)
- Centers for Medicare and Medicaid Services (CMS), formerly Health Care Financing Administration (HCFA) - The federal agency that administers the Medicare, Medicaid and Child Health Insurance Programs.
- Comparability Ratio - Provided by the NCHS to allow time-trend analysis from one ICD revision to another. It compensates for the "shifting" of deaths from one causal code number to another. Its
application to mortality based on one ICD revision means that mortality is "comparability-modified" to be more comparable to mortality coded to he other ICD revision.
Coronary Heart Disease (ICD/10 codes 120-125) - This category includes acute myocardial infarction (21-122); other acute ischemic cardiovascular disease (25.0); and all other forms of chronic ischemic heart disease (25.1-125.9).
- Death Rate - The relative frequency with which death occurs within some specified interval of time in a population. National death rates are computed per 100,000 population. Divididing the mortality by the population gives a crude death rate. It's restricted because it doesn't effect a population's composition with respect to such characteristic as age, sex, race or ethnicity. Thus, rates calculated within specific meaningul and informative. They allow well-defined subgroups of the total population to be examined.

Diseases of the Circulatory System (ICD codes 100-199) included as part of what the American Heart Association calls "Cardiovascular Disease." Mortality data for states can be obtained from cdc.gov/nchs, by direct communication with the CDC/NCHS, or from our National Center Biostatistics Program Coordinator request. (See "Total Cardiovascular Disease" in this Glossary.)

- Diseases of the Heart - Classification the NCHS uses in compiling the leading causes of death. Includes acute rheumatic fever/chronic heumatic heart diseases (100-109); hypertensive heart disease (111 and hypertensive heart and renal disease (113); coronary heart disease (120-125); pulmonary heart disease and diseases of pulmonary circulation (126-128); heart failure (150); and other forms of heart disease (129-149, 50.1-151). "Diseases of the Heart" is not equivalent to "Total Cardiovascula Disease," which the American Heart Association prefers to use to bout three-fouths of "Tota Cardiovascular Disease" mortality

Health Care Financing Administration (HCFA) - See Centers for Medicare and Medicaid Services (CMS)

Hispanic Origin — In U.S. government statistics, "Hispanic" includes persons who trace their ancestry to Mexico, Puerto Rico, Cuba, Spain, the Spanish-speaking countries of Central or South America, the Dominican Republic or other Spanish cultures, regardless of race. It doesn't include people from Brazil, Guyana, Suriname, Trinidad, Beilize and Portugal data are for Mexican Americans or Mexicans, as reported by government gencies or specific studies. In many cases, data for all Hispanics are more difficullt to obtain.

- Hospital Discharges - The number of inpatients discharged from short stay hospitals where some type of disease was the first listed diagnosis.
Discharges include those discharged alive, dead or status unknown.
- ICD Codes - A classification system in standard use in the United States. The "International Classification of Diseases" (ICD) is published by the World Health Organization. This system is reviewed and revised about every $10-20$ years to ensure its continued flexibility and feasibility, tee tent ICD revisions can cause considerable change in the number of deaths reported for a given disease. The NCHS provides "comparability ratios" to compensate for the "shifting" of deaths from one ICD code to another. In this Update, the reported mortality is used for one year's data To compare the number or rate of deaths with that of an earlier year, the "comparability-modified" number or rate is used.
- Incidence - An estimate, of the number of new cases of a disease that develop in a population in a one-year period. For some statistics,
new and recurrent attacks, or cases, are combined. The incidence of a specific disease is estimated by multiplying the incidence rates reported in community- or hospital-based studies by the US population. The rates in this report change only when new data are available; they are not computed annually.
- Major Cardiovascular Diseases - Disease classification commonly eeported by the NCHS; represents ICD codes 100-178. The American Hea Association doesn't use "Major CVD" for any calculations. See "Total ardiovascular Disease" in this Glossary
- Metabolic Syndrome* - The metabolic syndrome is defined as having any 3 of the following 5 diagnostic measures: elevated waist circumference ($>102 \mathrm{~cm}$. in men or $>88 \mathrm{~cm}$. in women); elevated triglycerides ($>150 \mathrm{mg} / \mathrm{dL}[1.7 \mathrm{mmol} / \mathrm{L}]$ or drug treatment for elevated nglycerides); reduced HDL (high-density lipoprotein) cholesterol < $\mathrm{mg} / \mathrm{dL}[0.9 \mathrm{mmol} / \mathrm{L}]$ in men or $<50 \mathrm{mg} / \mathrm{dL}[1.1 \mathrm{mmo} / \mathrm{L}]$ in women or drug treatment for reduced HDL cholesterol); elevated blood pressure (> 30 m . Hg systoic blood pressure or $>85 \mathrm{~mm} \mathrm{Hg}$ diastoic blood $\$ 100 \mathrm{mo} / \mathrm{dL}$ or drug treatment for elevated ducosed **According to riteria established by the American Heart Association/National Heart, ing, and Blood Institute, published in Circulation. (2005, Vol. 112, pages 2735-2752)
- Morbidity - incidence and prevalence rates are both measures of morbidity, that is, measures of various effects of disease on a population
- Mortality -The total number of deaths from a given disease in a population during a specificic interval of time, usually a year. These data to the NCHS. The process of verifying and tabulating the data takes about two years. For example, final 2005 mortality statistics, the lates available, didn't become available until late 2007. Mortality is "hard" data, so it's possible to do time-trend analysis and compute percentage changes over time.
- National Heart, Lung, and Blood Institute (NHLBI) - An institut in the National Institutes of Health in the US Department of Heath and Human Services. The NHLBI conducts such studies as the Framingham Heart Study (FHS) (1948 to data) Cardiovascular Health Study (CHS) (1988 to date) - Atherosclerosis Risk in Communities (ARIC) study (1985 to date). Strong Heart Study (SHS) (1989-92; 1991-98). The NHLBI also published reports of the Joint National Committee on

Prevention, Detection, Evaluation and Treatment of High Blood Pressure and the Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III, or ATP III.

National Institute of Neurological Disorders and Stroke (NINDS) An institute in the National Institutes of Health in the US Department of tealth and Human Services, the NINDS sponsors and conducts research tudies such as these:
Greater Cincinnati/Northern Kentucky Stroke Study (GCNKS

- Rochester (Minnesota) Stroke Epidemiology Project
- Northerr Manhattan Stroke Study (NOMASS)
- Brain Attack Surveillance in Corpus Christi (BASIC) Project

Prevalence - An estimate of the total number of cases of a disease isting in a population during a specified period. Prevalence is iseases are calculated from periodic health examination surveys that government agencies conduct. Annual changes in prevalence as reporte it this booklet only reflect changes in the population; rates do not chang until there's a new survey. Changes in rates can only be evaluated with data from new surveys. Estimates from NHANES 1999-2004 applied to 005 population estimates
OTE: In the data tables, which are located in the different disease and isk factor categories, if the percentages shown are age-adjusted, they will not add to the total.

- Race and Hispanic Origin - Race and Hispanic origin are reported separately on death certificates. In this publication, unless otherwise specified, deaths of Hispanic origin are included in the totals for whites, blacks, American Indians or Alaska Natives and Asian or Pacific Islanders, according to the race listed on the decedent's death certificate. Data for Hispanic persons include all persons of Hispanic origin of any race. See "Hispanic Origin" in this Glossary.
- Stroke (ICD/10 codes I60-I69) - This category includes: subarachnoid hemorrhage (160); intracerebral hemorrhage (161); other iontraumatic intracranial hemorrhage (I62); cerebral infarction (163); stroke, not specified as hemorrhage or infarction (164); occlusion and tenosis of precerebral arteries not resulting in cerebral infarction (I65); occlusion and stenosis of cerebral arteries not resulting in cerebral Infarction (166); other cerebrovascular diseases (167); cerebrovascula sorders in diseases classified elsewhere (168), and sequelae of cerebrovascular disease (169)
- Total Cardiovascular Disease (ICD/10 codes IOO-I99, Q20-Q28) This category includes: rheumatic fever/rheumatic heart disease (100-109) hypertensive diseases (110-115); ischemic (coronary) heart diseas竍 erebrovascular disease (stroke) (160-169); atherosclerosis (170); other diseases of arteries, arterioles and capillaries (171-179); diseases of eins, lymphatics and lymph nodes not classified elsewhere (I80-10.-), en data 20-028)

Underlying or Contributing Cause of Death - These terms are used the NCHS when defining mortality. Underlying mortaity is defined by WHO as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." Contributing mortality is be any other disease

16 Abbreviation Guide

ACE	angiotensin-converting enzyme
ACS	acute coronary syndrome
ADHERE	Acute Decompensated HEart Failure National REgistry
AED	automated external defibrillator
AF	atrial fibrillation
AHA	American Heart Association
AHRQ	Agency for Healthcare Research and Quality
AIDS	acquired immune deficiency syndrome
AJC	American Journal of Cardiology
AP	angina pectoris
ARIC	Atherosclerosis Risk in Communities
ATP	Adult Treatment Panel
BMI	body mass index
BP	blood pressure
BRFSS	Behavioral Risk Factor Surveillance System
BWIS	Baltimore-Washington Infant Study
CAD	coronary artery disease
CDC	Centers for Disease Control and Prevention
CHD	coronary heart disease
CHS	Cardiovascular Health Study
Cl	confidence interval
CMS	Centers for Medicare and Medicaid Services
COPD	chronic obstructive pulmonary disease
CPI	Consumer Price Index
CPR	cardiopulmonary resuscitation
CVD	cardiovascular disease
DVT	deep vein thrombosis
ED	emergency department
EMS	emergency medical services
ER	emergency room
ESRD	end-stage renal disease
FHS	Framingham Heart Study
GCNKSS	Greater Cincinnati/Northern Kentucky Stroke Study
GWTG	Get With The GuidelinesSM
HBP	high blood pressure
HCFA	Health Care Financing Administration
HCUP	Healthcare Cost and Utilization Project
HDL	high-density lipoprotein
HF	heart failure
HHP	Honolulu Heart Program
HIV	human immunodeficiency virus
ICD	International Classification of Diseases
ICDA	International Classification of Diseases, Adapted
ICH	intracerebral hemorrhage
JACC	Journal of the American College of Cardiology
JAMA	Journal of the American Medical Association
JCAHO	Joint Commission on Accreditation of Health Care Organizations
JNC	Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure
kcal	kilocalories
LDL	Iow-density lipoprotein
LV	left ventricular
LVEF	left ventricular ejection fraction

MACDP	Metropolitan Atlanta Congenital Defects Program
MetS	metabolic syndrome
$\mathrm{mg} / \mathrm{dL}$	milligrams per deciliter
Ml	myocardial infarction
mm Hg	millimeters of mercury
MMWR	Morbidity and Mortality Weekly Report
NAMCS	National Ambulatory Medical Care Survey
NCEP	National Cholesterol Education Program
NCHS	National Center for Health Statistics
NCQA	National Committee for Quality Assurance
NEJM	New England Journal of Medicine
NHAMCS	National Hospital Ambulatory Medical Care Survey
NHANES	National Health and Nutrition Examination Survey
NHDS	National Hospital Discharge Survey
NHES	National Health Examination Survey
NHIS	National Health Interview Survey
NHLBI	National Heart, Lung, and Blood Institute
NIDDK	National Institute of Diabetes and Digestive and Kidney Diseases
NIHSS	National Institutes of Health Stroke Scale
NINDS	National Institute of Neurological Disorders and Stroke
NNHS	National Nursing Home Survey
NOMAS	Northern Manhattan Study
NRMI	National Registry of Myocardial Infarction
NVSS	National Vital Statistics System
OR	odds ratio
PA	physical activity
PAD	peripheral arterial disease
PCI	percutaneous coronary intervention
PE	pulmonary embolism
PTE	pulmonary thromboembolism
PVD	peripheral vascular disease
RF	rheumatic fever
RHD	rheumatic heart disease
RR	relative risk
SAH	subarachnoid hemorrhage
SCD	sudden cardiac death
SES	socioeconomic status
SHS	Strong Heart Study
STEMI	ST elevation myocardial infarction
TIA	transient ischemic attack
UA	unstable angina
UNOS	United Network for Organ Sharing
USDA	United States Department of Agriculture
USDHHS	United States Department of Health and Human Services
VF	ventricular fibrillation
VSD	ventricular septal defect
VTE	venous thromboembolism
WHO	World Health Organization
YLL	years of life lost
YMCLS	Youth Media Campaign Longitudinal Study
YRBS	Youth Risk Behavior Surveillance

