

Useful Automated Software Testing
Metrics

By Thom Garrett
IDT, LLC

Adapted from the book “Implementing Automated Software Testing,” by Elfriede Dustin,

Thom Garrett, Bernie Gauf

Author Bio: Thom Garrett

Thom Garrett has twenty years of Information Technology experience in planning, development, testing
and deployment of complex processing systems for U.S. Navy and commercial applications. Specific
experience includes rapid introduction and implementation of new technologies for highly sophisticated
architectures which support users world-wide. In addition, he has experience in managing and testing all
aspects of large scale complex networks used in 24/7 environments.

Thom currently works for Innovative Defense Technologies (IDT), LLC, and has previously worked for
companies such as America Online (AOL) and Digital System Resources (DSR), Inc., supporting system
engineering solutions from requirements gathering to production roll-out.

Thom received a Bachelor of Science degree in Mathematics / Computer Science from Virginia
Commonwealth University and a Master’s degree in Information Systems from the University of San
Francisco.

Useful Automated Software Testing Metrics

“When you can measure what you are speaking about, and can express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind.”

 -- Lord Kelvin, a physicist.

As part of a successful automated testing program it is important that goals and strategies
are defined and then implemented. During implementation progress against these goals
and strategies set out to be accomplished at the onset of the program needs to be
continuously tracked and measured. This article discusses various types of automated and
general testing metrics that can be used to measure and track progress.

Based on the outcome of these various metrics the defects remaining to be fixed in a
testing cycle can be assessed; schedules can be adjusted accordingly or goals can be
reduced. For example, if a feature is still left with too many high priority defects a
decision can be made that the ship date is moved or that the system is shipped or even
goes live without that specific feature.

Success is measured based on the goal we set out to accomplish relative to the
expectations of our stakeholders and customers.

Automated Testing Metrics

Metrics can aid in improving your organizations automated testing process and tracking
its status. These metrics and techniques have successfully been used by our software test
teams. As the quote at the beginning of this article implies, if you can measure
something, then you have something you can quantify. If you can quantify something,
then you can explain it in more detail and know something more about it. If you can
explain it, then you have a better chance to attempt to improve upon it, and so on.

As time proceeds, software project become more complex due to increased lines of code
because of added features, bug fixes, etc. Also the task is asked to be done in less time
with fewer people. The complexity over time will have a tendency to decrease the test
coverage and ultimately affect the quality of the product. Other factors involved over
time are the overall cost of the product and the time to deliver the software. Metrics can
provide insight into the status of automated testing efforts.

When done properly, implementing automation software testing will reverse the negative
trend. Automation efforts can provide a larger test coverage area and increase the overall
quality of the product. Automation can also reduce the time of testing and the cost of

delivery. This benefit is typically realized over multiple test cycles and project cycles.
Automated testing metrics can aid in making assessments as to whether progress,
productivity and quality goals are being met.

What is a Metric?

The basic definition of a metric is a standard of measurement. It also can be described as
a system of related measures that facilitates the quantification of some particular
characteristic.1 For our purposes, a metric can be looked at as a measure which can be
utilized to display past and present performance and/or used for predicting future
performance.

What Are Automated Testing Metrics?

Automated testing metrics are metrics used to measure the performance (e.g. past,
present, future) of the implemented automated testing process.

What Makes A Good Automated Testing Metric?

As with any metrics, automated testing metrics should have clearly defined goals of the
automation effort. It serves no purpose to measure something for the sake of measuring.
To be meaningful, it should be something that directly relates to the performance of the
effort.

Prior to defining the automated testing metrics, there are metrics setting fundamentals
you may want to review. Before measuring anything, set goals. What is it you are trying
to accomplish? Goals are important, if you do not have goals, what is it that you are
measuring? It is also important to continuously track and measure on an ongoing basis.
Based on the metrics outcome, then you can decide if changes to deadlines, feature lists,
process strategies, etc., need to be adjusted accordingly. As a step toward goal setting,
there may be questions that need to be asked of the current state of affairs. Decide what
questions can be asked to determine whether or not you are tracking towards the defined
goals. For example:

• How much time does it take to run the test plan?
• How is test coverage defined (KLOC, FP, etc)?
• How much time does it take to do data analysis?
• How long does it take to build a scenario/driver?
• How often do we run the test(s) selected?
• How many permutations of the test(s) selected do we run?
• How many people do we require to run the test(s) selected?
• How much system time/lab time is required to run the test(s) selected?

1 http://www.thefreedictionary.com/metric

• etc.

In essence, a good automated testing metric has the following characteristics:

• is Objective
• is Measurable
• is Meaningful
• has data that is easily gathered
• can help identify areas of test automation improvement
• is Simple

A good metric is clear and not subjective, it is able to be measured, it has meaning to the
project, it does not take enormous effort and/or resources to obtain the data for the metric,
and it is simple to understand. A few more words about metrics being simple. Albert
Einstein once said

“Make everything simple as possible, but not simpler.”

When applying this wisdom towards software testing, you will see that:

• Simple reduces errors
• Simple is more effective
• Simple is elegant
• Simple brings focus

It is important to generate a metric that calculates the value of automation, especially if
this is the first time the project has used an automated testing approach. The test team
will need to measure the time spent on developing and executing test scripts against the
results that the scripts produced. For example, the test team could compare the number
of hours to develop and execute test procedures by the number of defects documented
that would not likely have been revealed during a manual test effort.

Sometimes it is hard to quantify or measure the automation benefits. For example, often
defects are discovered using automated testing tools, which manual test execution could
not have discovered. For example, during stress testing 1000 virtual users execute a
specific functionality and the system crashes. It would be very difficult to discover this
problem manually, using 1000 test engineers. Another way to minimize the test effort
involves the use of an automated test tool for data entry or record setup. The metric,
which applies in this case, measures the time required to manually set up the needed
records versus the time required to set up the records using an automated tool.

Consider the test effort associated with the system requirement that reads, “The system
shall allow the addition of 10,000 new accounts”. Imagine having to manually enter

10,000 accounts into a system, in order to test this requirement! An automated test script
can easily support this requirement by reading account information from a file through
the use of a looping construct. The data file can easily generated using a data generator.
The effort to verify this system requirement using test automation requires far fewer
number of man hours than performing such a test using manual test methods.2

Automated software testing metrics can be used to determine additional test data
combinations. For example, with manual testing you might have been able to test ‘x’
number of test data combinations; with automated testing you are now able to test ’x+y’
test data combinations. Defects that were uncovered in the set of ‘y’ combinations are
the defects that manual testing may have never uncovered.

Percent Automatable

At the beginning of an automated testing effort, the project is either automating existing
manual test procedures, starting a new automation effort from scratch, or some
combination of both. Whichever the case, a percent automatable metric can be
determined.

Percent automatable can be defined as: of a set of given test cases, how many are
automatable? This could be represented in the following equation:

 ATC # of test cases automatable
PA (%) = -------- = (-----------------------------------)

 TC # of total test cases

PA = Percent Automatable
ATC = # of test cases automatable
TC = # of total test cases

In evaluating test cases to be developed, what is to be considered automatable and what is
not to be considered automatable? Given enough ingenuity and resources, one can argue
that almost anything can be automated. So where do you draw the line? Something that
can be considered ‘not automatable’ for example, could be an application area that is still
under design, not very stable, and much of it is in flux. In cases such as this, we should:

“evaluate whether it make sense to automate”

2 Adapted from “Automated Software Testing” Addison Wesley, 1999, Dustin, et al

We would evaluate for example, given the set of automatable test cases, which ones
would provide the biggest return on investment:

“just because a test is automatable doesn’t necessary mean it should be automated”

When going through the test case development process, determine what tests can be AND
makes sense to automate. Prioritize your automation effort based on your outcome. This
metric can be used to summarize, for example, the % automatable of various projects or
component within a project, and set the automation goal.

Automation Progress

Automation Progress refers to, of the percent automatable test cases, how many have
been automated at a given time? Basically, how well are you doing in the goal of
automated testing? The goal is to automat 100% of the “automatable” test cases. This
metric is useful to track during the various stages of automated testing development.

 AA # of actual test cases automated
 AP (%) = -------- = (--------------------------------------)

 ATC # of test cases automatable

AP = Automation Progress
AA = # of actual test cases automated
ATC = # of test cases automatable

The Automation Progress metric is a metric typically tracked over time. In the case
below, time in “weeks”.

A common metric closely associated with progress of automation, yet not exclusive to
automation is Test Progress. Test progress can simply be defined as the number of test
cases attempted (or completed) over time.

 TC # of test cases (attempted or completed)
 TP = -------- = (--)

 T time (days/weeks/months, etc)

TP = Test Progress
TC = # of test cases (either attempted or completed)
T = some unit of time (days / weeks / months, etc)

The purpose of this metric is to track test progress and compare it to the plan. This
metric can be used to show where testing is tracking against the overall project plan. Test
Progress over the period of time of a project usually follows an “S” shape. This typical
“S” shape usually mirrors the testing activity during the project lifecycle. Little initial
testing, followed by an increased amount of testing through the various development
phases, into quality assurance, prior to release or delivery.

This is a metric to show progress over time. A more detailed analysis is needed to
determine pass/fail, which can be represented in other metrics.

Percent of Automated Testing Test Coverage

Another automated software metric we want to consider is Percent of Automated Testing
Test Coverage. That is a long title for a metric to determine what test coverage is the
automated testing actually achieving? It is a metric which indicates the completeness of
the testing. This metric is not so much measuring how much automation is being
executed, but rather, how much of the product’s functionality is being covered. For
example, 2000 test cases executing the same or similar data paths may take a lot of time
and effort to execute, does not equate to a large percentage of test coverage. Percent of
automatable testing coverage does not specify anything about the effectiveness of the
testing taking place, it is a metric to measure its’ dimension.

 AC automation coverage
 PTC(%) = ------- = (-------------------------------)

 C total coverage

PTC = Percent of Automatable testing coverage
AC = Automation coverage
C = Total Coverage (KLOC, FP, etc)

Size of system is usually counted as lines of code (KLOC) or function points (FP). KLOC
is a common method of sizing a system, however, FP has also gained acceptance. Some
argue that FPs can be used to size software applications more accurately. Function Point
Analysis was developed in an attempt to overcome difficulties associated with KLOC (or
just LOC) sizing. Function Points measure software size by quantifying the functionality
provided to the user based logical design and functional specifications. There is a wealth

of material available regarding the sizing or coverage of systems. A useful resourse is
Stephen H Kan’s book entitled ”Metrics and Models in Software Quality Engineering”
(Addison Wesley, 2003).

The Percent Automated Test Coverage metric can be used in conjunction with the
standard software testing metric called Test Coverage.

 TTP total # of TP
 TC(%) = ------- = (-----------------------------------)

 TTR total # of Test Requirements

TC = Percent of Testing Coverage
TTP = Total # of Test Procedures developed
TTR = Total # of defined Test Requirements

This measurement of test coverage divides the total number of test procedures developed,
by the total number of defined test requirements. This metric provides the test team with
a barometer to gage the depth of test coverage. The depth of test coverage is usually
based on the defined acceptance criteria. When testing a mission critical system, such as
operational medical systems, the test coverage indicator would need to be high relative to
the depth of test coverage for non-mission critical systems. The depth of test coverage

for a commercial software product that will be used by millions of end users may also be
high relative to a government information system with a couple of hundred end users. 3

Defect Density

Measuring defects is a discipline to be implemented regardless if the testing effort is
automated or not. Josh Bloch, Chief Architect at Google stated:

“Regardless of how talented and meticulous a developer is, bugs and security
vulnerabilities will be found in any body of code – open source or commercial.”,
“Given this inevitably, it’s critical that all developers take the time and measures to
find and fix these errors.”

Defect density is another well known metric not specific to automation. It is a measure
of the total known defects divided by the size of the software entity being measured. For
example, if there is a high defect density in a specific functionality, it is important to
conduct a causal analysis. Is this functionality very complex, and therefore it is to be
expected that the defect density is high? Is there a problem with the
design/implementation of the functionality? Were the wrong (or not enough) resources
assigned to the functionality, because an inaccurate risk had been assigned to it? It also
could be inferred that the developer, responsible for this specific functionality, needs
more training.

 D # of known defects
 DD = ------- = (-------------------------------)

 SS total size of system

DD = Defect Density
D = # of known defects
SS = Total Size of system

One use of defect density is to map it against software component size. A typical defect
density curve that we have experienced looks like the following, where we see small and
lager sized components having a higher defect density ratio as shown below.

3 Adapted from “Automated Software Testing” Addison Wesley, 1999, Dustin, et al

Additionally, when evaluating defect density, the priority of the defect should be
considered. For example, one application requirement may have as many as 50 low
priority defects and still pass because the acceptance criteria have been satisfied. Still,
another requirement might only have one open defect that prevents the acceptance criteria
from being satisfied because it is a high priority. Higher priority requirements are
generally weighted heavier.

The graph below shows one approach to utilizing the defect density metric. Projects can
be tracked over time (for example, stages in the development cycle).

Another closely related metric to Defect Density is Defect Trend Analysis. Defect Trend
Analysis is calculated as:

 D # of known defects

 DTA = ------- = (------------------------------------)
 TPE # of test procedures executed

DTA = Defect Trend Analysis
D = # of known Defects
TPE = # of Test Procedures Executed over time

Defect Trend Analysis can help determine the trend of defects found. Is the trend
improving as the testing phase is winding down or is the trend worsening? Defects the
test automation uncovered that manual testing didn't or couldn't have is an additional way
to demonstrate ROI. During the testing process, we have found defect trend analysis one
of the more useful metrics to show the health of a project. One approach to show trend is
to plot total number of defects along with number of open Software Problem Reports as
shown in the graph below.

 4

Effective Defect Tracking Analysis can present a clear view of the status of testing
throughout the project. A few additional common metrics sometimes used related to
defects are as follows:

 Cost to locate defect = Cost of testing / the number of defects located

 Defects detected in testing = Defects detected in testing / total system
defects

4 Graph adapted from article: http://www.teknologika.com/blog/SoftwareDevelopmentMetricsDefectTracking.aspx

 Defects detected in production = Defects detected in production/system
size

Some of these metrics can be combined and used to enhance quality measurements as
shown in the next section.

Actual Impact on Quality

One of the more popular metrics for tracking quality (if defect count is used as a measure
of quality) through testing is Defect Removal Efficiency (DRE), not specific to
automation, but very useful when used in conjunction with automation efforts. DRE is a
metric used to determine the effectiveness of your defect removal efforts. It is also an
indirect measurement of the quality of the product. The value of the DRE is calculated as
a percentage. The higher the percentage, the higher positive impact on the quality of the
product. This is because it represents the timely identification and removal of defects at
any particular phase.

 DT # of defects found during testing

 DRE(%) = --------------- = (--)
 DT + DA # of defects found during testing +

 # of defect found after delivery

DRE = Defect Removal Efficiency
DT = # of defects found during testing
DA = # of defects acceptance defects found after delivery

The highest attainable value of DRE is “1” which equates to “100%”. In practice we
have found that an efficiency rating of 100% is not likely. DRE should be measured
during the different development phases. If the DRE is low during analysis and design, it
may indicate that more time should be spent improving the way formal technical reviews
are conducted, and so on.

This calculation can be extended for released products as a measure of the number of
defects in the product that were not caught during the product development or testing
phase.

Other Software Testing Metrics

Along with the metrics mentioned in the previous sections, here are a few more common
test metrics. These metrics do not necessarily just apply to automation, but could be, and
most often are, associated with software testing in general. These metrics are broken up
into three categories:

• Coverage: Meaningful parameters for measuring test scope and success.
.

• Progress: Parameters that help identify test progress to be matched
against success criteria. Progress metrics are collected iteratively over
time. They can be used to graph the process itself (e.g. time to fix defects,
time to test, etc).

• Quality: Meaningful measures of excellence, worth, value, etc. of the

testing product. It is difficult to measure quality directly; however,
measuring the effects of quality is easier and possible.

Metric Name Description Category
Test Coverage

Total number of test procedures/total number of test requirements.
The Test Coverage metric will indicate planned test coverage.

Coverage

System
Coverage
Analysis

The System Coverage Analysis measures the amount of coverage at
the system interface level.

Coverage

Test Procedure
Execution Status

Executed number of test procedures/total number of test procedures
This Test Procedure Execution metric will indicate the extent of the
testing effort still outstanding.

Progress

Error Discovery
Rate

Number total defects found/number of test procedures executed. The
Error Discovery Rate metric uses the same calculation as the defect
density metric. Metric used to analyze and support a rational product
release decision

Progress

Defect Aging Date Defect was opened versus date defect was fixed
Defect Aging metric provides an indication of turnaround of the
defect.

Progress

Defect Fix
Retest

Date defect was fixed & released in new build versus date defect was
re-tested. The Defect Fix Retest metric provides an idea if the testing
team is re-testing the fixes fast enough, in order to get an accurate
progress metric

Progress

Current Quality
Ratio

Number of test procedures successfully executed (without defects)
versus the number of test procedures. Current Quality Ratio metric
provides indications about the amount of functionality that has
successfully been demonstrated.

Quality

Quality of Fixes

Number total defects reopened/total number of defects fixed
This Quality of Fixes metric will provide indications of development
issues.

Quality

Ratio of previously working functionality versus new errors
introduced
The Quality of Fixes metric will keep track of how often previously
working functionality was adversarial affected by software fixes.

Quality

Problem Reports Number of Software Problem Reports broken down by priority. The
Problem Reports Resolved measure counts the number of software
problems reported, listed by priority.

Quality

Test
Effectiveness

Test effectiveness needs to be assessed statistically to determine how
well the test data has exposed defects contained in the product.

Quality

Test Efficiency Number of test required / the number of system errors Quality

 Common Software Test Metrics5

Summary

Metrics are an important gauge of the health, quality, and progress of an automated
software testing effort. Metrics can also be used to perform past performance, current
status, and future trends. Good metrics are objective, measureable, meaningful, simple,

5 Adapted from “Automated Software Testing” Addison Wesley, 1999, Dustin, et al

and have easily obtainable data. Traditional software testing metrics used in software
quality engineering can be applied and adapted to automated software testing. Some
metrics specific to automated testing are:

- Percent Automatable
- Automation Progress
- Percent of Automated Testing Coverage

In the test case requirements gathering phase of your automation effort, evaluate whether
it makes sense to automate or not. Given the set of automatable test cases, determine
which ones would provide the biggest return on investment. Consider that just because a
test is automatable doesn’t necessary mean it should be automated.

Acronyms:

AA - # of actual test cases automated
AC - Automation coverage
AP - Automation Progress
ATC - # of test cases automatable
D - # of known Defects
DA - # of defects acceptance defects found after delivery
DD - Defect Density
DRE - Defect Removal Efficiency
DT - # of defects found during testing
DTA - Defect Trend Analysis
FP - Function Point
KLOC - Lines Of Code (Thousands)
LOC - Lines Of Code
PR - Percent Automatable
PTC - Percent of Automatable testing coverage
ROI - Return On Investment
SPR - Software Problem Report
SS - Total Size of system to be automated
T - Time (some unit of time (days / weeks / months, etc))
TC - # of total test cases
TP - Test Progress
TPE - # of Test Procedures Executed over time

	Automated Testing Metrics
	Percent Automatable
	Automation Progress
	Percent of Automated Testing Test Coverage
	Defect Density
	Actual Impact on Quality
	Other Software Testing Metrics

	Summary

