
Worst-Case Analysis of the Perceptron and

Exponentiated Update Algorithms∗

Tom Bylander
Division of Computer Science

The University of Texas at San Antonio
San Antonio, Texas 78249

bylander@cs.utsa.edu

April 6, 1998

submitted to Artificial Intelligence

Abstract

The absolute loss is the absolute difference between the desired
and predicted outcome. This paper demonstrates worst-case upper
bounds on the absolute loss for the Perceptron learning algorithm
and the Exponentiated Update learning algorithm, which is related
to the Weighted Majority algorithm. The bounds characterize the
behavior of the algorithms over any sequence of trials, where each
trial consists of an example and a desired outcome interval (any value
in the interval is an acceptable outcome). The worst-case absolute
loss of both algorithms is bounded by: the absolute loss of the best
linear function in a comparison class, plus a constant dependent on
the initial weight vector, plus a per-trial loss. The per-trial loss can
be eliminated if the learning algorithm is allowed a tolerance from the
desired outcome. For concept learning, the worst-case bounds lead to
mistake bounds that are comparable to past results.

∗This paper is a revised and extended version of Bylander [4].

1

1 Introduction

Linear and linear threshold functions are an important class of functions for
machine learning. Although linear functions are limited in what they can
represent, they often achieve good empirical results, e.g., [8, 17], and they
are standard components of neural networks.

For concept learning in which some linear threshold function is a perfect
classifier, mistake bounds are known for the Perceptron algorithm [16, 15],
and the Winnow and Weighted Majority algorithms [11, 12, 14] There are also
results for these algorithms for various types of noise [1, 2, 3, 13]. However,
these previous results do not characterize the behavior of these algorithms
over any sequence of examples.

This paper shows that minimizing the absolute loss characterizes the on-
line behavior of two algorithms for learning linear threshold functions: the
Perceptron algorithm and the Exponentiated Update algorithm (related to
Weighted Majority), where the absolute loss is the sum of the absolute differ-
ences between the desired and predicted outcomes. The worst-case absolute
loss of both algorithms is bounded by the sum of: the absolute loss of the
best linear function in a comparison class, plus a constant dependent on the
initial weight vector, plus a per-trial loss. The per-trial loss can be eliminated
if the learning algorithm is allowed a tolerance from the desired outcome. In
this latter case, the total additional loss is bounded by a constant over a
sequence of any length.

The results of this paper hold for any sequence of examples, drawn from
any distribution of examples. Unfortunately, there is no direct relationship
between absolute loss and the number of classification mistakes because a
single misclassification could correspond to a small or a large absolute loss.
Nevertheless, interesting mistakes bounds can be derived in the linearly sep-
arable case.

A few previous results are also based on the absolute loss, though for
specialized cases. Duda & Hart [7] derive the Perceptron update rule from
the perceptron criterion function, which is a specialization of the absolute
loss. The Perceptron algorithm with a decreasing learning rate (harmonic
series) on a stationary distribution of examples converges to a linear function
with the minimum absolute loss [9]. A version of the Weighted Majority
algorithm (WMC) has an absolute loss comparable to the best input [14].
Cesa-Bianchi [5] independently proved results similar to Theorems 2 and 3 of
this paper; he also shows how to modify the algorithms for any loss function

1

between the absolute loss and the square loss.
The analysis follows a pattern similar to worst-case analyses of online

linear least-square algorithms [6, 10]. The performance of an algorithm is
compared to the best hypothesis in some comparison class. The bounds are
based on how the distance from the online algorithm’s current hypothesis
to the target hypothesis changes in proportion to the algorithm’s loss minus
target’s loss. The distance measure is chosen to facilitate the analysis.

The desired outcome for an example is allowed to be any real interval.
Thus, concept learning can be implemented with a positive/negative outcome
for positive/negative examples. In this case, the absolute loss bounds lead to
mistake bounds for these algorithms that are similar to previous literature.
Also, expected mistake bounds are obtained for randomized versions of the
algorithms.

2 Preliminaries

A trial is an ordered pair (x, I), consisting of a real vector x ∈ ℜn (an
example) and a real interval I (an outcome). A prediction ŷ on an example
x is made using a weight vector w ∈ ℜn by computing the dot product
ŷ = w · x =

∑n
i=1 wixi. The absolute loss of a weight vector w on a trial

(x, I) is determined by:

Loss(w, (x, I)) =






ylo − ŷ if ŷ < I
0 if ŷ ∈ I
ŷ − yhi if ŷ > I

where ylo = infy∈I y and yhi = supy∈I y. That is, it is desired for the predic-
tion to be within the outcome interval. The Loss(·, ·) notation is also used
to denote the absolute loss of a weight vector or algorithm (first argument)
on a trial or sequence of trials (second argument).

For an online algorithm A, a comparison weight vector u, and a trial
sequence S, all of the bounds are of the form Loss(A, S) ≤ Loss(u, S) + ζ ,
where ζ is an expression based on characteristics of the algorithm A and the
trial sequence S. Before each trial St, the algorithm hypothesizes a weight
vector wt. The bounds are based on demonstrating, for each trial St, that
Loss(wt, St) − Loss(u, St) ≤ ζt, and summing up the additional loss ζt over
all the trials. When Loss(wt, St) = 0, obviously ζt = 0 can be chosen. The
other cases are covered by the following lemma.

2

Lemma 1 When ŷ = w · x < I for a given trial St = (x, I), then:

Loss(w, St) − Loss(u, St) ≤ u · x − ŷ = u · x −w · x (1)

When ŷ = w · x > I for a given trial St = (x, I), then:

Loss(w, St) − Loss(u, St) ≤ ŷ − u · x = w · x − u · x (2)

Proof: Let ylo = infy∈I y. When ŷ < I, the first inequality follows from the
fact that ylo − ŷ is w’s absolute loss and that ylo − u · x is u’s absolute loss
when u ·x ≤ ylo, and that ylo −u ·x is less than u’s absolute loss, otherwise.
The proof for the second inequality is similar.

3 Absolute Loss Bounds

Worst-case absolute loss bounds are derived for the Perceptron and Expo-
nentiated Update algorithms, followed by a discussion.

3.1 Bounds for Perceptron

The Perceptron algorithm is given in Figure 1. The Perceptron algorithm
inputs an initial weight vector s (typically, the zero vector 0), and a learning
rate η. The perceptron update rule is applied if the prediction ŷ is outside
the outcome interval, i.e., the current weight vector w is incremented (decre-
mented) by ηx if the prediction ŷ is too low (high). The use of any outcome
interval generalizes the standard Perceptron algorithm.

The behavior of the Perceptron algorithm is bounded by the following
theorem.

Theorem 2 Let S be a sequence of l trials. Let XP ≥ maxt ‖xt‖, the maxi-

mum vector length. Then for any comparison vector u where ‖u‖ ≤ UP .

Loss(Perceptron(0, η), S) ≤ Loss(u, S) +
U2

P

2η
+

ηlX2
P

2

Choosing η = UP/(XP

√
l) leads to:

Loss(Perceptron(0, η), S) ≤ Loss(u, S) + UPXP

√
l

3

Algorithm Perceptron(s,η)
Parameters:

s: the start vector, with s ∈ ℜn.
η: the learning rate, with η > 0.

Initialization:

Before the first trial, set w1 to s.
Prediction:

Upon receiving the tth example xt,
give the prediction ŷt = wt · xt

Update:

Upon receiving the tth outcome interval It,
update the weight vector using:

wt+1 =






wt + ηxt if ŷt < It

wt if ŷt ∈ It

wt − ηxt if ŷt > It

Figure 1: Perceptron Algorithm

4

Proof: Let d(u,w) =
∑n

i=1(ui − wi)
2. Consider the tth trial St = (xt, It).

Let ŷt = wt · xt. If ŷt ∈ It, then wt+1 = wt, and d(u,wt) − d(u,wt+1) = 0.
If ŷt < It, then wt+1 = wt + ηxt, and it follows that:

d(u,wt) − d(u,wt+1)

=
n∑

i=1

(ui − wt,i)
2 −

n∑

i=1

(ui − wt+1,i)
2

=
n∑

i=1

(ui − wt,i)
2 −

n∑

i=1

(ui − wt,i − ηxt,i)
2

= 2η(u · xt −wt · xt) − η2‖xt‖2

≥ 2η(u · xt −wt · xt) − η2X2
P

From Lemma 1 and the fact that ‖xt‖ ≤ XP , it follows that:

Loss(Perceptron(wt, η), St) − Loss(u, St)

≤ u · xt − wt · xt

≤ d(u,wt) − d(u,wt+1)

2η
+

ηX2
P

2

Similarly, if ŷt > It, it follows that:

Loss(Perceptron(wt, η), St) − Loss(u, St)

≤ d(u,wt) − d(u,wt+1)

2η
+

ηX2
P

2

By summing over all l trials:

Loss(Perceptron(0, η), S) − Loss(u, S)

=
l∑

t=1

Loss(Perceptron(wt, η), St) − Loss(u, St)

≤
l∑

t=1

(
d(u,wt) − d(u,wt+1)

2η
+

ηX2
P

2

)

=
d(u, 0) − d(u,wl+1)

2η
+

ηlX2
P

2

≤ d(u, 0)

2η
+

ηlX2
P

2

≤ U2
P

2η
+

ηlX2
P

2

5

which proves the first inequality of the theorem. The second inequality fol-
lows immediately from the choice of η.

3.2 Bounds for Exponentiated Update

The EU (Exponentiated Update) algorithm is given in Figure 2. The EU
algorithm inputs a start vector s, a positive learning rate η, and a positive
number UE. Every weight vector consists of positive weights that sum to UE.
Normally, each weight in the start weight vector is set to UE/n. For each
trial, if the prediction ŷ is outside the outcome interval, then each weight wi

in the current weight vector w is multiplied (divided) by eηxi if the prediction
ŷ is too low (high). The updated weights are normalized so that they sum
to UE.

The EU algorithm can be used to implement the Weighted Majority al-
gorithm [14]. Assuming that all xt,i ∈ [0, 1] and that β is the Weighted Ma-
jority’s update parameter, set s = (1/n, . . . , 1/n), η = ln 1/β, and UE = 1,
and use outcome intervals of [0, 1/2) of (1/2, 1] for negative and positive ex-
amples, respectively. With these parameters, the EU algorithm makes the
same classification decisions as the Weighted Majority algorithm. The only
difference is that the weights are normalized to sum to UE.

The analysis borrows two ideas from a previous analysis of linear learning
algorithms [10]: normalization of the weights so they always sum to UE, and
the relative entropy distance function. The behavior of the EU algorithm is
bounded by the following theorem.

Theorem 3 Let S be a sequence of l trials. Let s = (UE/n, . . . , UE/n) be the

start vector. Let XE ≥ maxt,i |xt,i|, the maximum magnitude of any value

in an example. Then for any comparison vector u where
∑n

i=1 ui = UE and

where each ui ≥ 0:

Loss(EU(s, η, UE), S) ≤ Loss(u, S) +
UE ln n

η
+

ηlUEX2
E

2

Choosing η =
√

2 lnn/(XE

√
l) leads to:

Loss(EU(s, η, UE), S) ≤ Loss(u, S) + UEXE

√
2l ln n

6

Algorithm EU(s,η,UE)
Parameters:

s: the start vector, with
∑n

i=1 si = UE and each si > 0.
η: the learning rate, with η > 0.
UE: the sum of the weights for each weight vector,

with UE > 0
Initialization:

Before the first trial, set each w1,i to si.
Prediction:

Upon receiving the tth example xt,
give the prediction ŷt = wt · xt

Update:

Upon receiving the tth outcome interval It,
update the weight vector using:

wt+1,i =






UEwt,ie
ηxt,i

∑n
i=1 wt,ieηxt,i

if ŷt < It

wt,i if ŷt ∈ It

UEwt,ie
−ηxt,i

∑n
i=1 wt,ie−ηxt,i

if ŷt > It

Figure 2: Exponentiated Update Algorithm

7

Proof: Let S, l, s, XE, and UE be defined as in the theorem. Let d(u,w) =∑n
i=1 ui ln(ui/wi), where 0 ln 0 = 0 by definition. If the sum of u’s weights is

equal to the sum of w’s weights, then d(u,w) ≥ 0. Note that:

d(u, s) =
n∑

i=1

ui ln
uin

UE

=
n∑

i=1

ui lnn −
n∑

i=1

ui ln
UE

ui

≤ UE ln n

Consider the tth trial St = (xt, It). Then ŷt = wt · xt. Now if ŷt ∈ It, then
wt+1 = wt, and d(u,wt) − d(u,wt+1) = 0. If ŷt < It, then:

wt+1,i =
UEwt,ie

ηxt,i

∑n
j=1 wt,jeηxt,j

and it follows that:

d(u,wt) − d(u,wt+1)

=
n∑

i=1

ui ln
ui

wt,i

−
n∑

i=1

ui ln
ui

wt+1,i

=
n∑

i=1

ui ln wt+1,i −
n∑

i=1

ui ln wt,i

=
n∑

i=1

ui ln
UEeηxt,i

∑n
j=1 wt,jeηxt,j

=
n∑

i=1

ui ln eηxt,i −
n∑

i=1

ui ln
n∑

j=1

wt,je
ηxt,j

UE

= η
n∑

i=1

uixt,i −
n∑

i=1

ui ln
n∑

j=1

wt,je
ηxt,j

UE

= ηu · xt − UE ln
n∑

i=1

wt,ie
ηxt,i

UE

In the appendix, it is shown that:

ln
n∑

i=1

wt,ie
ηxt,i

UE

≤ ηwt · xt

UE

+
η2X2

E

2

8

This implies that:

d(u,wt) − d(u,wt+1)

≥ ηu · xt − ηwt · xt −
η2UEX2

E

2

Using Lemma 1, it follows that:

Loss(EU(wt, η, UE), St) − Loss(u, St)

≤ u · xt − wt · xt

≤ d(u,wt) − d(u,wt+1)

η
+

ηUEX2
E

2

Similarly, if ŷt > It, it follows that:

Loss(EU(wt, η, UE), St) − Loss(u, St)

≤ d(u,wt) − d(u,wt+1)

η
+

ηUEX2
E

2

By summing over all l trials:

Loss(EU(s, η, UE), S) − Loss(u, S)

=
l∑

t=1

Loss(EU(wt, η, UE), St) − Loss(u, St)

≤
l∑

t=1

(
d(u,wt) − d(u,wt+1)

η
+

ηUEX2
E

2

)

=
d(u, s) − d(u,wl+1)

η
+

ηlUEX2
E

2

≤ d(u, s)

η
+

ηlUEX2
E

2

≤ UE ln n

η
+

ηlUEX2
E

2

which proves the first inequality of the theorem. The second inequality fol-
lows immediately from the choice of η.

9

3.3 Discussion

Theorems 2 and 3 provide similar results. They both have the form:

Loss(A, S) ≤ Loss(u, S) + O(l)

where l, the length of the trial sequence, is allowed to vary, and other param-
eters are fixed. If l is known in advance, then a good choice for the learning
rate η leads to:

Loss(A, S) ≤ Loss(u, S) + O(
√

l)

Because there can be a small absolute loss for each trial no matter the length
of the sequence, all the bounds depend on l. It is not hard to generate trial
sequences that approach these bounds.

The bound for the Perceptron algorithm depends on UP and XP , which
bound the respective lengths (two-norms) of the best weight vector and the
example vectors. The bound for the EU algorithm depends on UE, the one-
norm of the best weight vector (the sum of the weights); XE, the infinity-
norm of the example vectors (the maximum magnitude of any value in any
example); and a ln n term. Thus, similar to the square loss case [6, 10] and
previous mistake bound analyses [12], the EU algorithm should outperform
the Perceptron algorithm when the best comparison weight vector has many
small weights and the example vectors have few small values.

The bound for the EU algorithm appears restrictive because the weights
of the comparison vector must be nonnegative and must sum to UE. However,
a simple transformation can expand the comparison class to include negative
weights with UE as the upper bound on the sum of the weight’s absolute values
[10]. Specifically, the length of each example x is doubled by appending the
values of −x to the example. This transformation doubles the number of
weights, which would change the ln n term to ln 2n.

4 Mistake Bounds

To analyze concept learning, consider trial sequences that consist of classifica-

tion trials, in which the outcome for each trial is either a positive or negative
label. The classification version of an online algorithm is distinguished from
the absolute loss version.

10

A classification algorithm classifies an example as positive if ŷ > 0, and
negative if ŷ < 0, making no classification if ŷ = 0. No updating is performed
if the example is classified correctly. The choice of 0 for a classification
threshold is convenient for the analysis; note that because Theorems 2 and
3 apply to any outcome intervals, any classification threshold could be used.

An absolute loss algorithm uses the outcome interval [1,∞) for positive
examples and the outcome interval (−∞,−1] for negative examples. An
absolute loss algorithm performs updating if ŷ is not in the correct interval.
As a result, the absolute loss of the absolute loss algorithm on a given trial is
greater than or equal to the 0-1 loss of the classification algorithm using the
same weight vector (the 0-1 loss for a trial is 1 if the classification algorithm
is incorrect, and 0 if correct). For the following observation, a subsequence of
a trial sequence omits zero or more trials, but does not change the ordering
of the remaining trials.

Observation 4 Let S be a classification trial sequence. If a classification

algorithm makes m mistakes on S, then there is a subsequence of S of length

m where the corresponding absolute loss algorithm has an absolute loss of at

least m. Equivalently, if there is no subsequence of S of length m where the

absolute loss algorithm has an absolute loss of m or more, then the classifi-

cation algorithm must make fewer than m mistakes on S.

Based on this observation, mistake bounds for the Perceptron and EU
algorithms are derived. The notation Loss(·, ·) is used for the absolute loss
of the absolute loss algorithm, and 0-1-Loss(·, ·) for the 0-1 loss of the clas-
sification algorithm.

Theorem 5 Let S be a sequence of l classification trials. Let XP ≥ maxt ‖xt‖.
Suppose there exists a vector u with ‖u‖ ≤ UP and Loss(u, S) = 0. Let S ′ be

any subsequence of S of length m. Then m > U2
P

X2
P

implies Loss(Perceptron(0, 1/X2
P
), S ′) <

m, which implies 0-1-Loss(Perceptron(0, 1/X2
P
), S) < m.

Proof: Using Theorem 2, Loss(u, S) = 0, η = 1/X2
P
, and m > U2

P
X2

P
:

Loss(Perceptron(0, η), S ′)

≤ Loss(u, S ′) +
U2

P

2η
+

ηmX2
P

2

≤ U2
P

X2
P

2
+

m

2

<
m

2
+

m

2
= m

11

Because every subsequence of length m has an absolute loss less than m,
then Observation 4 implies 0-1-Loss(Perceptron(0, η), S) < m.

Actually, the value of the learning rate does not affect the mistake bound
when 0 is the classification threshold. It only affects the relative length of
the current weight vector.

The mistake bound corresponds to previous mistake bounds in the lit-
erature. For example, if a unit weight vector has separation δ = 1/UP , i.e.,
w · x ≥ |δ| for all examples x in the sequence, then a weight vector of length
UP has a separation of 1. If each example x is also a unit vector, i.e., XP = 1,
then the mistake bound is U2

P
= 1/δ2, which is identical to the bound in

Minsky & Papert [15].
Now consider the EU algorithm.

Theorem 6 Let S be a sequence of l classification trials. Let XE ≥ maxt,i |xt,i|.
Suppose there exists a vector u with nonnegative weights such that

∑n
i=1 ui =

UE and Loss(u, S) = 0. Let s = (UE/n, . . . , UE/n). Let S ′ be any subsequence

of S of length m. Then m > 2U2
E

X2
E

ln n implies Loss(EU(s, 1/(UEX2
E
)), S ′) <

m, which implies 0-1-Loss(EU(s, 1/(UEX2
E
)), S) < m.

Proof: Using Theorem 3, Loss(u, S) = 0, η = 1/(UEX2
E
), and m > 2U2

E
X2

E
ln n:

Loss(EU(s, η, UE), S ′)

≤ Loss(u, S ′) +
UE ln n

η
+

ηmUEX2
E

2

≤ U2
E

X2
E

ln n +
m

2
< m

Because every subsequence of length m has an absolute loss less than m,
then Observation 4 implies 0-1-Loss(EU(s, η, UE), S) < m.

While the learning rate is important for the EU classification algorithm,
the normalization by UE is unnecessary. The normalization affects the sum
of the weights, but not their relative sizes.

This mistake bound is comparable to mistake bounds for the Weighted
Majority algorithm and the Balanced algorithm in Littlestone [12].1 There,

1In Littlestone [12], the Weighted Majority algorithm is also analyzed as a general
linear threshold learning algorithm in addition to an analysis as a “master” algorithm as
in Littlestone & Warmuth [14].

12

XE = 1 and comparison vectors have a separation of δ with weights that sum
to 1. To get a separation of 1, the sum of the weights needs to be UE = 1/δ.
Under these assumptions, the bounds of this paper are also O(lnn/δ2).

Mistake bounds can also be derived for when the best comparison vector
also makes mistakes. Note that if a comparison vector makes a mistake
on a classification trial, it can deviate from the threshold by as much as
UEXE, which implies an absolute loss of up to UEXE + 1 for the absolute loss
algorithm. This leads to the following theorem for the EU algorithm.

Theorem 7 Let S be a sequence of l classification trials. Let XE ≥ maxt,i |xt,i|.
Suppose there exists a vector u with nonnegative weights such that

∑n
i=1 ui =

UE and 0-1-Loss(u, S) = k. Suppose also that Loss(u, St) = 0 for all trials

other than the k mistakes. Let s = (UE/n, . . . , UE/n). Let S ′ be any subse-

quence of S of length m. Let η be any learning rate such that η < 2/(UEX2
E
).

Then

m >
(UEXE + 1)k + UE lnn

η

1 − ηUEX2

E

2

implies Loss(EU(s, η, UE), S ′) < m, which implies 0-1-Loss(EU(s, η, UE), S) <
m.

Proof: If 0-1-Loss(u, S) = k and Loss(u, St) = 0 for all trials other than the
k mistakes, then Loss(u, S) ≤ (UEXE + 1)k because each mistake can have a
corresponding absolute loss of up to UEXE + 1. To use Theorem 3, we want
to obtain:

Loss(EU(s, η, UE), S ′)

≤ Loss(u, S ′) +
UE ln n

η
+

ηmUEX2
E

2

≤ (UEXE + 1)k +
UE ln n

η
+

ηmUEX2
E

2

The last expression is less than m when η < 2/(UEX2
E
) and

m >
(UEXE + 1)k + UE lnn

η

1 − ηUEX2

E

2

Because every subsequence of length m has an absolute loss less than m,
then Observation 4 implies 0-1-Loss(EU(s, η, UE), S) < m.

13

One special case of interest is when UE = 1 and XE = 1. This corresponds
to using the EU algorithm as a master algorithm and one of the inputs
is produced by an algorithm that makes k or fewer mistakes. The bound
2.67k+2.67 lnn can be obtained when η = 0.5. This is close to the Weighted
Majority bound of 2.64k + 2.64 lnn using β = e−1 [14].

5 Toleranced Absolute Loss

The above analysis leads to a per-trial loss for both algorithms, so consider an
extension in which the goal is come within τ of each outcome interval rather
than directly hitting the interval itself. The notation Loss(·, S, τ), where the
tolerance τ is nonnegative, indicates that every outcome interval I of each
trial in the trial sequence S is modified to I ′ = I ± τ where y′ ∈ I ′ if and
only if y − τ ≤ y′ ≤ y + τ for some y ∈ I. The absolute loss is calculated in
accordance with the modified outcome intervals.

For the Perceptron and EU algorithms, the above analysis leads to an
additional per-trial loss of ηX2

P
/2 and ηUEX2

E
/2, respectively. If τ is equal

to these values, then it turns out that the per-trial loss can be eliminated,
leaving a constant additional loss over the sequence in the worst-case, inde-
pendent of the length of the sequence. The proofs for Theorems 2 and 3 can
be generalized to obtain the following theorems:

Theorem 8 Let S be a sequence of l trials and τ be a positive real number.

Let XP ≥ maxt ‖xt‖ and η = 2τ/X2
P
. Then for any comparison vector u

where ‖u‖ ≤ UP .

Loss(Perceptron(0, η), S, τ) ≤ Loss(u, S) +
U2

P
X2

P

4τ

Proof: Let d(u,w) =
∑n

i=1(ui − wi)
2. Consider the tth trial St = (xt, It).

Let ŷt = wt ·xt. If ŷt ∈ It±τ , then wt+1 = wt, and d(u,wt)−d(u,wt+1) = 0.
If ŷt < It ± τ , then wt+1 = wt + ηxt, and it follows that:

d(u,wt) − d(u,wt+1)

=
n∑

i=1

(ui − wt,i)
2 −

n∑

i=1

(ui − wt+1,i)
2

=
n∑

i=1

(ui − wt,i)
2 −

n∑

i=1

(ui − wt,i − ηxt,i)
2

14

= 2η(u · xt −wt · xt) − η2‖xt‖2

≥ 2η(u · xt −wt · xt) − η2X2

P

From Lemma 1 and the fact that ‖xt‖ ≤ XP , it follows that:

Loss(Perceptron(wt, η), St, τ) − Loss(u, St)

= Loss(Perceptron(wt, η), St) − τ − Loss(u, St)

≤ u · xt − wt · xt − τ

≤ d(u,wt) − d(u,wt+1)

2η
+

ηX2
P

2
− τ

Similarly, if ŷt > It ± τ , it follows that:

Loss(Perceptron(wt, η), St, τ) − Loss(u, St)

≤ d(u,wt) − d(u,wt+1)

2η
+

ηX2
P

2
− τ

By letting τ = ηX2
P
/2 and summing over all l trials:

Loss(Perceptron(0, η), S, τ) − Loss(u, S)

=
l∑

t=1

Loss(Perceptron(wt, η), St, τ) − Loss(u, St)

≤
l∑

t=1

d(u,wt) − d(u,wt+1)

2η

=
d(u, 0) − d(u,wl+1)

2η

≤ d(u, 0)

2η

≤ U2
P

2η
=

U2
P

X2
P

4τ

which proves the inequality of the theorem.

Theorem 9 Let S be a sequence of l trials and τ be a positive real number.

Let s = (UE/n, . . . , UE/n) be the start vector. Let XE ≥ maxt,i |xt,i| and

η = 2τ/(UEX2
E
). Then for any comparison vector u where

∑n
i=1 ui = UE and

where each ui ≥ 0:

Loss(EU(s, η, UE), S, τ) ≤ Loss(u, S) +
U2

E
X2

E
ln n

2τ

15

Proof: Let S, l, s, XE, and UE be defined as in the theorem. Let d(u,w) =∑n
i=1 ui ln(ui/wi), where 0 ln 0 = 0 by definition. If the sum of u’s weights is

equal to the sum of w’s weights, then d(u,w) ≥ 0. Recall from the proof of
Theorem 3 that:

d(u, s) ≤ UE lnn

Consider the tth trial St = (xt, It). Then ŷt = wt · xt. Now if ŷt ∈ It ± τ ,
then wt+1 = wt, and d(u,wt) − d(u,wt+1) = 0. If ŷt < It ± τ , then:

wt+1,i =
UEwt,ie

ηxt,i

∑n
j=1 wt,jeηxt,j

In the proof for Theorem 3, it is shown that:

d(u,wt) − d(u,wt+1)

≥ ηu · xt − ηwt · xt −
η2UEX2

E

2

Using Lemma 1, it follows that:

Loss(EU(xt, η, UE), St, τ) − Loss(u, St)

= Loss(EU(xt, η, UE), St) − τ − Loss(u, St)

≤ u · xt − wt · xt − τ

≤ d(u,wt) − d(u,wt+1)

η
+

ηUEX2
E

2
− τ

Similarly, if ŷt > It ± τ , it follows that

Loss(EU(wt, η, UE), St, τ) − Loss(u, St)

≤ d(u,wt) − d(u,wt+1)

η
+

ηUEX2
E

2
− τ

By letting τ = ηUEX2
E
/2 and summing over all l trials:

Loss(EU(s, η, UE), S, τ) − Loss(u, S)

=
l∑

t=1

Loss(EU(wt, η, UE), St, τ) − Loss(u, St)

≤
l∑

t=1

d(u,wt) − d(u,wt+1)

η

16

=
d(u, s) − d(u,wl+1)

η

≤ d(u, s)

η

≤ UE ln n

η
=

U2
E

X2
E

ln n

2τ

which proves the inequality of the theorem.

For both algorithms, the toleranced absolute loss of each algorithm ex-
ceeds the (non-toleranced) absolute loss of the best comparison vector by a
constant over the whole sequence, no matter how long the sequence is. If
the best comparison vector has a zero absolute loss, then the toleranced ab-
solute loss is bounded by a constant over the whole sequence. These results
strongly support the claim that the Perceptron and EU algorithms are online
algorithms for minimizing absolute loss.

6 Randomized Classification Algorithms

To apply Theorems 8 and 9, again consider concept learning and classifica-
tion trial sequences.2 A randomized classification algorithm for a classifica-
tion trial sequence is defined as follows. The Perceptron or EU algorithm is
performed on the sequence using a tolerance of τ = 1/2, and outcome in-
tervals of [1,∞) and (−∞,−1] for positive and negative classification trials,
respectively. The prediction ŷ is converted into a classification prediction by
predicting positive if ŷ ≥ 1/2, and negative if ŷ ≤ −1/2. If −1/2 < ŷ < 1/2,
then predict positive with probability ŷ +1/2, otherwise predict negative. It
is assumed that the method for randomizing this prediction is independent
of the outcome intervals, e.g., the outcome is fixed before the randomized
prediction. When −1/2 < ŷ < 1/2, updating is performed regardless of
whether the classification prediction is correct or not.

The idea of a randomized algorithm is borrowed from [14], which analyzes
a randomized version of the Weighted Majority algorithm. This paper’s
randomization differs in that there are ranges of ŷ where positive and negative
predictions are deterministic.

2Refer to Section 4 for the definition of classification trial sequence.

17

Note that the toleranced absolute loss of the randomized classification
algorithm on a classification trial (referring to the ŷ prediction) is equal
to the probability of an incorrect classification prediction if −1/2 < ŷ <
1/2. Otherwise, the toleranced absolute loss is 0 for correct classification
predictions and at least 1 for incorrect predictions. In all cases, the toleranced
absolute loss is greater than or equal to the expected value of the 0-1 loss.
This supports the following observation.

Observation 10 Let S be a classification trial sequence. Then, the toler-

anced absolute loss of a randomized classification algorithm on S is greater

than or equal to the expected value of the algorithm’s 0-1 loss on S.

The notation Loss(·, ·, 1/2) is used for the toleranced absolute loss of the
randomized classification algorithm, and 0-1-Loss(·, ·, 1/2) for its 0-1 loss.

Theorem 11 Let S be a sequence of l classification trials. Let XP ≥ maxt ‖xt‖.
Suppose there exists a vector u with ‖u‖ ≤ UP and Loss(u, S) = 0. Then

Loss(Perceptron(0, 1/X2
P
), S, 1/2) ≤ U2

P
X2

P
/2, which implies

E[0-1-Loss(Perceptron(0, 1/X2
P
), S, 1/2)] ≤ U2

P
X2

P
/2.

Proof: Using Theorem 8, Loss(u, S) = 0, η = 1/X2
P
, and τ = 1/2:

Loss(Perceptron(0, η), S, τ) ≤ Loss(u, S) +
U2

P
X2

P

4τ
= U2

P
X2

P
/2

Observation 10 implies E[0-1-Loss(Perceptron(0, η), S, τ)] ≤ U2
P

X2
P
/2.

Theorem 12 Let S be a sequence of l classification trials. Let XE ≥ maxt,i |xt,i|.
Suppose there exists a vector u of nonnegative weights with

∑n
i=1 ui ≤ UE and

Loss(u, S) = 0. Let s = (UE/n, . . . , UE/n). Then Loss(EU(s, 1/(UEX2
E
)), S, 1/2) ≤

U2
E

X2
E

ln n, which implies

E[0-1-Loss(EU(s, 1/(UEX2
E
)), S, 1/2)] ≤ U2

E
X2

E
ln n.

Proof: Using Theorem 9, Loss(u, S) = 0, η = 1/(UEX2
E
), and τ = 1/2:

Loss(EU(s, η), S, τ) ≤ Loss(u, S) +
U2

E
X2

E
ln n

2τ
= U2

E
X2

E
ln n

18

Observation 10 implies E[0-1-Loss(EU(s, η), S, τ)] ≤ U2
E

X2
E

lnn.

For both randomized algorithms, the worst-case bounds on the expected
0-1 loss is half of the worst-case mistake bounds of the deterministic algo-
rithms. Roughly, randomization can improve the worse-case bounds by a
factor of 2 because a value of ŷ close to 0 has a 0-1 loss of 1 in the determin-
istic worst case, while the expected 0-1 loss is close to 1/2 for the randomized
algorithms.

7 Conclusion

This paper has presented an analysis of the Perceptron and Exponentiated
Update algorithms that shows that they are online algorithms for minimizing
the absolute loss over a sequence of trials (examples). Specifically, this paper
shows that the worst-case absolute loss of the online algorithms is comparable
to the optimal weight vector from a class of comparison vectors.

The analysis is fully general. No assumptions about the linear separability
or the probability distribution of the trials are made. The Perceptron analysis
only refers to the maximum vector length of a example and the maximum
vector length of a comparison vector. The Exponentiated Update analysis
only refers to the maximum magnitude of a value in an example and the sum
of weights of a comparison vector.

When a classification trial sequence is linearly separable, this paper has
also shown that the absolute loss bounds are closely related to the known
mistake bounds for both deterministic and randomized versions of these al-
gorithms. Additional research is needed to study the classification behavior
of these algorithms when the target comparison vector is allowed to drift, for
both the linearly separable and nonseparable case.

Based on minimizing absolute loss, it is possible to derive a backpropaga-
tion learning algorithm for multiple layers of linear threshold units. It would
be interesting to determine suitable initial conditions and parameters that
lead to good performance.

Acknowledgments

Thanks to Manfred Warmuth for comments on this paper.

19

References

[1] T. Bylander. Learning linear-threshold functions in the presence of clas-
sification noise. In Proc. Seventh Annual ACM Conf. on Computational

Learning Theory, pages 340–347, 1994.

[2] T. Bylander. Learning linear threshold approximations using percep-
trons. Neural Computation, 7:370–379, 1995.

[3] T. Bylander. Learning probabilistically consistent linear threshold func-
tions. In Proc. Tenth Annual Conf. on Computational Learning Theory,
pages 485–490, 1997.

[4] T. Bylander. Worst-case absolute loss bounds for linear learning algo-
rithms. In Proc. Fourteenth National Conf. on Artificial Intelligence,
pages 485–490, 1997.

[5] N. Cesa-Bianchi. Analysis of two gradient-based algorithms for on-line
regression. In Proc. Tenth Annual Conf. on Computational Learning

Theory, pages 163–170, 1997.

[6] N. Cesa-Bianchi, P. M. Long, and M. K. Warmuth. Worst-case quadratic
loss bounds for a generalization of the Widrow-Hoff rule. IEEE Trans-

actions on Neural Networks, 7:604–619, 1996.

[7] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis.
John Wiley, New York, 1973.

[8] S. I. Gallant. Perceptron-based learning algorithms. IEEE Trans. on

Neural Networks, 1:179–191, 1990.

[9] R. L. Kashyap. Algorithms for pattern classification. In J. M. Mendel
and K. S. Fu, editors, Adaptive, Learning and Pattern Recognition Sys-

tems: Theory and Applications, pages 81–113. Academic Press, New
York, 1970.

[10] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation, 132:1–63,
1997.

[11] N. Littlestone. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning, 2:285–318, 1988.

20

[12] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learn-

ing Algorithms. PhD thesis, Univ. of Calif., Santa Cruz, California, 1989.

[13] N. Littlestone. Redundant noisy attributes, attribute errors, and linear-
threshold learning using Winnow. In Proc. Fourth Annual Workshop on

Computational Learning Theory, pages 147–156, 1991.

[14] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.
Information and Computation, 108:212–261, 1994.

[15] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge,
Massachusetts, 1969.

[16] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, New York,
1962.

[17] J. Shavlik, R. J. Mooney, and G. Towell. Symbolic and neural learning
programs: An experimental comparison. Machine Learning, 6:111–143,
1991.

A Inequality for Exponentiated Update

Lemma 13 Let w ∈ ℜn consist of nonnegative weights with
∑n

i=1 wi = UE.

Let x ∈ ℜn such that XE ≥ maxi |xi|. Let η be any real number. Then the

following inequality holds:

ln
n∑

i=1

wie
ηxi

UE

≤ ηw · x
UE

+
η2X2

E

2

Proof: Define f as:

f(η,w,x) = ln
n∑

i=1

wie
ηxi

UE

Now differentiate f twice with respect to η.

∂f

∂η
=

∑n
i=1 wixie

ηxi

∑n
i=1 wieηxi

∂2f

∂η2
=

∑n
i=1 wix

2
i e

ηxi

∑n
i=1 wieηxi

−
(∑n

i=1 wixie
ηxi

∑n
i=1 wieηxi

)2

21

When η = 0, f(η,w,x) = 0 and ∂f/∂η = w · x/UE. With regard to the
second partial derivative, the following bound holds for the second partial
derivative:

∂2f

∂η2
≤
∑n

i=1 wix
2
i e

ηxi

∑n
i=1 wieηxi

≤ X2
E

∑n
i=1 wie

ηxi

∑n
i=1 wieηxi

= X2

E

Hence, by Taylor’s Theorem:

f(η,w,x) ≤ ηw · x
UE

+
η2X2

E

2

which is the inequality of the lemma.

22

