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Abstract In this chapter, we propose a distributed multimedia dataagament ar-
chitecture, which can efficiently store and retrieve mudtitia data across several
nodes of a Grid environment. The main components of the megheystem com-
prises of a distributed multidimensional index structwalistributed query man-
ager handling content-based information retrievals améd balancing technology.
The proposed distributed query manager embeds the highdemantic relation-
ships among the multimedia data objects into the k-NN baiseithsity search, thus
bridging the semantic gap and increasing the relevance @fygqesults manifold.
This research has two major usabilities. First, it modelssh environment where
each node of the Grid can be considered as the nodes or samirdesa in the
world-wide-web. This should help to investigate and unierds the challenges and
requirements of future search paradigms based on contemiltimedia data rather
than on text annotations, as used currently. Second, itiggewthe foundation to
develop content-based information retrievals as a pas$id service. Extensive
experiments were conducted with varied data sizes andeliffewumber of distri-
bution nodes. Encouraging results are obtained that mhalssrideavor a potential
architecture to manage complex multimedia data over ailoliséd environment.

1 Introduction

Grid computing can be described as a form of distributed eding which com-
bines the power of several computing nodes of varied comgugsources to exe-
cute one or more tasks collaboratively in a seamless ansitaaent manner without
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any central control [12][13][14]. In the recent years, tlopplarity of Grid Comput-

ing has enabled experts from different scientific backgdsuo use its high comput-
ing power to execute computation intensive applicatiorferOthese applications
are data intensive like in protein folding, semiconduct@anmfacturing, and DNA
sequence analysis. Such applications need a well definachtiariagement within
the distributed Grid environment.

There are basically two different approaches of designibat Grid: namely
management of static data and supporting dynamic dataldetdirst approach is
also called Level 0 Data Grid [7]. It does not address dataagement issues as
updates, transactions, integrations, etc., which are&ypd data that changes with
time. Basically, it addresses two fundamental issues: alatass and meta data ac-
cess. The data access provides managing, accessing asfditriaig data that is
stored in the storage (typically as file systems). It esabiyimplements a storage
system abstraction, by which the applications need not laeeawf the specific low-
level policies utilized in the data management. The meta-darvice provides a
mechanism for presenting and using the information abautitita (stored in the
files). Different categories of meta data can be used: nagwiyent information
of the file, data creation environment, and applicatiorcBfmeinformation related
to the data. Apart from these two basic functionalities,dlé/Data Grid provides
some added services such as authorization and authemticegsource allocation,
and performance evaluation. Level 1 [26] data Grids are yoathic data sets and
accommodates methods such as access, management, toansadtsynchroniza-
tion of data. To develop data Grids comparable in perforraamcl robustness to the
traditional data management techniques, features inauiddexing, querying, and
transaction management. should be provided effectivdlgse features should be
incorporated seamlessly along with features which areglpo Grid environment
such as data regionalization, data synchronization, aadibalancing.

Multimedia data is more complicated than traditional teased data both in
representations as well as in access mechanisms involwétgdbeir retrievals.
Multimedia data is typically represented as multidimenaiovectors of low-level
features (e.g., colors, textures, objects, etc.). In aidib the low-level informa-
tion contained in them, they have high-level semantic imfation attached. The re-
lationship between the low-level features and the higlellsemantic information is
quite fuzzy and gives rise to tleemantic gajissue. This is a typical problem area in
all types of multimedia data retrievals and affects thevaatee of query results neg-
atively. Thus, any data management frameworks for multienédta should be able
to accommodate both these atypical characteristics ofimedtia data: namely the
multidimensional representation and the semantic inftionaThough multimedia
data is more complex than traditional text-based data; #teypopular media of
communication due to their expressiveness. Thus, thegepiee and requirements
in today'’s popular applications cannot be avoided. Hercenhance the usability
of Grid environment, the underlying data Grid should be dblenanage multi-
media data effectively as well. But, since multimedia datguite different from
traditional text-based data, their management framewshksild also be different.
For example, the index structure for multimedia data shbalchultidimensional as
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opposed to the popular single dimensional index structfrest-based data. Addi-
tionally, since their information needs are different, teieval methodologies that
the database system should support are different too. édiettealls for a dedicated
multimedia data management framework over the distribeit@itonment of a Grid
architecture.

The Internet can be considered as a distributed environarehtan be simu-
lated with a Grid architecture. Several popular applicagisuch as social networks,
collaborative tools, and search use multimedia data hed\us a multimedia data
management architecture for Grid environment can be cersidas a prototype for
investigating multimedia data management in the Inte@eé specific application
which can benefit immediately from such layoutnimsltimedia searchCurrently,
the multimedia search is based keywordsor annotations Such search paradigm
limits the relevance of the search results manifold. Birstisingle multimedia ob-
ject (an image or a video) can have multiple high-level seinaneaning attached
to it as the semantics vary with the perspective of the userlatbels it. Thus, one
keyword will be unable to capture the different aspects efubkers’ perspectives.
Secondly, the multimedia data is represented and storediktislimensional feature
vectors. Thus, for a keyword-based search, during retrigthem from the under-
lying storage, a relationship need to be established batwezlow-level features
and the high-level semantics (keywords with which they amressed). This rela-
tionship is often fuzzy and there exist a gap between theliedcthe semantic gap.
This affects the relevance of the query results and degtadeguality of the search
results. The best approach is to introduce a content-basedsparadigm for mul-
timedia data which will be distributed over the Internetugha successful layout
of a multimedia data management and content-based rdtsigsi@m over the Grid
will be a potential solution for solving the problem of mamagmultimedia data
over the Internet.

In this chapter, we lay down the framework for distributedtmedia data man-
agement over a Grid Computing environment. It comprisesvof ¢ategories of
components: firstly, components related to the multimedia dnanagement like
index structure, and query manager; and secondly, componalated to the Grid
architecture like automatic load balancing techniqued raplica management poli-
cies. These two sets of components should seamlessly coitateiwith one an-
other so that the overall goal of achieving multimedia datnagement over a
distributed Grid environment is achieved. A database mamagt system is pri-
marily composed of two major blocks: a robust storage andiefft well-rounded
retrieval mechanisms. An index structure is the backboneodti and is the use-
ful connection between them. Traditional single dimenalandex structures such
as B-Tree [1] cannot handle the multidimensional featuiors that are used to
represent the multimedia data. Though there are numerolisimensional index
structures such as those in [8][3] that can handle the ninlédsional aspect of
the multimedia data but they lack the capability to hand&ehfgh-level semantic
relationships efficiently. In our earlier works, we propoeultidimensional index
structures including AH-Tree [4], HAH-Tree [5] and GeM-&r§5] designed for
efficient management of multimedia data comprising of insaged videos. In this
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chapter, we extend the usability of multimedia index stites in a distributed Grid
environment. We propose a distributed query managemehhitgee which em-
beds a content-based similarity search into a k-NN baseatitig in a distributed
environment. Additionally, we introduce the high-levetrsmtic relationship into
the index structure and the subsequent query processihgwibchastic construct
called Markov Model Mediator [25]. We also introduce Gricesjlic components
including a load balancing manager and semantic relatippshanager between
Grid nodes to enable the proposed multimedia databasevirarkéo be used suc-
cessfully in a Grid environment. Extensive experimenthwiried data load and
computation nodes are performed. The promising resultodstrate the usability
of the proposed architecture and its potential extengbili

The rest of the chapter is organized as follows. Section 8qmts a discussion
on the related works in the field of distributed data managenechniques and
Data Grids. Section 3 lays down the overall framework of treppsed system and
discusses the different components in details. Sectioroviges a detailed empir-
ical study of the proposed system. Section 5 presents admmflusion and future
direction of this research.

2 Related Work

In this section, we study the existing works on three imparéspects: Distributed
Multimedia Database Management Framework, DistributetexnStructures and
Data Grids. Developing a successful distributed multiraatiitabase management
framework over the Grid environment is basically a seaméesabination of all
these different aspects. Thus, understanding the chasticte of each aspect helps
us clearly define the capabilities that should be incorpgaratto the proposed ar-
chitecture. Also, it helps us identify the limitations ofckandividual aspect when
handling multimedia data in a distributed Grid environmdrtus, this survey of
related works enable us to appreciate the necessity of aatie multimedia data
management framework to be incorporated into a Grid arctuite.

Distributed Multimedia Database Management Framework: Though there are
some proposed architectures for distributed multimedtalese systems such as
[2][17], none of them discusses the intrinsic database comapts; for example,
the index structures, and the query manager in the distibahvironment. [17]
proposes an object-oriented database with an object requaleer (a brokering
server). It uses specialized repository servers for gjadifferent multimedia data
types. Using specialized servers enables some query dmadities such as content-
based retrievals, and optimized access to be allocate@ aefository level rather
than at the database level. Thus clearly, here the datggstisaeparated from the
main database functionalities. Hence, different databasieg and optimization
techniques depending on both the data stored as well as arséneaccessibility
including query optimization, query cost determinatiamj &ndex structures cannot
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be used seamlessly across the entire framework (sincegstarad database func-
tionalities are separated). [2] also treats each multimddta as an object and does
not represent them as feature vectors. Hence, there is nalefeied index struc-
ture to facilitate efficient storage and retrieval basedt@endontents. The retrieval
is done with object graphs where two levels of object grapbsiaed: namely local
and central. Thus, the logical relationships among theimatiia data objects are
captured but their relationship in terms of their contenwva#i as storage strategies
are not handled. Moreover, it doesn’t propose any indexaira, as robust as ones
used in relational database systems, to be deployed inrébdisd environment.

Distributed Index Structures: A replicated index structures for distributed data
was proposed in [24]. It proposes a method called dPi-trdesahased on the Pi-
tree [11]. The index structures are replicated in each iocaif the distributed en-
vironment without message passing schemes. Though thegedjndex structure
can be utilized in a distributed environment, it is not teglb to suit the requirements
of complex multimedia data. Firstly, although theoretigilis supposed to be able
to handle multidimensional data, complex containmengssian arise. Secondly, it
is a space-based index structure and hence does not suipmitatit/ search (based
on distance calculation) naturally (unlike distance-léseex structures). Finally,
content-based retrievals, typical for multimedia date,rast embedded in the search
methodologies. Although [19] proposes a distributed setnee in a dynamic dis-
tributed environment, it uses an extended binary leaf sefiee. This limits the
usability of such approach for multidimensional data reprgation. Also, [18] pro-
poses a lazy update method for B+ tree in a distributed enmiemt. However, B+
tree is not a suitable candidate to handle multimedia daitecasnot handle multi-
dimensional data effectively.

Data Grid: [7] discusses the various approaches to designing a Dath Gde-
fines the requirements that a data Grid must satisfy and Adlsgsary for its imple-
mentation. The design of the early data Grids was based amiajor principles:
mechanism neutrality, policy neutrality, compatibilitytiv Grid infrastructure and
uniformity of information infrastructure. The architecgus typically a two-layered
structure, where the lower layer provides the data Gridifipeservices like those
related to the storage system and to the meta-data repoditee upper layer con-
sists of the high-level components such as the replicatsateservice, and replica
management service. The storage system utilized in theopeabarchitecture are
basically file structures and use GridFTP for data transfnmsre are no database
components such as index structures or query managersaesoaith the storage
and meta-data repositories. [14] defines a virtual Data tB&tlis capable of encom-
passing the expertise of large distributed diverse msltiglinary communication.
It proposes general abstractions for representing dataz@amgyutation. Further, it
lays down a virtual data schema and an architecture thatafes/¢éechniques for
representing and maintaining data on an Open Grid Servichit&cture (OGSA).
These architectures are specifically for static data andotladdresses issues such
as data synchronizations, and transaction data poliaiesndble these frameworks
to support dynamic data, services such as data regionatizdata synchronization,
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transactional management, data locality, event notificatind data load functions
need to be introduced [26]. Additionally, data grids shouéde specific data dis-
tribution and data replication policies. For example, ritistion approaches such
as round-robin, Gaussian, random and Poisson can be usedEé replication
policy [22] is an important characteristics of a data GriieTcombination of the
data distribution and the data replication policy definesahility of a data region
to support an application with minimum amount of data moveime

3 Overall Framework

Figure 1 presents the overall framework of the Distributedltivhedia Architec-
ture over Grid. Each data node of the Grid is connected to tiver modes and has
a multimedia database management system embedded in lit.dasec node has a
GridFTP server that takes care of the physical transfer dfimedia objects from
one node to another. The data is basically stored in a datars@he multimedia
database framework is divided into four major componentsulimedia interface,
a core DBMS engine, a content-retrieval engine and a higél-lelationship man-
ager. These four components interact with one another t@waeithe major func-
tionalities including query, and update. The multimediaiface handles the users’
requests and access the other three components to progitédgimation requested
by the user. The core DBMS engine manages the function®detatthe database
that store the multimedia data. It is comprised of sub-camepés that are useful to
designing a successful database system in a distributece@vironment.

While components such as a transaction manager, and a qutanjzer are the
general components needed for a complete database engige,@®mponents spe-
cific to a distributed environment such as an automatic Icadrizing system are
also present. The content-retrieval engine houses tha stdecture and the access
manager. The index structure along with the access manageltds the content-
based retrieval queries. The index structure is a replicateltidimensional index
structure which logically spans across the data nodes bedstid. Thus, the index
structure can be considered as a single unit organizindgp@ltiata that the entire
Grid is comprised of. The high-level relationship manageintains the semantic
relationship among the multimedia data objects. It hasthrajor sub-components:
an affinity relationship metric, a local affinity update uaitd a global affinity syn-
chronization unit. The affinity relation metric basicallyatures and stores the high-
level relationship between the multimedia data objectsetiaon the user access
and feedback, while utilizing the Markov Model Mediator stmuct (discussed in
details in Section 3.2.1). The local affinity update unitlects the user feedback
and access patterns and updates the affinity relationshifcraéter specific time
intervals. The global affinity synchronization unit updatbe global affinity met-
rics based on the update of the local affinity metrics. Thenteaance and use of
the global affinity synchronization enables the users teeigspieries transparently to
the Grid without concerning themselves about the locatmmhralationships of the
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multimedia data. Additionally the data Grid may containestbomponents specific
to the Grid: namely a replica manager designed speciallater ¢che typical needs
of multimedia data and applications; a failure managememyponent designed to
detect the non-functioning of a particular node and how &reithe load among the

functioning nodes; etc.
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Fig. 1 Overview of the Proposed Framework.
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3.1 Replicated Multidimensional I ndex Structure

As mentioned in Section 1, an index structure is the backlafnan efficient
database management system and is the link between thetai@gesand the re-
trieval engines. For the proposed framework, the indexaire should be designed
to satisfy two basic requirements. First, it should be ablesndle multimedia data
efficiently; and second, it should be possible to be deplayest a Grid environ-
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ment. To satisfy the first requirement, the index structlneugd be a multidimen-
sional index structure, so that it can handle the multidisi@mal representation of
the data objects. Also, the similarity search methods supp@y the index structure
should be able to handle the semantic relationship amonmtligmedia data ob-
jects along with the content-level closeness while answetie queries. To satisfy
the second requirement, the index structure should be aldpan across several
distributed data locations and consider characteristiesaoh while dealing with
user requests.

We proposed several multimedia index structure for differaultimedia data
types including images, and videos in our previous workgs]f]. [4] discusses a
multidimensional index structure designed to handle irsaffd extends the idea to
a hierarchical index structure, supporting video dataaibjdt can handle the hierar-
chical relationship among the different video units andlifate intra and inter-unit
retrieval strategies. Since having separate index strestior different multime-
dia data types can cause difficulty while embedding the irstaxcture into the
database kernel (both technical issues as well as optimigablicy issues for other
components residing in the kernel), [6] lays down a genegdlindex structure for
managing both images and videos from one common platforrditiddally, it has
the capability to be extended to support other forms of rmdtlia data such as doc-
uments. [4][5] and [6] support the popular multimedia dataieval strategy based
on content without violating the underlying indexed sp&asically, the k-NN al-
gorithm, which is the standard similarity search algoritiomtree-based indexes, is
customized to support the content-based retrievals whifsidering the high-level
semantic relationships among the data objects. In thistehape extend the multi-
dimensional index structure for images, called Affinity HgbTree (AH-Tree) [4]
and incorporate it into the proposed multimedia databaseagement framework
in a Grid environment. We chose AH-Tree as we wanted to usgesias the test
bed for developing and testing the initial framework of thetributed multimedia
database. It should be pointed out here that both [5] as wéljacan be used in the
proposed framework without any loss of generality.

We use a replicated indexing approach, similar in philogdpthe one proposed
in [24]. The multimedia data is distributed across multiggga nodes of a Grid and
the index structure is replicated across multiple sites el Wach data node with
an index replica has efficient access to the local data. Tieeréogical link among
the local index structures at each node. Thus while seaycthia search results gen-
erated pick up the closest match to the submitted query arathtige multimedia
data presentin the entire Grid repository. Each multimddta is represented with a
data signature that enables the system to uniquely idemtifyltimedia data object.
The data signaturE of a multimedia object is represented with two components,
F, andFg.

Fa={X;, %, % } Q)

Fg = {objecty, nodqd,replicaﬂag} (2)
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The feature vector representing the distribution of eachimedia data object is
a union of the two parts represented as:

F={FAUFg} ®3)

F, represents the low-level feature vector of the multimeditabject andrg
is the unique identifier of the data object. Thieject, is the identifier of the mul-
timedia data objechodeg, is the identification of the data node in the Grid where
it belongs andeplicaflag is set to 1 or 0 depending on whether the particular data
object has a duplicate entry in any of the other data nodéis. ttie replica man-
ager of the node under consideration should be consultedevie this particular
data is accessed or modified. The benefit of using the datatsignis that it makes
the proposed framework transparent to the type of multimddta object used. Any
multimedia data can be represented vitH- might need slight extension to capture
the characteristics of the particular multimedia data used

3.1.1 Node Structures

as a distance-based indexing, there are four basic node agpdiscussed in [4]:
namely, Since AH-Tree is a hybrid structure with both a sgaaeed indexing as
well SpacelndexNode the SpaceData Node the Metric_IndexNodeand the
Metric.Data.Node The structure of the nodes of the AH-Tree is summarized in
Table 1.

Table 1 Summary of Node Structures

Node Structure Affinity
Relationship
1|Spacelndex Node [dimension, split positior)s X
2[SpaceDataNode |root node of metric inde] X
3 Metric_Index Node root of subtree, extendifng/(max affinity)
radius, max affinity
4|Metric_.DataNode | indexed image objects vV

The leaf nodesgpaceData NodeandMetric_.Data Nod¢ of the index tree are
linked with one another to enable easy sequential traveXisa, a virtual link exists
between the local index tree structures of the Data Grid¢lwhave a large number
of semantically related data objects. THagh-level Relationship Managealong
with the Global Affinity Synchronizationomponent determines which data nodes
(locations) of the Grid have large amount of semanticaligtesl data objects. Those
index structures are logically linked to represent a virgiagle multidimensional
index structure.
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3.1.2 Insertion and Deletion

To insert a node in the index structure, the tree is recugsiv@versed until a candi-
date leaf node is identified. A particular sub-tree leadinthe leaf node is chosen
by selecting an intermediate node for which there is no (&gmation 4) or mini-
mum increase (as in Equation 5) in the covering radius. Hisdlgna new object is
inserted at the leaf node, and if it is full, a split is reqdifellowed by a rearrange-
ment of the tree with an increase in the number of levels. Tihgan be seen that
index structure grows in a bottom-up manner and hence niagdzbalanced struc-
ture. Whenever a new data object is inserted into the indextstre, an entry for its
high-level semantic relationship with other multimedigeaits is created in theo-
cal Affinity Updatecomponent and thaffinity Metrics As subsequent queries are
issued, user feedback on the results generated are cdlmetetime. They are used
to populate/update valuesAffinity MetricsandLocal Affinity Updateespectively.

d(Or,0n) <r(Cr) (4)

d(Or,0n) — r(Or) — minimum (5)

To delete a node in the index structure, the tree is first te@ektto locate the
node. If it is an intermediate node, the pointer to the seb-it points to is set to
zero and the memory is released. If it is a leaf-node, theahdkata object at the
repository pointed by it, is removed. As with any update,ltbeal Affinity Update
component and thAffinity Metricsare modified to reflect the change.

3.2 Distributed Query Processing

The query processing component implements the most pofartar of multime-
dia similarity search: namely, content-based retrievake Distributed Query Pro-
cessing method is comprised of two major components. Thedinsiponent is
called theMultimedia Application Interfacéas in Figure 1). It is a global query
processing interface that takes in queries from the usetsamnds them across the
data nodes of the Grid. At each data node, the queries ar&eddey the local
Content-Retrieval Enginend is the second component of the Distributed Query
Processor. The queries, once received by the individual lggery processor are
processed with the k-NN based similarity search algoritifithe multidimensional
index structure. The k-NN algorithm (as discussed in Sac8@®.3) searches the
underlying data repository based on both the low-level @otst of the multimedia
data and their high-level semantic relationship. The $eegsults, comprising of
thek closest data objects to the query, are returned from eaedale of the Grid
back to theMultimedia Application InterfaceThe search results, returned by each
data node of the Grid have two pieces of information. Firet,@ddress of the multi-
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media data object at the local repository of the particuldd Gode; and second, its
distancefrom the query object. The result sets from each data nodeeoBtid are
merged together and sorted based ordis&ance The topk objects from the sorted
list are retrieved from their corresponding local repasit®and form the final query
result. Figure 2 demonstrates the distributed query peoces

Query———» Data Node

Multimedia
Application Interface Local Content-

Retrieval Engine

Top k Similar Results

v Data Node

Sort on
Distance

Local Content-
Retrieval Engine

Data Node

Local Content-
Retrieval Engine

Fig. 2 Distributed Query Processing.

3.2.1 High Level Relationship

A major attribute for the successful processing of the idsyeeries is the efficient
maintenance and use of the high-level semantic relatipresmong the multime-
dia data objects. There are three major components dfliiie-Level Relationship
Manager namely theAffinity Metrics the Local Affinity Updateand theGlobal
Affinity SynchronizationThe Affinity Metrics stores the affinity relationships (as
discussed in Section 3.2.1) of the multimedia data objected in the local reposi-
tory of the Grid node. Thieocal Affinity Updatenaintains the update information of
the affinity values. The update process takes place wheaavew query is issued
and the user feedback of the query results is obtained.Glhbal Affinity Syn-
chronizationhelps in maintaining information necessary to synchrothizeaffinity
relationship among the different Data Grids of the nodes.
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For example, let Image # 101 and # 369 be marked similar by $ke in a
particular query instance. Also, let Image # 101 belongsadéN# 6 of the
Grid and # 369 belongs to Node # 2 NXN matrix (N is the number of nodes
in the Grid) is updated at two locations (with same valueainely at the &
row and 29 column and 29 row and 8" column and the affinity is increased
between that particular pair of nodes.

If the number of nodes of a Grid are huge, it is not practicattwe the semantic
closeness among all the nodes of the Grid. Instead, sentdogieness between the
Grid nodes belonging to logical regions are maintained. A&ntioned earlier, in
this chapter we use image as the testbed for the prototypeefvark. Thus, in the
rest of the chapter, we discuss the different functioredithat handle images.

The high-level image relationship used in AH-Tree is cagduising a stochas-
tic construct called the Markov Model Mediator (MMM) [25hdt maps the low
level features and high level concepts in CBIR by capturmgimage relationship
as perceived by the user. MMM is a probabilistic based meshathat adopts the
Markov model framework and the mediator [25]. The MMM medkanis repre-
sented as a 5-tuple = (S F, A, B, i), whereSis the set of image# is the state
transition probability distributionB is the feature vector ant is the initial state
probability distribution. From this tuple, our point of @rest is the state transition
matrix denoted by, where each entrff, j) corresponds to the relationship between
imagei andj. The MMM mechanism builds an index vector for each image @ th
database and considers the relationship between the gqnaggiand the target im-
age. The main idea e more frequent two images are accessed together, the more
related they areThe relative affinity measuremertf(fmn) between two images
andn is defined as follows:

q
affmn = z use, x USe,  x accesg (6)
k=1 ’ ’

Here, usg, denotes the usage pattern of imagewith respect to query, per
time period, andiccesg denotes the access frequency of qugrper time period.
The state transition probability matrix is built by haviag, as the element in the
(m, n)th position of A. Theamn value is defined as

_affmy
a andaffm,n

(7)

amn

It should be noted that any high-level image relationshjptwang mechanism
similar to the affinity relationship can be used in the praebisdex structure with-
out loss of generality.
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3.2.2 Affinity Promotion

As derived and proved in [4], the high-level semantic relaship cannot be incor-
porated into the multidimensional index structure as itaties the properties of the
underlying indexed metric space. Thus, the affinity shoddobomoted from the
leaf to the intermediate root level during each query. &fiifj the affinity between
the query object and the leaf nodes (at Level 0) of the indexis determined. Then
for each intermediate node at Level 1, the maximum of theigffualues of its chil-
drenis calculated. This value is set as the affinity valubefiarticular intermediate
index node at Level 1. The process continues for each Ldlv#idiroot is reached.
The affinity promotion technique has two important significas. First, it ensures
that there is no false dismissal (i.e., if there is a candidatltimedia data object at
some sub-tree of a node, the node and subsequently theesutvitl be traversed).
Second, it avoids unnecessary traversal of sub-trees wier@is no possibility of
the existence of any candidate node.

3.2.3 Distributed Content-Based k-NN Similarity Search

Table 2 presents the k-NN similarity search algorithm insridbuted environment
that supports Content-Based Image Retrievals (CBIR) oviel @ follows a branch
and bound technique as in [16]. The algorithm presentedhifeT2is for the metric
region. Before ensuing the search on the metric regioneaifiy stage is undertaken
where the space-based index structures in each node of ithésGearched to get
thek closest feature-spaces. They are merged together and the search is exe-
cuted on them. Although every index structure can have tvgctsamilarity search
paradigms: namely Range Search and k-NN Search, for CBIBdb@&trievals, k-
NN approach models the information requirements most alyuHence, we con-
centrate exclusively on the k-NN based search in this chafgéssue content-based
retrieval queries, a user must submit the query taMllsétimedia Application Inter-
face The low-level features are extracted from it to represkatstubmitted query
in the same feature space as that of the indexed data. Fompéxaiithe images
stored in the Grid are represented as color and texturerésatwhen a query image
is submitted, it should be also represented as a featurernveammprising of color
and texture features. The query in the form of the featuréovés submitted to the
nodes of the Grid to the local multimedia interface at eadk @ode. The affinity
value is promoted in the multidimensional index structusegplained in Section
3.2.2. The index structure is traversed from the root toglaélevel. For each inter-
mediate node of the index structure, the similarity betw&erindexed multimedia
object and the query is determined in terms of both the loxellEeature similarity
and high-level semantic closeness. If the indexed multimebject under consider-
ation is more similar than the currekif candidate in the priority list, it is replaced
with the indexed multimedia object just considered. Thenisi queue is updated
and the search continues recursively on the next closestidate. Typically, the
sub-tree contained in the candidate intermediate indey ensearched recursively.
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If the examined node is a leaf and satisfies the similarityddans of distance and
affinity, the corresponding data object is pushed into tlsellteset. The result set
itself is another priority queue, where the results arerfiized according to the dis-
tance and affinity score with the query object. Once, eactl Gde has a result-set
ready, the result-sets are sent back toNhdtimedia Application InterfaceHere,
the result sets get merged and sorted. Thektopjects are returned to the user as
the query result. The user feedback is collected on eaclemies$ query result and
components in the High-Level Relationship Manager are tgabaccordingly.

When the number of Grid nodes is large, it is not practicahtolve all the nodes
for every query. Generally, under those circumstanceszllyj the query is submit-
ted to areasonablenumber of Grid nodes (eg. in the range between -1Q00).
After receiving the query results for the first iteratione talobal Affinity Synchro-
nization of the Grid nodes, which have data objects marked similahéoquery
object by the user, is consulted. The Grid nodes that are siwdfar to the Grid
node under consideration (i.e., those that contain similaitimedia data objects)
are selected. In the next iteration, the refined query is #tdxinto these selected
Grid nodes and the process continues. The merged and sedel set produced
at the end of each query iteration is stored. After a few itena (the number of
iterations depends upon the Grid layout), all the result ae merged and sorted
again to get the tokresults corresponding to the issued query across the &rile
multimedia data repository.

It should be pointed out here that to reduce the number cdrlist computations
and use as many pre-computed distances as possible, ageetsiilar to [8] is
introduced. In this method, in order to avoid unnecessampeding of distances
between every pair of index entry with the query, the coygeradius of a parent
node, its distance with the child, along with its distancéhwhe query object, is
tested before a particular sub-tree is considered. It dseglassic metric space
property oftriangular inequalityto formulate the checking condition. To reach a
child node, its parent must have been traversed and thus llasrto be a distance
computation between the parent with the query. This dig@oeenputation is saved
and reused for the next iteration. For example, one needartoby computing the
distance between the root with the query object. It then khécany child of the
root satisfies the qualification condition. If so, the copasding child, along with
its sub-tree, is considered.

3.3 Automatic Load Balancing

Any application in a Grid environment is incomplete withaytropetoad balanc-
ing functionality. Additionally, the domain that is dealt inislresearch (i.e. Multi-
media Data) has an undeniable necessity for an effectidedaancing component.
This is because, multimedia data is much bulkier than orglitext-based alpha-
numeric data and thguality of serviceexpected from multimedia applications is
much higher than traditional text-based retrieval methdtiss, whenever a partic-
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Table 2 Implementation of Distributed Content-Based k-NN SimtiaSearch

Distributed _Similarity _Search(Q,N;q4. 1(Q), aff) { //CBIR over Grid.
Get User Query;
Extract the low-level feature values from the query;
Submit the query across the Grid;
For each Node of the Grid d¢:
Affinity _Promotion( ); //promotion of affinity value
V O in N4 do: {
if (O is an intermediate index nod¢)
if (] Oy, Q) - d©Or, Oyl < 1(Q)+r(Or)) {
Compute dO;, Q) and affQr, Q);
if (d(Or, Q) < r(Q)+r(0r)) && (aff( O, Q) > aff)) {
Distributed _Similarity _Search(ptr(T(G;)), Q, aff);
/IT(Or): pointer to the subtree

elseif Oy is a leaf object)
If the object qualifies the distance function and the affjnity
add to the result set along with the distanice
133;
Merge result set from each Grid node;
Sort result set on distance (similarity) with the qu&y
Pick thek closest multimedia objects from the sorted result set;

ular Grid node is overloaded, the load should be distribatadng the less-utilized
Grid nodes to attain a balanced computation cost. Moreasetiscussed in Section
3.2.3,when a query isissued to a Grid, it is simultaneosslyed to the Grid nodes.
Query results from all the nodes of the Grid are collected@dpiled to present
the user with a single result set. Thus, if one/more nodeehid is overloaded, it
affects the performance of the entire Grid framework asvhitimedia Application
Interfaceneed to wait till it receives responses from all the Grid reod&le note
that in some applications, although load balancing mayltré@sa more balanced
utilization of resources, it may however worsen the ovgratformance. For typical
Multimedia Data Application, this is not the case though.

We propose a load balancing algorithm as presented in Tales3basic heuris-
tics used behind the proposed algorithm is computdiioe o number of indexed
data points. Since, for developing the index structure amdsfibsequent queries,
distances between pairs of multimedia objects need to balesééd. The number of
necessary distance computations increases as the numitaiaobbjects involved
increase. Now, the total number of distances computedrdates the overall com-
putation time. So, to balance the computatione over the Grid, the number of
multimedia data objects in each Grid node repository isrizadd. The load balanc-
ing is typically not achieved in a single iteration but regsiquite a few iterations.
The number of iterations required depends on the data seltvet. For each iter-
ation, the maximum and minimum computation time for prorgsthe submitted
query is determined. Additionally, the Grid nodes having thaximum and mini-
mum values, are identified. Normally, the number of data tsaimthe Grid node
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Table 3 Load Balancing in the Distributed Multimedia Database Mgemaent Framework

Load Balancing(n, i) { /Load Balancing over Grid.
For each iteratiom {
Set mintime = minimum computation time amomgGrids in iteration — 1;
Set maxtime = maximum computation time amongsrids in iteration — 1;
Setn,,;, = node with minimum computation time;
Setnmax = Node with maximum computation time;
if (number of data objects inmax > Number of data objects im;,)
Set numdatamoved = (number of data objectsiipa., — number of data objects imy,;,)/2;
else
Set numdatamoved =x; //x is a pre-determined value.
Move numdatamoved fromnmaxto Ny

taking the maximum time should be more than that taking themmim time. If the
condition is not as it is predicted, it can be concluded thatitnbalance is not due
to the query application but due to some other applicationthe Grid. Under such
circumstance a pre-defined number of data points are mowedtfre most loaded
node to the least loaded one. The pre-defined numdér determined based on the
initial load in each Grid node. If the condition is satisfigléta points are moved
from the most loaded to the least loaded such that they batlugihaving the same
data load. The process is repeated until a desired balatatedsreached.

It should be mentioned here that the proposed algorithmisee with the as-
sumption that the Grid under consideration is a dedicatdtimedia data manage-
ment Grid with no other computation intensive applicatinmmning simultaneously.
In other scenarios, this basic load balancing algorithnukhloe extended to include
the different real-time factors that would decide on the ant@f data to be moved.
Such modifications, specific to the Grid characteristicepsthbe possible without
any loss of generality.

3.3.1 Basics of Load Balancing in a Distributed Environment

There are two approaches of dynamic load distributionsd-kfzaring and load-
balancing. Where both load-sharing and load-balancingcagh tends to max-
imize the rate at which distribution systems work, when megiresources are
available, load-balancing additionally attempts to egeathe loads on the avail-
able nodes [23]. Additionally, load distribution algoritls can be categorized as:
Sender-Initiated Algorithms [10], Receiver-Initiatedghkithms [10], Symmetri-
cally Initiated Algorithms [20] and Adaptive Algorithm [21As the name suggests,
in Sender-Initiated Algorithms, load-distribution istiated by an overloaded sender
that tends to send a task to an under-loaded receiver. Ingbeiver-Initiated Algo-
rithms, load distributions is initiated from an under-leddode (receiver) to a over-
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loaded node (sender). For Symmetrically initiated aldonis, both the overloaded
as well as the under-loaded nodes initiate the load-digtdb and possess the ad-
vantages of both the Sender-Initiated as well as the Reekiite@ated algorithms.
The Adaptive algorithms attempts to address the issuestisatin the above three
approaches. The main issue is the indiscriminate pollinthbysenders negotiation
component. The adaptive algorithm maintains the statesofdtationships between
the sender and the receiver and adapts itself so as to schlmyager systems.
The load balancing algorithm proposed for our frameworklzagonsidered as the
mixture of the sender-initiated and the adaptive approadonsiders the states of
all the nodes of the distributed environment but essenttedinsfers load from the
most loaded node to the least loaded. A mixed approachigadibecause Grid en-
vironments have an increasing potential to grow. Thus, angtion developed for
a Grid environment should be scalable. By keeping track efsthtes of the over-
all system, the different load balancing parameters (ss¢h@amount of load that
should be transfered, identification of the nodes whoseslehduld be balanced)
can be adjusted.

4 Empirical Study

We carried out an extensive analysis of the performance efdifierent critical
functionalities of the proposed framework with a variededset and in a varied en-
vironment. As mentioned before, in this chapter we used énas the multimedia
object type and all subsequent experiments were performéteomn. We used about
9000 images from different categories, collected from tRdREL dataset [9]. These
9000 images were distributed among the data repositorigweddifferent nodes of
the Grid. The simulated distributed/Grid environment h&st8l-based nodes. The
total storage available for users is around 320GB. Each isoglmulated by a Pen-
tium 4 processor with Hyper Threading at 3GHz. The imagesepeesented with
12 features comprising of colors and textures.

We divided the experiments into three categories. At firgt,amalyze the rela-
tionship of the computation cost with the number of disttidu nodes while gen-
erating the index tree. The experimental results presentEdjure 3 demonstrates
that as the number of distribution nodes increases, theageeztomputation time
(measured in seconds) decreases. The same data load ilsutiéstrover multiple
nodes and they all run in parallel, thus decreasing the ctatipn overhead of in-
dividual node. We performed k-NN search for about 15 queaies averaged the
results. The computation time for each instance for eachygaghe maximum of
the computation time among the distributed loads. This cabse, théultimedia
Application Interfacavaits for the query results from all the nodes before prangdi
the aggregate query result to the user. It is interestingte that the computation
overhead during the k-NN search has no direct relationshitptive number of dis-
tribution nodes used. Each node handles the query indildarad the time taken
for completion it depends on the data set (both the data Isadedl as the data
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content) in the particular node. As demonstrated in Figure¥Data Set A dis-
tributed over 4 nodes, the computation time increases iteaith the increase of
the number of nodes. However, Figure 5 demonstrates thatdifferent data set B,
the computation time drops when the number of nodes is 3 &eifing again when
number of nodes is 4.

Computation Time for Tree Generation with 9000 Multimedia Objects
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Fig. 3 Relationship of the Computation Time with the number of Blsttion Nodes during Tree
Generation.

The average accuracy of query results is about 86%. We deployed a distance-
based index structure, M-Tree, which doesn’t consider thk-fevel semantic re-
lationships during the retrievals. The results obtainétipagh comparable in the
computation overhead to the proposed framework, genegateny results with very
poor relevance (averaging as low as-180%).

The load balancing technique is demonstrated in Figure&hd 8, respectively.
It should be noted that the load is balanced after differemaiions for different
data sets. We limited our examination for 5 iterations on\arage, since in most
of the cases we reached a considerable balanced load dtismilwithin 5 iterations.
Again, the variation is dependent on the data set used. lexqeriment, we varied
the number of data sets used in each case to bring a vari&tgenario | uses 500
data points, Scenario Il uses 2300 data points and Sceihlargek 8500 data points,
respectively.

From the detailed experimental analysis, it can be condulat the proposed
Distributed Multimedia Database Management Frameworlasable of fulfilling
the following requirements. First, it leverages the dmited environment of the
Grid in economizing the computation overhead. Second ciapable of supporting
the popular multimedia retrieval requirements with refevguery results in a dis-
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Computation Time for k—-NN Search with Data Set A

~
o

Execution Time for k—-NN search (in seconds)
wu [9)] (2] (22 [o2] (2] (2}
[} [e¢] o N B (o)) o]
T T T T : T T

o
i
T

! !

1 2 3 4
Number of nodes in the Grid

al
N

Fig. 4 Relationship of the Computation Time with the number of Blisition Nodes during k-NN
Search for Data Set A.

Computation Time for k-NN Search with Data Set B

o o o ~
N =2} <] o

(2]
N

a al
(o2} [oe]

54
i

Execution Time for k-NN search (in seconds)
(2]
=)

a
N

! !

2 3 4
Number of nodes in the Grid

a
o
=

Fig. 5 Relationship of the Computation Time with the number of Blisition Nodes during k-NN
Search for Data Set B.



20 Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Che

Load Balancing for Scenario 1
0.09 T T

T
—&— 1 node
—— 2 nodes

o

o

<
T

<+ 3 nodes|]

0.07

0.06 -

o©
o
=

lanced at Iteratiorl,é

o
o
@

<}

o

N
m

Execution Time for Generating Index Tree (in seconds)
o
o
(52}

|
3 4 5
Number of Iterations

o

o

=3
N
N

Fig. 6 Experimental Results for Load Balancing for Data Set I.

tributed environment. And finally, it successfully embedsdtionalities typical to
distributed environments, like a load balancing, into thétimedia environment, to
make the proposed architecture adept for the Grid.

5 Conclusion and Future Works

In this chapter, we proposed a Distributed Multimedia Dass Management
Framework over a Grid. The framework introduced includesithportant com-
ponents necessary for storing and supporting Multimedialidations over the
Grid. A multidimensional replicated index structure wasgwsed that can support
the popular multimedia retrievals based on contents. Tamdwork introduces a
stochastic construct, called the Markov Model Mediatocapture and utilize the
high-level semantic relationship among the multimediaots. The novel inclusion
of the high-level semantic relationship into the k-NN séaatgorithm, without vi-
olating the underlying indexed space, bridges the semgaficand increases the
relevance of query results manifold.

A load balancing approach for the multimedia data objects also introduced,
which successfully distributes the load across all the saxfethe Grid. In addi-
tions, intensive experimental analysis is performed wihied data set and differ-
ent Grid configurations, which demonstrates that the pregpéramework is a novel
approach and a big step towards a full-fledged Multimedia[@aid. The current
framework can be extended in several directions. Firsten@nid specific compo-
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nents such as replica managers, auto failure detectiorezogery of the Multime-
dia Data Nodes can be added. Second, the current framewoukdshe extended
to support other forms of multimedia data such as videos,d@muiments within
one seamless platform. And third, developing MultimediadGervices such as
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Content-Based Information Retrievals and Content-Baseliifedia search could
be developed.
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