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DNS of transition in hypersonic boundary-layer
flows including high-temperature gas effects

By C. Stemmer AND N. N. Mansour

1. Motivation and Objective

Wind-tunnel experiments at hypersonic Mach numbers above 10 are extremely diffi-
cult to undertake and facilities are limited. Additionally, the stagnation conditions for
free flight under atmospheric conditions can not be reproduced. This results in a limited
portability of the wind-tunnel results to atmospheric conditions. Therefore, numerical
investigations of hypersonic transition can be extremely valuable in developing an un-
derstanding of the transition process at hypersonic speeds.

The objective of this effort is to develop an understanding of effects of nonequilibrium
chemistry on transition. Our approach is to compare hypersonic transition on a flat plate
under nonequilibrium chemical and thermal conditions to hypersonic transition under
equilibrium conditions.

In the 1950’s and 60’s, a series of hypersonic experiments was conducted in free flight.
The transition location could be found but no details on the transitional structures could
be recorded in these experiments (see Schneider, 1999, for a comprehensive review of
supersonic and hypersonic experiments). Schneider also notes that the angles of attack
of the test vehicles are uncertain. An ongoing experiment on transition at Ma = 21
in Novosibirsk, Russia Mironov & Maslov 2000, promises experimental verification of
the numerical findings to some extent. Further detailed experiments on transition at
hypersonic speeds cannot be expected in the near future.

2. Governing Equations

In order not to confuse the index notations, the index i refers to the species 1-5 and no
summation is implied on this index, whereas the indices j, k and l refer to the Cartesian
directions x, y and z and summation from 1-3 is implied.

The continuity equation for chemically-reacting compressible flows becomes

∂ρi
∂t

+
∂

∂xj
(ρi(uj + uD

i,j)) =Wi, (2.1)

where Wi represents the species production terms (see Eq. 2.19) and uD the diffusion
velocities (see Eq. 2.16). Rewriting this equation with the species concentrations rather
than the densities, it becomes

ρ
Dci
Dt

+
∂

∂xj
(ρiuD

i,j) =Wi, (2.2)

where the species concentrations are given by

ci =
ρi
ρ
. (2.3)
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Note that since ∑
i

ci = 1, (2.4)

only (i− 1) equations have to be solved.
The total mass is conserved

∂ρ

∂t
+
∂

∂xj
(ρuj) = 0. (2.5)

The total momentum equations are

ρ
Duj

Dt
= − ∂p
∂xj

+
∂

∂xk
τjk (2.6)

with

τjk = µ
(
∂uj

∂xk
+
∂uk

∂xj

)
+ δjk λul,l. (2.7)

The bulk viscosity is denoted by λ.
The energy equation for the total energy becomes

ρ
D(e+ ujuj/2)

Dt
= −(qj + qvib

j ),j − (puj),j +
∂

∂xj
(uk τjk) +

∑
i

(
(ρihiu

D
i,j),j

)
(2.8)

where e describes the internal energy.
The energy equation for the vibrational energy evib in the case of vibrational nonequi-

librium is as follows

∂evib

∂t
+
∂

∂xj

(
evib(uj + uD

j )
)

= −qvib
j +QT−V +Qchem. (2.9)

For the equilibrium case, the vibrational temperature Tvib is equal to the translational
temperature T and eq. (2.33) is used with T replacing Tvib.

The internal energy for the complete system is a sum of the species internal energies
taking into account their concentrations,

e =
∑

i

ciei. (2.10)

The equilibrium internal energy for one species consists of the translational, rotational
and vibrational energy and the heat of formation. Note that atoms (N and O) deliver no
vibrational and rotational contribution to the internal energy

ei = etrans
i (T ) + erot

i (T ) + evib
i (T vib) + ∆hf

i . (2.11)

The internal energy contributions from translation, rotation and vibration are assembled
through the specific heats at constant volume as

ei = ctrans
v,i T + crot

v,i T + cvib
v,iT

vib + ∆hf
i . (2.12)

The enthalpy is expressed as

hi = ctrans
p,i T + crot

p,i T + cvib
p,i + ∆hf

i . (2.13)

The internal energy and enthalpy are connected through

h = e+
p

ρ
. (2.14)
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Figure 1. Composition of equilibrium air at 1 atm.

The fluid is treated as an ideal gas, where the following equation holds

p =
∑

i

pi =
∑

i

ρi
R
Mi
T. (2.15)

For the diffusion velocities uD, Fick’s law of diffusion is employed

ρiu
D
j = −ρD ∂ci

∂xj
, (2.16)

where the diffusion coefficient is independent of the species.
The translational and the vibrational heat conduction is described through Fourier’s

law

qj = −κ ∂T
∂xj
, qvib

j = −κvib ∂T
vib

∂xj
. (2.17)

2.1. Chemical Modeling
A five species (N2,O2,N,O,NO) model for air will be applied. The equilibrium com-
position for air at constant pressure over temperature is shown in Fig. 1. The reaction
rates (kf and kb) are modeled in an Arrhenius manner according to (Park 1989). The
model proposed by Park takes into account the translational as well as the vibrational
temperature T vib for each species. The vibrational temperature describes the vibrational
relaxation, whereas a translational temperature includes the rotational relaxation, which
is assumed to take place instantly. It only takes 9-12 molecule collisions for the rotational
relaxation to complete, whereas the vibrational relaxation takes 105 molecule collisions
to reach a steady state (the same order of magnitude as for the chemical relaxation).
The seventeen chemical reactions thought to be sufficient for the modeling of air under
the conditions of interest are as follows: (The reaction partner M represents any of the
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five species considered; see Park, 1989.)

N2 + M⇀↽ N + N + M (reac. 1)
O2 + M⇀↽ O + O + M (reac. 2)

NO + M⇀↽ N + O + M (reac. 3) (2.18)
N2 + O⇀↽ NO + N (reac. 4)

NO + O⇀↽ N + O2 (reac. 5)

with the production terms (MN2 ,MO2 ,MNO,MNandMO represent the species masses) :

WN2 =MN2(R1 +R4)
WO2 =MO2(R2 −R5)
WNO =MNO(R3 −R4 +R5) (2.19)
WN =MN (−2R1 −R3 −R4 −R5)
WO =MO(−2R2 −R3 +R4 +R5)

where

R1 = −
∑

i

kf,1i

(
ρN2

MN2

)(
ρi
Mi

)
+

∑
i

kb,1i

(
ρN
MN

)2 (
ρi
Mi

)

R2 = −
∑

i

kf,2i

(
ρO2

MO2

)(
ρi
Mi

)
+

∑
i

kb,2i

(
ρO
MO

)2 (
ρi
Mi

)

R3 = −
∑

i

kf,3i

(
ρNO

MNO

)(
ρi
Mi

)
+

∑
i

kb,3i

(
ρN
MN

) (
ρO
MO

) (
ρi
Mi

)
(2.20)

R4 = −kf,4

(
ρN2

MN2

)(
ρO
MO

)
+ kb,4

(
ρNO

MNO

) (
ρN
MN

)

R5 = −kf,5

(
ρNO

MNO

)(
ρO
MO

)
+ kb,5

(
ρO2

MO2

)(
ρN
MN

)
,

and the forward reaction rates kf for the five reactions considered are

kf,1 = 2.0 × 1015 (
√
TT vib)−3/2 exp(−(59, 500/

√
TT vib)) for M = molecule

kf,1 = 1.0 × 1016 (
√
TT vib)−3/2 exp(−(59, 500/

√
TT vib)) for M = atom

kf,2 = 7.0 × 1015 (
√
TT vib)−8/5 exp(−(113, 200/

√
TT vib)) for M = molecule

kf,2 = 3.0 × 1016 (
√
TT vib)−8/5 exp(−(113, 200/

√
TT vib)) for M = atom

kf,3 = 5.0 × 109 exp(−(75, 500/
√
TT vib)) for M= N2, O2 (2.21)

kf,3 = 1.1 × 1011 exp(−(75, 500/
√
TT vib)) for M= N, O, NO

kf,4 = 6.4 × 1011 (
√
TT vib)−1 exp(−(38, 370/

√
TT vib))

kf,5 = 8.4 × 106 exp(−(19, 450/
√
TT vib)).

The backward reaction rates kb are calculated from the equilibrium rates through

kb,i = kf,i/Keq,i (2.22)
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The equilibrium rates are defined as

Keq,1 = exp(0.50989 · (
√
TT vib/10, 000) + 2.4773 + 1.7132 · log10(10, 000/

√
TT vib)

−6.5441 · (10, 000/
√
TT vib) + 0.29591 · (108/(TT vib))

Keq,2 = exp(1.4766 · (
√
TT vib/10, 000) + 1.6291 + 1.2153 · log10(10, 000/

√
TT vib)

−11.457 · (10, 000/
√
TT vib) − 0.009444 · ((108/(TT vib))

Keq,3 = exp(0.50765 · (
√
TT vib/10, 000) + 0.73575 + 0.48042 · log10(10, 000/

√
TT vib)

−7.4979 · (10, 000/
√
TT vib) − 0.16247 · ((108/(TT vib)) (2.23)

Keq,4 = exp(0.96921 · (
√
TT vib/10, 000) + 0.89329 + 0.73531 · log10(10, 000/

√
TT vib)

−3.9596 · (10, 000/
√
TT vib) + 0.006818 · ((108/(TT vib))

Keq,5 = exp(−0.002428 · (
√
TT vib/10, 000) − 1.7415 − 1.2331 · log10(10, 000/

√
TT vib)

−0.95365 · (10, 000/
√
TT vib) − 0.04585 · ((108/(TT vib))

2.2. Modeling of physical and transport properties
The following relations are for a mixture of chemically-reacting gases.

2.2.1. Specific heat at constant volume
The specific heat at constant volume cv for atoms is described through:

cv,i = ctrans
v,i =

3
2
Ri. (2.24)

The partial derivatives of the species concentrations with respect to the temperature are
the contributions due to chemical reactions.

The specific heat at constant volume cv for molecules (Vincenti & Kruger 1982) is
made up as follows,

cv,i = ctrans
v,i + crot

v,i + cvib
v,i

=
3
2
Ri +Ri +

(Θvib
i /T

vib)2eΘ
vib
i /T vib

(eΘvib
i

/T vib − 1)2
Ri, (2.25)

where Θvib
i is the characteristic temperature of vibration of the molecular species.

2.2.2. Specific heat at constant pressure
The specific heat at constant pressure cp is described by:

cp,i = cv,i +RiT. (2.26)

2.2.3. Viscosity
Blottner’s formula will be employed for the modeling of the viscosity (Blottner, Johnson

& Ellis 1971). This approximate formula is valid up to 10,000 K, far exceeding the
temperature range of the flows investigated here. The coefficients Aµi

, Bµi
and Cµi

are
given by Blottner et al.

µi = 0.1 · exp [Cµi
+ (lnT · (Bµi

+ lnT ·Aµi
))] . (2.27)
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2.2.4. Thermal conductivity
The species’ thermal conductivities are described employing Eucken’s correction, given

as (Hirschfelder, Curtiss & Bird 1964):

κi = µi(
5
2
ctrans
v,i + crot

v,i ), κvib
i = µi(cvib

v,i ). (2.28)

2.2.5. Mixing rules for viscosity and thermal conductivity
The mixing rule in a mixture of gases, according to (Wilke 1950), is

µmix ≈
n∑

i=1

xiµi∑n
j=1 xjΦij

(2.29)

with

Φij =

[
1 + (µi/µj)1/2 (Mj/Mi)1/4

]2
(8 + 8Mi/Mj)1/2

and

xi =
ci/Mi∑n

j=1(cj/Mj)
.

The same formula applies for the thermal conductivities, replacing the viscosity µ by
the thermal conductivity k.

Further details of the physical modeling can be found, for example, in (Sarma 2000).

2.2.6. Diffusion coefficient
A constant Schmidt number Sc = 0.5 is assumed (Hudson 1996) which yields for the

diffusion coefficient:

D =
µ

ρSc
=

2µ
ρ

(2.30)

2.2.7. Translational-vibrational energy exchange
Vibrational energy is present only in the molecular species N2, O2 and NO, which are

all modeled as harmonic oscillators. Therefore the following equations are valid. In case
of the incorporation of anharmonic oscillatory molecules like CO2, different relaxation
and energy expressions have to be applied (Vincenti & Kruger 1982).

The translational-vibrational energy exchange is described through a Landau-Teller
relaxation model (Vincenti & Kruger 1982) as,

QT−V =
∑

i

ci
evib,eq
i (T ) − evib

i (T vib)
τi

, (2.31)

where the relaxation times are determined for each species as

τi =
1
pi
C1exp((C2/T )1/3), (2.32)

and the nonequilibrium vibrational energy depends on the vibrational temperature as

evib
i =

Θvib
i /T

vib

eΘ
vib
i

/T vib − 1
RiT

vib. (2.33)

The equilibrium value for the vibrational energy evib,eq
i follows the same expression, with

T replacing Tvib.
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Figure 2. Schematic of shock location and boundary-layer edge for hypersonic boundary
layers on a flat plate, showing dependence on Mach number

The chemical source term in Eq. 2.9 is expressed as the sum over the vibrational
internal energy multiplied with the production terms:

Qchem =
∑

i

ci(evib
i Wi) (2.34)

3. Future Work

A spatial finite-difference DNS code will be applied on a Cartesian three-dimensional
grid on a flat plate. The code will incorporate a shock-capturing technique, since the
shock provoked by the flat-plate leading edge is the major source of nonequilibrium. For
the high Mach numbers, the location of the shock and the boundary-layer edge, which is
the area of linear instability for hypersonic flows, merge, and the chemical and thermal
nonequilibrium in this region is expected to influence transition to a large extent (Fig. 2;
see also Anderson, 1989).

For the flight conditions investigated, the data in Fig. 3 are relevant. At a speed of
V∞ = 5.9 Km/s, dissociation of nitrogen and oxygen can be expected. For an altitude of
h = 25 Km, chemical and thermal equilibrium will persist at a Mach number Ma = 20.
At an altitude of about h = 100 Km (Ma=20.8), full nonequilibrium conditions are
present. Conditions are chosen such that ionization will not take place. This choice is
consistent with the return path of the shuttle as it enters the athmosphere.
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Figure 3. Flow regimes and thermochemical phenomena in the stagnation region of a 30.5 cm
radius sphere flying in air (Gupta et al. 1990)

REFERENCES

Anderson, J. D. 1989 Hypersonic and and High Temperature Gas Dynamics. AIAA
publication.

Blottner, F. G., Johnson, M. & Ellis, M. 1971 Chemically reacting viscous flow
program for multi-component gas mixtures. Sandia Natl. Laboratories, SC-RR-70-
754.

Gupta, R. N., Yos, M. J., Thompson, R. A. & Lee, K.-P. 1990 A review of reaction
rates and thermodynamic and transport roperties for an 11-species air Model for
chemical and thermal nonequilibrium calculations to 30,000K. NASA RP-1232.

Hirschfelder, J. O., Curtiss, C. F. & Bird, R. A. 1964 Molecular Theory of Gases
and Liquids. Wiley & Sons, New York.

Hudson, M. J. 1996 Linear Stability of Hypersonic Flows in Thermal and Chemical
Nonequilibrium. Ph.D. Thesis, North Carolina State University, Raleigh, NC.

Mironov, S. G. & Maslov, A. A., Experimental study of secondary stability in a
hypersonic shock layer on a flat plate. J. Fluid Mech. 412, 259-277.

Park, C. 1989 A review of reaction rates in high temperature air. AIAA Paper 89-1740.
Sarma, G. S. R. 2000 Physico-chemical modeling in hypersonic flow simulation. Prog.

Aerospace Sci. 36, 281-349.
Schneider, S. P. 1999 Flight data for boundary-layer transition at hypersonic and

supersonic speeds. J. Spacecraft and Rockets 36, 8-20.
Vincenti, W. G. & Kruger. C. H. 1982 Introduction to Physical Gas Dynamics.

Krieger, Malabar, FL.
Wilke, S. P. 1950 A Viscosity Equation for Gas Mixtures. J. Comp. Phys. 18, 517-519.


