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ABSTRACT
We have designed a graphical interface that enables 3D visual
artists or developers of interactive 3D virtual environments to
efficiently define sophisticated camera compositions by creating
storyboard frames, indicating how a desired shot should appear.
These storyboard frames are then automatically encoded into an
extensive set of virtual camera constraints that capture the key
visual composition elements of the storyboard frame. Visual
composition elements include the size and position of a subject
appearing in a camera shot.  A recursive heuristic constraint
solver then analyzes the space of a given 3D virtual environment
to determine camera parameters which produce a shot closely
matching the shot in the given storyboard frame.  For example,
developers of interactive 3D virtual environments can create
storyboard frames that visually express how the virtual camera
should film a given set of objects.  Our heuristic constraint solver
takes a given storyboard frame, analyzes the current state of a
potentially dynamic, unpredictable 3D virtual environment, and
computes a camera shot that closely matches the desired shot
depicted by the user in the storyboard frame.  This enables
developers of interactive 3D environments to specify desired
virtual camera shots In contrast, existing methods of automatically
positioning cameras in 3D virtual environments typically rely on
pre-defined camera placements that cannot account for
unanticipated configurations and movement of objects.
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1.  INTRODUCTION
Automatically planning camera shots in virtual 3D environments
requires solving problems similar to those faced by human
cinematographers.  In traditional cinematography parlance, a shot
refers to a continuous stream of frames (individual images)
recorded by a given camera.  In the most essential terms, a shot
typically communicates some specified visual message or goal.
Consequently, the camera must be carefully staged to clearly view
the relevant subject(s), properly emphasize the important elements
in the shot, and compose an engaging image that holds the
viewer’s attention [20, 23].  Expert cinematographers and film
directors often design the initial concept of a camera shot using a

storyboard frame, or rough sketch of how the shot should appear
[17].  It in effect defines the most essential visual composition
elements of a shot.  Visual composition elements include the size
and position of a subject appearing in a camera shot.  Given a
storyboard frame, a camera operator then carefully surveys the
given setting and chooses a camera position, orientation, and lens
angle to create a shot closely matching that in the given
storyboard frame.  This division of labor allows the
cinematographer to express the appearance of the shot at a high
level leaving the details of camera placement to the camera
operator.  In addition the camera operator must be able to think on
his or her feet by adjusting the camera to account for
unanticipated obstacles or arrangements of objects [14].

Users interact with three-dimensional virtual environments by
viewing the scene through the "eyes" of a virtual camera.  A
virtual 3D camera view is defined by parameters of camera
position, aim direction vector, and field of view (lens angle).  In
many 3D applications, users directly control the camera view.
Applications featuring complex interaction tasks or fast-moving
action often delegate the task of camera control to automatic
computer control allowing the user to focus on the task at hand.

Our approach to automatically computing camera shots in virtual
3D environments employs a constraint-based methodology.  The
desired appearance of a camera shot in a virtual 3D environment
is encoded by constraints declaring how subjects should appear in
the frame.  For example, set the camera to obtain a close-up shot
in which the subject fills the frame with the camera viewing its
front right side.  A constraint solver module then attempts to
automatically find values for each camera parameter so that all
constraints are satisfied in the context of a given 3D virtual
environment.  In contrast, some less sophisticated methods of
automatically placing cameras in virtual 3D environments
typically define shots by in effect pre-coding the camera
parameters to properly view a set of anticipated situations.
Constraint-based approaches have the flexibility to analyze the
space of possible camera parameter values to successfully find
satisfactory shots in spite of viewing obstructions or unanticipated
object configurations typical in dynamic interactive 3D worlds.

A constraint-based virtual camera system should provide the
following basic features if it is to be effective in a wide-range of
applications and virtual 3D environments.

• Visual Constraint Editor: Provide a graphical WYSIWYG
interface allowing users to directly draw how a desired
camera shot is to appear.  Constraints are then automatically
extracted from the user's storyboard frame drawing and
exported to the constraint solver system.



• Environmental Analysis: The constraint solver should be
able to analyze a virtual 3D environment to account for
viewing obstructions or objects which may move into an
infinity of possible configurations in dynamic or interactive
3D virtual environments.

• Evaluation of Shot Quality: The constraint solver should
evaluate computed shots to determine how effectively they
satisfy the desired visual constraints.

• Interactive Performance: The constraint solver should be
able to compute solutions in real-time or near real-time to
facilitate interactive 3D applications.

1.1   Current State of the Art
Automatic camera control assistants vary camera position to avoid
occlusions of a goal object or satisfy screen-space constraints on
how subjects appear on-screen [11, 24].  Automated camera
navigation assistants adjust camera speed based on distance to the
target or guide the camera along specified optimal vantages as a
user navigates over a terrain [13, 19, 26, 27].  Both automated
viewing and navigation assistants focus on controlling the camera
at a low-level and frequently require considerable user inputs.

Other systems define camera shots by displacements relative from
the subject(s) being viewed [1, 8, 16, 25].  For example, the
"chase plane" view found in typical flight or driving simulators
and popular third-person 3D adventure games automatically
positions the camera a set distance behind and slightly above the
player’s vehicle or character.  IBIS features multi-view illustrations
and cutaways of occluding obstructions and CATHI has a facility
for transparency [4, 9].  Idiom-based planners employ hierarchical
encodings to sequence shots of anticipated actions such as
conversations between small groups of players [4, 5, 16, 18].
Existing idiom-based systems use variants of the pre-specified
relative camera method in lieu of more complex camera placement
solvers.  The Virtual Cinematographer employs Blinn’s method to
stage the camera to project an object to a given point in the frame
[3].  It can also reposition objects that are not in the anticipated
locations to improve camera shots [18].  One recent effort
employs a cognitive forumulation of the Virtual
Cinematographer’s Finite State Machines to film autonomous
virtual creatures [10].  However, each of these systems can fail to
find acceptable shots when multiple subjects occupy or move into
unanticipated relative spatial configurations, structures in the
world occlude the subject(s) of interest, or users wish to view
unanticipated types of shots.

The CAMDROID constraint system supports a powerful set of
camera constraints, but employs a numerical constraint solver that
is subject to local minima failures [6, 7].  CAMPLAN utilizes
genetic algorithms to generate-and-test candidate camera shots by
“mating” those sets of camera parameters which best satisfy its
thirteen types of shot constraints [12, 22].  A third constraint-
based solver features a systematic solution for handling constraint
failures by creating multiple shot solutions or relaxing less
important constraints, but supports only four types of constraints
[2].  Virtual Camera Man solves small sets of interval constraints
to generate animations offline [15].  Existing constraint-based
systems have yet to demonstrate real-time performance combined
with the expressive power to create artful photographic

compositions and a graphical interface to facilitate development
of constraint specifications.

1.2   Photographic Composition
Our camera constraints were based on established knowledge in
photography and cinematography.  Like photographs and shots in
motion pictures, camera shots in virtual 3D environments should
be composed to clearly depict the objects and actions of interest to
the user.  Composition is the artful arrangement of visual elements
in an image [20, 21, 23].  These visual elements include:
• Subject size: The size of a subject in the frame is expressed

in terms extreme close-up, close-up, medium, long, and
extreme long shots in order of decreasing subject size.
Nearer camera positions or narrower fields of view yield
larger subject sizes.

• Location: Subjects may be carefully positioned in the frame
to determine visual weight, balance, or emphasis.   For
example, subjects may be framed so that they form a triangle
with the dominant subject at the apex of the triangle.

• View angle: The relative orientation from which the camera
views the subject.  For example, the camera may be
positioned at a 45-degree angle from the front of the subject
to create a three-quarter shot.

• Occlusion: Allowing subjects to partially overlap one
another can provide an increased degree of interest or
additional depth cues.

• Exclusion: Good compositions typically exclude unimportant
or distracting objects from the frame.

• Depth: The camera can be positioned so that subjects lie at
varying distances from the camera to better reveal the spatial
distribution of objects in a scene.

2.  STORYBOARD FRAME INTERFACE
A developer of an interactive 3D virtual environment would begin
by creating constraint-based definitions of the types of shots
needed.  Our constraint solver module, integrated into a 3D
application, would analyze the environment to compute camera
shots.  We have developed a graphical interface to facilitate the
creation of constraint-based shot definitions.  It is far more
intuitive to manipulate an object's appearance so its size in the
frame defines a medium shot rather than using a constraint
program script to specify that the object should cover 10% of the
frame's area.  The storyboard frame view (left half of Figure 1) is
augmented by overhead or side views (right half of Figure 1) to
allow the artist to indicate depth relationships between objects
with respect to the camera.

Figure 1:  Storyboard Frame Editor Interface.



          

The Storyboard Frame Editor provides the following
functionalities via drop-down menus or a toolbar (Figure 2).

(a) Object Edits.  Basic operations to select, copy, paste, delete,
and create new storyboard objects.

(b) Location.  Move the currently selected object in the
storyboard frame view to vary its location in the frame.  Move an
object in the overhead or side views to vary its relative distance
from the camera causing a corresponding increase or decrease in
size in the storyboard frame view.

(c) Size.  The size of the currently selected object in the
storyboard frame view may be varied by dragging the mouse also
producing a corresponding decrease or increase in the object’s
relative distance from the camera in the overhead or side views.

(d) View Angle.  Rotate the currently selected object to set the
relative viewing angle between it and the camera.

(e) Minimum-Maximum Allowable Ranges.  By default the
previous object edit operations (location, size, and view angle)
specify the optimal framing attributes for a given object in the
shot.  In complex, unpredictable, or dynamic interactive 3D
environments it may not always be possible to obtain the optimal
shot framing so our constraint-based method permits satisfactory
solutions that are within a specified threshold away from the
optimal shot depicted in the Storyboard Editor frame view.  By
enabling a toggle switch, the user can edit the allowable ranges of
values for the selected attribute of the current object.  An object’s
range of allowable minimum and maximum sizes in the frame are
represented by two rectangular outlines.  The outermost rectangle
represents the maximum size that an object may assume in the
frame, while the innermost rectangle represents its minimum size.
The range of allowable locations in the storyboard is represented
by one bounding rectangle (Figure 4).  A transparent spherical
patch surrounding the current object represents the range of
allowable view angles of the camera relative to an object.

(f) Camera Pan, Dolly, and Rotate.  The storyboard camera can
be moved about to simultaneously change the framing properties
of all objects in the shot.  A pan moves the camera laterally, while
a dolly moves the camera towards or away from the objects, and
rotate swings the camera around the center of the object(s).

(g) Field of View.  Change the field of view angle (zoom factor)
of the camera lens to simultaneously vary the sizes of all objects.

(h) Field of View Inclusion and Occlusion. If an object is
partially outside the frame, then this fact may be noted for export
to the constraint system.  If an object is partially occluded by
another object, the user can specify that this overlap is required
for a constraint solution (this option only available in the menu).

(i) Design Guides.  Users may toggle the display of the “Rule of
Thirds Lines” or a horizon plane.  The Rule of Thirds suggests
placing objects on or at the intersection of horizontal and vertical
lines that split the frame into thirds in either dimension [21].  The
horizon or ground plane can be used to assist in aligning objects.

3.  CAMERA CONSTRAINTS
The camera constraint system supports fifteen types of constraints
on either the camera’s attributes or how objects appear in the
camera shot.  Constraint types are designed to support the
photographic composition elements from Section 1.2.  Constraints
specify optimal and allowable ranges of values for compositional
attributes including subject size in the frame and relative view
angles.  Constraints may be applied to one (primary object) or two
specified objects (primary and secondary objects) or to the camera
itself.  Some object constraints, may opt to apply the constraint to
a designated point or region of space (bounded by a sphere)
displaced from an object’s midpoint.  This optional construct is
referred to as a locus modifier.  For example, the object projection
size constraint can apply a locus modifier to a figure's head
requiring its projection to fill a given fraction of the frame.

3.1   Constraint Types
The following lists the constraint types featured in this paper.

1.  OBJ_PROJECTION_SIZE: requires that the projection of the
primary object’s projection source cover a specified fraction of
the frame.  An object’s projection source may be either its
bounding box or its optional locus modifier sphere.

2.  OBJ_PROJECTION_ABSOLUTE: Requires that the specified
projection source of the primary object project to lie entirely
inside a given rectangular region of the frame.  The projection
source may be a point, locus sphere, or bounding box.

3. OBJ_VIEW_ANGLE: requires the camera to lie at a specified
orientation relative to the untransformed primary object.  This
relative orientation is expressed in spherical coordinates
(horizontal angle theta -180° to 180° and phi -90° to 90°).

4. OBJ_IN_FIELD_OF_VIEW: requires the specified primary
object to lie entirely or partially in the camera’s field of view.

5. OBJ_OCCLUSION_MINIMIZE: requires that no more than
the specified maximum allowable fraction of the given primary
object is occluded by other object(s).

6. OBJ_OCCLUSION_PARTIAL: requires the fraction of the
primary object occluded by other opaque object(s) to range
between specified minimum and maximum allowable values.  It is
also possible to specify which object should contribute occlusion.

   (a) (b)          (c)            (d)           (e)                           (f)                          (g)
Figure 2. Storyboard Frame Editor Toolbar



7. OBJ_EXCLUDE_OR_HIDE: requires that the primary object
is either completely occluded by other object(s) or lies entirely
outside the camera’s field of view.

8. CAM_POS_IN_REGION: requires that the camera position lie
within the specified region of space, which can be defined by one
or more box, sphere, or space partitioning plane regions combined
in a hierarchy using union and intersection operations.

Other implemented constraint types include relative projection
locations of two objects in the frame (e.g. above, below, left of, or
right of, etc.), relative depth of two objects from the camera, field
of view angle, and aim the camera at a specified point.

3.2   Storyboard Frame to Constraints
The Storyboard Frame Editor exports shot definition files, which
are loaded into a separate 3D application program equipped with
our constraint solver.  Two forms of shot definition are exported
when the user saves a shot in the Storyboard Frame Editor.

Relative Displacement Definition: The camera position and aim
direction are expressed as vectors in a local coordinate system
anchored at the first object in the storyboard frame.  Our
constraint solver includes an implementation of relative
displacements to permit an instantaneous solution if the
configuration of objects in a scene happens to match those of the
Storyboard Frame Editor's internal 3D scene model.

Constraint Definition: The Storyboard Frame Editor
automatically exports a set of constraints that define the key visual
elements of the shot.  These constraints are requirements on how
various objects are to appear in the desired shot.  Exported
constraint definitions are scene independent allowing the same set
of storyboard constraints to be used in a variety of different 3D
virtual environments. A constraint-based shot definition may also
be used to film differing configurations of objects in the same 3D
virtual environment.

For example, the storyboard frame in Figure 3(a) depicts a
medium three-quarter shot of a virtual actor.  The user has
manipulated the actor's appearance in the frame view to visually
define the desired shot.  Select the view angle tool and rotate the
object so the camera views the front-left side of the figure.  Next,
use the size tool to move the object towards or away from the
camera until the object appears at the desired size in the frame.
With the size tool still selected, enable the minimum-maximum
toggle switch to specify first the minimum allowed object
projection size and then the maximum allowed object projection
size.  Do so by stretching the bounding rectangles marking the
minimum and maximum allowed projection sizes (Figure 4).  The
Storyboard Frame Editor automatically extracts the essential
visual composition constraints that define this shot.  In this case,
the image of the virtual actor covers 37% of the frame area and
the camera is oriented 45 degrees from the actor's front left and is
elevated by 15 degrees.  Figure 3(b) illustrates an abstract
representation of the constraint parameters for projection size and
view angle.  The parameter values for projection sizes (optimal,
minimum, and maximum) are taken by dividing the area of the
object or bounding rectangles by the total frame area.  Values are
encoded for the desired optimal values and allowable ranges for
the virtual actor's OBJ_PROJECTION_SIZE,
OBJ_PROJECTION_ABSOLUTE and OBJ_VIEW_ANGLE

constraints.  Projection location parameters are encoded with (0,0)
as the lower left corner of the frame and (1,1) as the top right
corner.  The constraints automatically extracted from the
Storyboard Editor frame view in Figure 3 are given in the
constraint script file listing on the following page (Listing 1).
Note, a constraint to minimize occlusion of a subject is
automatically exported unless otherwise specified by the user.

(a) Storyboard frame view of medium three-quarter shot.

(b) Abstraction of constraints extracted from frame view.

Figure 3.  Extraction of projection size and view angle
constraints from Storyboard Editor frame view.

Actor
covers
37% of
frame area

Camera is
45° from
actor’s
front left
and
elevated
by 15°



NumConstraints 5
 // Include BlueActor in camera field of view.
Constraint OBJ_IN_FIELD_OF_VIEW
{  PrimaryObj BlueActor Priority 1.0 }

// Projection size of BlueActor
Constraint OBJ_PROJECTION_SIZE
{   PrimaryObj BlueActor
     Parameters
    {
       Source BoundingBox
       MinSize 0.18 OptSize 0.37 MaxSize 0.63
    }
    Priority 1.0  }

// BlueActor’s 3D bounding box must project into the
// specified rectangular region of the frame.
Constraint OBJ_PROJECTION_ABSOLUTE
{  PrimaryObj BlueActor
    Parameters
   {
      Source BoundingBox
      BottomLeft 0.079801 0.006981
     TopRight 0.882977 1.044370
   }
   Priority 1.0  }

// Relative view orientation to camera.
Constraint OBJ_VIEW_ANGLE
{   PrimaryObj BlueActor
     Parameters
    {
       optHoriz 45.0 optElev 15.0
       AllowedHorizRange 0.0  90.0
      AllowedElevRange   0.0  35.0
    }
    Priority 1.0   }

// Minimize occlusion by obstacles
Constraint OBJ_OCCLUSION_MINIMIZE
{   PrimaryObj BlueActor
     Parameters
    { MaxAllowable 0.10 }
    Priority 1.0   }

Listing 1. Exported constraint definition from figure 3.

As a second example, consider the shot of three virtual actors in
conversation expressed in the Storyboard Editor frame view in
Figure 4(a).  Projection size, viewing angle, projection location,
and occlusion constraints are exported for each character.  Figure
4(b) illustrates the abstraction of the extracted optimal and
maximum allowable projection size for the gray actor standing on
the right side of the frame.

The user manipulates a bounding rectangle in the frame view to
set the maximum allowable projection size of the subject in the
frame.  The Storyboard Frame Editor detects that the nearer blue
actress partially obscures the green actress.  The user can opt to
export a constraint that specifies the optimal and allowed degree
to which the green actress is occluded.  This constraint is useful to
add interest and depth cues to a shot.

(a) Storyboard frame view of desired shot.  User adjusts rectangle
around rightmost actor to specify its maximum allowable
projection size.  Note the partial overlap of the other two figures.

(b) Abstraction of extracted constraints.

Figure 4. Specification and extraction of maximum projection
size and partial occlusion constraints.

3.3   Measuring Constraint Satisfaction
A computed camera placement solution is an assignment of
values to the virtual camera’s position, aim direction, and field of
view angle.  It’s essential to determine how well a given camera
placement satisfies the constraints.  The satisfaction rating for a
constraint is a value in the range 0.0 to 1.0, which rates how near
a camera parameter value is to its specified optimal value for the
constraint.  A cumulative constraint satisfaction rating is

Optimal projection size

Maximum projection size

Fraction of partial occlusion



computed as shown in the below equation, where Pi is the relative
priority of the ith constraint, which may be specified in a
Storyboard Editor dialog box, and Si is the satisfaction rating of
the ith constraint.

( )∑ ×=
N

SiPionsatisfacti
1

This cumulative shot constraint satisfaction rating is used to
determine the "best" shot found during the solution search
process.  Constraint priority values, which can be edited by the
user in the Storyboard Frame Editor, normally range between 0.0
and 1.0.  Constraints having priority values greater than 1.0 are
mandatory and must have a non-zero individual constraint
satisfaction rating; otherwise, the cumulative satisfaction rating
for the shot is degraded to zero.  The constraint priority weights
distinguish between those that are mandatory for an acceptable
shot and those that rank acceptable shots based on how near they
are to the optimal shot given in the Storyboard Editor frame view.
The constraint priority weights help select the returned solution
shot from the set of candidate shots satisfying the given
constraints.  The selection of these priority weights is largely
subjective based on the relative importance of each constraint
assigned by an application or user.

Specialized evaluator functions are provided for each type of
constraint.  Object projection size, location, and inclusion or
exclusion from the field of view are evaluated using the bounding
box of the relevant object.  For object projection size and
location, the 8 vertices of an object bounding box are projected
onto the camera’s viewplane.  Then a rectangle is computed to
enclose the projected points in the frame of the shot.  During
solution searches, the evaluation of a shot terminates when it is
certain that the shot's cumulative satisfaction rating is less than
that of the best shot(s) found so far.  Occlusion constraints are
evaluated last since they tend to be more costly.  The occlusion
constraint evaluator can assume one of two variations:

Ray Casting: Cast rays from the camera position to each of the 8
vertices and midpoint of a potential obstruction’s bounding box.
The number rays resulting in a hit is used to estimate the fraction
of the object in occlusion.

Frame Rendering: An object of interest is rendered into the
OpenGL backbuffer with accompanying writes to a stencil buffer
mask.  Potential occluders are rendered using unique color codes.
Non-zero pixels having values not equal to the id of the object of
interest are added to the fraction of the object in occlusion.

3.4   Camera Constraint Solutions
Our heuristic search method uses the given constraint allowable
minimum and maximum values to reduce the size of the 7 Degree
of Freedom search space of possible camera positions (x,y,z), aim
direction vectors (dx, dy, dz), and field of view angles.  The
Constraint Solver constructs valid regions of space, each of which
represents the allowable range of virtual camera parameter values
that will satisfy a particular constraint.  The solver then examines
candidate camera shots by stepping by discrete increments of the
camera placement parameters (position, aim direction, and field of
view angle) inside the respective valid regions.  Each candidate
camera placement is evaluated as described in Section 3.3 to
determine how well it satisfies the set of constraints.  If no camera

parameter values lie inside all of the respective valid regions, then
the solver reports its failure to find a solution.

3.4.1 Valid Regions
First compute valid regions for those camera constraints that
restrict the position of the camera.  A view angle constraint
requires the camera position to lie inside a spherical wedge,
defined by (theta, phi) minima and maxima extending from the
midpoint or locus modifier of an object (Figure 5).  For example,
the optimal 45 degree horizontal and 15 degree vertical elevation
orientation between the camera and virtual actor shown previously
in Figure 2 would require the camera to lie along a vector V.  The
allowable range of view angles would be defined by sweeping out
by user-specified threshold angles along the horizontal and
vertical dimensions.

Figure 5: Viewing angle constraint valid regions.

Distance and object projection size constraints require the camera
to lie inside two concentric spheres, representing the minimum
and maximum distances from camera to object midpoint or locus
modifier.  For projection size constraints, frame area fractions are
converted into corresponding camera to subject distances using
the subject’s bounding sphere and allowable range of camera field
of view angles.  If a projection size constraint requires a subject to
fill most of the frame, then the camera must be positioned
relatively near the subject and vice versa for small projection size.

The camera in region constraint directly expresses its valid region
using a set of spatial region primitives including boxes, spheres,
and space-partitioning planes combined using Boolean
intersection and union operators.  This is used to keep the camera
inside an irregular-shaped room interior of a 3D environment.
The camera can be located only at those points, the so-called valid
camera positions, lying inside the intersection of all of these valid
regions which restrict the allowable camera positions.

Next, each valid camera position can be examined to determine
the maximum allowable range of field of view angles.  Given a
valid camera position, an object's minimum projection size
constraint determines its maximum allowable field of view angle,
while the maximum projection size determines its minimum
allowable field of view angle.  Its optimal field of view angle
(FOV) may be likewise estimated from the given optimal
projection size f = πr2 / AF in Figure 6, where  πr2  is the area of
the  projection of the object's bounding sphere and AF is the frame
area.  The equation giving the field of view angle is:
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where f = minimum, optimal, or maximum projection size fraction
and vpdist is the distance to the projection plane.  The per-object
field of view ranges are intersected to estimate the overall valid
field of view angle range.

Figure 6: Projection size to field of view.

For a given candidate camera position and object geometry, the
maximal allowable range of camera aim directions can be
estimated using the OBJ_IN_FIELD_OF_VIEW,
OBJ_NOT_IN_FIELD_OF_VIEW, LOOK_AT_POINT, and
OBJ_PROJECTION_ABSOLUTE constraints.  For example if
point P must project into frame region T, then the valid range of
aim directions S may be determined in spherical coordinates
(Figure 7).  The valid aim directions for multiple constraints are
intersected using (theta, phi) spherical coordinate intervals.

Figure 7:  Valid regions for aim direction.

3.4.2 Heuristic Solver Algorithm
The constraint-solver algorithm utilizes a recursive heuristic
search over the possible camera parameter values.  The constraint
valid regions limit the search to consider only those sets of
parameter values that may be part of an allowable solution as
defined by the given constraints.  The search begins at a relatively
coarse resolution generating-and-testing candidate shots.  The best
candidate shots are logged for further refinement of the search via
recursion about these most promising candidates.

1. Initialize a log of the N best candidate shots found so far.  In
the examples, the log records the top 5 candidate shots.

2. Optimistically, compute and evaluate the relative-displacement
solution.  If its constraint satisfaction rating exceeds the specified
minimum success threshold, then immediately return this shot as
the solution to obtain instantaneous performance in those cases
when configured as anticipated.

3. Compute valid regions for constraints that limit the allowable
camera positions.  These constraints include projection size,
object-to-camera distance, object view angle, and camera inside
region.  Form an axis-aligned bounding box PosBBox to enclose
the intersection of these camera position valid regions.

4. Loop over candidate camera positions spaced along a regular
grid of points spanning the space enclosed by PosBBox.  The
number of points generated is determined by the size of PosBBox
and the desired degree of solution precision.

4(a). For each valid camera position, use the projection size,
projection location, aim direction, and camera field of view
constraints to compute the allowable and estimated optimal
aim direction and field of view angle.
4(b). Evaluate the shot using the estimated optimal aim
direction and field of view angle and immediately return it as
the solution if its satisfaction rating exceeds the specified
minimal constraint success threshold.
4(c).  Update the log of the best N shot found so far.

5. If a candidate shot exceeding the given minimal success
threshold has not yet been found, then loop over each of the N
best shots found so far.

5(a) For each top candidate shot TS, initialize PosBBox to
enclose space nearby the camera position of shot TS.
5(c) Initialize a new log of best candidate shots for the next
level of search to empty.
5(c) Recursively execute the solver algorithm beginning from
step number (4) if the maximum recursion depth has not been
reached.
5(d) If the best candidate shot returned by the recursive call in
step 5(c) exceeds the minimal success threshold, then
immediately return that shot as the solution.

4.  EXAMPLE CAMERA SOLUTIONS
For example, we might want a shot of player1’s face as he speaks,
in which player1 (gray) is viewed from a camera position behind
and over-the-shoulder of player2.  In order to compose the desired
over-the-shoulder shot of player1 and player2, we could specify
the following set of visual composition elements, or camera
constraints, by drawing the storyboard frame depicted in Figure 8.

• Player1 and player2 should appear in the field of view, while
the other three players are excluded or hidden.

• View the face of player1 who is speaking.

• Player1 should appear slightly to the right of player2 and
centered in the frame (Absolute projection location
constraint for each player).

• Player1 should be framed in a medium shot and player2
should be in a near shot (Projection size).

• Player1 should be partially occluded by player2 and player2
should not be occluded (Object partial and minimize
occlusion constraints).
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Figure 8:  Given storyboard frame of a two shot.

Figure 9:  Room interior scene featuring five players.

Figure 10:  Computed two shot in given 3D scene.

The image depicted in this storyboard frame represents the
optimal location, projection sizes, view angles, and occlusion of
the two players.  The allowable location of the gray (rightmost)
player in the frame has been set by a red rectangle.  The optimal
viewing angle for the gray player is the front, and the optimal
viewing angle for the blue player is rear right.

We could then apply this storyboard frame to a 3D scene of five
players, four standing around a table in a room ringed by stone
columns with a fifth player standing on a balcony (Figure 9).  The
virtual camera will need to be carefully staged in order to capture
the desired over-the-shoulder shot of player1 and player2, while
excluding the three other players.  The computed shot appears in
Figure 10.  A less sophisticated relative displacement method
would place the camera behind and slightly to the right of the blue
player.  However, in this environment, such a shot have the blue
player partially occluded by a column.  If the camera were moved
in front of the column and directly behind the blue player to avoid
the occlusion, it would only partly include the blue player in the
shot and would also include the green player on the balcony.  The
heuristic search solver analyzed the environment to find a next-
best shot within the allowable bounds specified in the given
storyboard frame (Figure 10).  This shot takes a camera
orientation farther to the side of the players than specified by the
optimal storyboard frame definition in Figure 8.  This example
demonstrates the flexibility of a constraint-based approach, which
enables developers of 3D virtual environments to compose
desired camera shots (Figure 7) independent of the unanticipated
configuration of objects in a given scene (Figure 9).

Figure 11 presents a triangle shot of three players where one of
the players is required to partially overlap the balcony player.  The
storyboard frame used to create this shot appears in Figure 4.

Figure 11: Three shot with required partial occlusion of
balcony player by the blue player.

Next, suppose the blue player (standing on the left side) backs
away from the table.  We can still apply the same set of storyboard
frame constraints to compute the acceptable solution depicted in
Figure 12.



Figure 12. Solution after player movement.

Figure 13:  Cluttered medium three-quarter shot.

Figure 14:  Improved composition excludes distractions.

The next example, specifies a medium three-quarter shot of a
cathedral.  Figure 13 depicts the resulting heuristic search solution
of the desired medium three-quarter shot.  However, the user feels
that the cars surrounding the building clutter the shot distracting
attention from the subject.  The user then adds constraints to
exclude each of the cars from the shot.  The heuristic solver
positions the camera to obtain the desired three-quarter angle and
utilizes the flower arrangement to occlude the distracting cars,
which also results in a far more dramatic composition (Figure 14).

5.  PERFORMANCE EVALUATIONS
Table 1 provides benchmarks for several individual constraint
evaluators.  As described in Section 3.3, specialized evaluators are
provided to determine how well a given shot satisfies a particular
constraint.  A typical constraint-based shot definition may include
between 6 and 20 different constraints, each of which would be
evaluated by its respective type of evaluator method.

Table 1.  Constraint evaluator benchmark results.
Evaluator Function Time in milliseconds

Projection size 0.009344
Projection location 0.009088
View angle 0.010140
Object in camera field of view 0.013505
Occlusion by ray casting 0.184320
Occlusion by frame rendering 10.78

Table 2 gives benchmarks of the heuristic search constraint solver
using ray casting for evaluating occlusion. Times are given in
milliseconds.  The test system is a Pentium II 400 MHz Intergraph
GL2 computer with 256 MB memory, and a VX113 AGP
OpenGL accelerator.  In all examples, the first level of search over
candidate camera positions scanned a 9x9x9 grid, with the second
recursive search over the top 5 shots scanned over a 4x4x4 grid.
The third column records the total number of shots evaluated
including shots tested to refine the camera field of view and aim
direction per each candidate position tested.  The fourth column
lists the total number of candidate camera positions tested, while
the fifth column records the number of candidate camera positions
skipped because they were not inside the constraint valid regions.

Table 2. Constraint solution benchmark results.
Figure Time   Shots Tested    Positions     Culled Positions
10 4500 ms 5358 402 711
11 2872 4509 414 699
12 3461 5073 410 703
14 417 609 271 586

The solver can be configured to examine the search space at
varying resolutions and can be directed to return the best shot
found after testing no more than a specified maximum number of
shots.  This allows an application to fine-tune the quality of the
computed solutions and the solution computation time.  For
comparison, our implementation of a simple relative displacement
camera algorithm computes camera placements in 0.016
milliseconds.  An exhaustive search was implemented for
comparison purposes and its solution times range from about 1 to
10 minutes in evaluating 2 million shots.

Table 3 gives the cumulative constraint success ratings of our
heuristic search and our relative displacement solvers.



Table 3. Comparison of constraint satisfaction.
Figure   Heuristic Search         Relative Displacement
10 0.877109 0.0
11 0.850244 0.338701
12 0.774565 0.338701
14 0.810209 0.473219

6.  CONCLUSIONS AND FUTURE WORK
Together the Storyboard Frame Editor interface and constraint
solver provide tools for interactive 3D application developers to
define how the virtual camera should film objects of interest
leaving the low-level task of placing the camera to the automated
constraint solver module.  The constraint solver module is
currently being integrated into several prototypical types of
interactive 3D virtual environments.  The search heuristics and
constraint evaluators will be further optimized to improve real-
time performance for interactive applications.  Additional
constraint types can be implemented by coding new evaluators
and script parsing functions.  Techniques such as returning
multiple shots or relaxing less important constraints will be added
to handle failures to compute constraint solutions [2].  Studies of
user interface effectiveness and aesthetics of the computed shots
will also be performed.
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