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Abstract

Five studies examined how interacting with the physical environment can support the

development of fraction concepts. Nine- and 10-year-old children worked on fraction problems

they could not complete mentally. Experiments 1 and 2 showed that manipulating physical

pieces facilitated children’s abilities to develop an interpretation of fractions. Experiment 3

demonstrated that when children understood a content area well, they used their interpretations to

repurpose many environments to support problem solving, whereas when they needed to learn,

they were prone to the structure of the environment. Experiments 4 and 5 examined transfer after

children had learned by manipulating physical pieces. Children who learned by adapting

relatively unstructured environments transferred to new materials better than children who

learned with “well-structured” environments that did not require equivalent adaptation. Together,

the findings reveal that during physically distributed learning, the opportunity to adapt an

environment permits the development of new interpretations that can advance learning.
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Physically Distributed Learning: Adapting and Reinterpreting Physical Environments in the

Development of Fraction Concepts

1. Introduction

How do physical actions contribute to abstract learning? Folk wisdom has it that there is

something nearly magical about “the concrete” – if people see and touch, they will learn. The

common shift from concrete to abstract reasoning nourishes this belief. Children can often solve

problems in physical situations before they can succeed with symbolic representations (Bruner,

Olver, & Greenfield, 1966; Piaget, 1953). The existence of this shift, however, does not entail

that concrete behavior is responsible for the change. One might imagine that the acquisition of

verbal ideas rather than the performance of concrete actions causes the shift.

There is surprisingly mixed evidence that concrete manipulation improves learning in

educational settings (Chao, Stigler, & Woodward, 2000), and under some conditions, it can even

interfere (Uttal, Scudder, & DeLoache, 1997). Random hands-on activities are no panacea for

educational woes. At the same time, specific forms of physical action can support symbolic

learning (Sowell, 1989). For example, touching objects helps children count accurately (Alibali

& DiRusso, 1999; Case & Okamoto, 1996), and manipulating computer graphs can help children

develop concepts of two-dimensional space (Sarama, Clements, Swaminathan, McMillen, &

Gonzalez Gomez, 2003). This paper examines whether actions can support abstract learning

when they provide a way for children to adapt and then reinterpret their environment. We call

this process “physically distributed learning” (PDL).

2. Research on learning through physical action
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Physical action may support learning in a number of ways. The literature on embodied

cognition (Barsalou, 2003; Gibbs & Berg, 2002; Glenberg & Robertson, 2000; Johnson, 1987),

for example, argues that the semantics of symbolic thought grow from the possibility of physical

action. For example, Lakoff and Núñez (2000) propose that children’s mathematical concepts

(e.g., sets) develop through metaphorical extension of perceptual-motor relations (e.g.,

containership). In this work, our focus is more restricted. We want to know how taking physical

action impacts thinking and learning. Fig. 1 offers four ways physical actions can support

thinking and learning. We differentiate these situations by the degree of stability in ideas and

environments.

------------ Insert Figure 1 about here -------------

In induction (quadrant 1), people do not have stable, mature ideas, but they are operating

in a well-structured and stable environment. Stable environments offer clear feedback and strong

constraints on what counts as a correct interpretation. These consistencies help people uncover

the structural regularities in these environments through physical activity (Greeno, 1988). For

example, pouring water back and forth between wide and thin glasses leads children to

eventually discover that the quantity of liquid is invariant under transformation (Piaget, 1966).

There are many forms of induction. From an ecological perspective, perceptual-motor activity

helps people notice useful structures that remain stable as they move objects (Gibson, 1986). For

example, handling a sheet of paper helps people notice that it maintains a rectangular shape

despite changes in perspective. From a hypothesis testing perspective, physical actions enable
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people to query the environment to test their ideas (Klahr & Dunbar, 1988; Kuhn et al., 1988).

Inductive learning is improvement in the individual’s knowledge or abilities to perceive (Gibson

& Gibson, 1955).

In off-loading (quadrant 2), people operate in a stable and often specialized environment

and they have stable ideas. In these situations, people rely on the environment to reduce the

cognitive burden of a task. For example, highly trained pilots and the well-designed environment

of a cockpit form a system that achieves complicated feats such as remembering airspeeds

(Hutchins, 1995b). Activity in this quadrant is often referred to as distributed cognition

(Hutchins, 1995a; Norman, 1988; Zhang & Norman, 1994). In these situations, people have

stable interpretations of a felicitous environment and the desired end state. Learning in quadrant

2 is an increase in the individual’s efficiency at off-loading cognitive tasks to the environment.

In repurposing (quadrant 3), people have stable ideas, but the environment does not have

an ideal form. If people’s ideas are mature enough, they can change the environment to achieve

their goals (Kirsh, 1996). For example, in the computer game Tetris, players use keystrokes to

translate and rotate falling pieces so they fit neatly into rows. As players improve, they learn to

repurpose the keystrokes so that the movements of the pieces also yield information about where

they will fit (Kirsh & Maglio, 1994). We assume there is a continuum of adaptable situations.

For example, Tetris permits a relatively small adaptation, at least compared to people

repurposing a knife to turn a screw, or inventing a screwdriver in the first place. Learning in

quadrant 3 is changes to the environment that permit people to implement their ideas more

effectively.

Finally, in PDL (quadrant 4), the environment and people’s ideas are both adaptable.

While people do not change their ideas and environments constantly, adaptation can often be
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helpful. We propose that the emergence of new interpretations through physical adaptations of

the environment can be an important benefit of physical action for learning abstract ideas.

For example, imagine a young child who is asked to create a one fourth share of eight

candies. Even though the child may not know anything about fractions, the child will have some

interpretation of the problem. The child might view the situation as involving whole numbers

and think that getting a one fourth share of eight candies means getting one candy. To solve the

problem correctly, the child will have to reinterpret what is already “known” (Karmiloff-Smith,

1992). The child will have to relax the whole quantity interpretation, which is highly practiced,

and develop a new fraction interpretation.

Reinterpretation is difficult (Clement, 1993; Luchins, 1942; Vosniadou & Brewer, 1992).

It is particularly difficult to achieve through thought alone. For example, after people developed

an interpretation of an ambiguous figure (it could be interpreted as a duck or a rabbit), they could

not produce a different interpretation when asked to do so with their eyes closed (Chambers &

Reisberg, 1985). Their original interpretations shaped their memory for the picture and interfered

with their ability to find a new one. Physical activity may help people adapt the environment and

thereby facilitate reinterpretation. People can interact with their environments without exactly

knowing the appropriate steps or envisioning the final state (O'Hara & Payne, 1998; Shirouzu,

Miyake, & Masukawa, 2002). For example, in the fraction problem above, the child might

haphazardly push two pieces together. This new arrangement may help the child reinterpret the 2

pieces as “1 group” of pieces. As we describe below, this reinterpretation of what is countable

(from pieces to groups) can put the child on a trajectory to learn that 1/4 of 8 means one of four

groups of two. We label this process “physically distributed learning” to indicate that the
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learning is distributed between functional adaptations to the environment and the individual, and

that early learning is not located in either alone.

3. Physically distributed learning for fraction concepts

By late elementary school, 9 -10 year-old children have developed strong ideas about

whole numbers—they can fluently count and add. Fractions, however, require new

interpretations. Researchers have identified several interpretations of rational numbers, including

part-whole, ratio, quotient, and operator (e.g., Carpenter, Fennema, & Romberg, 1993; Confrey

& Smith, 1995; Kieren, 1995; Moss & Case, 1999; Streefland, 1993; Thompson & Saldanha,

2003). Our purpose here is not to focus on one of these schemas, but to examine whether

physical activity can contribute to the development of a viable fraction interpretation.

Two physical actions that children take with manipulatives are unitizing and partitioning.

Unitizing involves treating objects or collections of objects one-by-one, for example, by pointing

to each object or collection separately (Behr, Harel, Post, & Lesh, 1993; Lamon, 2002).

Partitioning involves equally subdividing a collection of pieces (Behr et al., 1993). Partitioning

and unitizing are simple physical actions. They are not explicit interpretations of quantity.

Children often engage in these actions casually without much of a plan. Nevertheless, these

actions may help children develop interpretations critical to the concept of fractions. In

particular, they may help children reinterpret partitions as groups that can be unitized in their

own right.

To see how this might work, Fig. 2 offers some typical adaptations and interpretations

children develop for the problem “make 1/4 of 8.” In Fig. 2a children created two partitions from
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the total collection of pieces, and they unitized the pieces within each partition. They interpreted

the 1 and 4 in 1/4 as whole numbers with no particular relationship. In Fig. 2b, children

partitioned the collection into two equal piles of four pieces. They interpreted the circled pile as

the 1 in 1/4 and the four pieces as the 4. They were close to an interpretation of groups, because

they counted the partition as a single unit. However, they did not relate this pile of four to the

other pile, so they had not quite made a full interpretation of groups as subsets. In Fig. 2c, the

children successfully partitioned the pieces into four equal groups and interpreted the answer to

1/4 of 8 as the 2 pieces that comprise the group. Our hypothesis is that physical manipulation

supports this reinterpretation into groups.

------------ Insert Figure 2 about here -------------

4. Experimental Overview

Five studies examined children’s physical actions with manipulatives and the payoff

those actions have for their learning about fractions. Manipulatives are small objects, like pie

wedges, frequently used in early mathematics instruction. The top-level goal of the research was

to demonstrate the reality of PDL where learning involves both physical adaptation and

reinterpretation (quadrant 4). We show that children can solve fraction problems by adapting

their environment and their own interpretations when they do not have an internal or external

algorithm for the problems.



Physically Distributed Learning     9

The first study shows children can solve problems when they move pieces but not when

they can only look at the pieces. This supports the importance of physical action. The second

study shows that physical action supports reinterpretation. Children receive problems with the

pieces pre-arranged into the end state (i.e., grouped). Children still perform better and develop

the correct interpretation when they move the pieces, whether or not they are pre-arranged. This

implies that a pre-existing fraction interpretation does not drive their physical adaptations;

otherwise, they should have recognized the end state. Instead, the reinterpretation emerged via

the physical interaction. We offer one possible account of the process that leads to the

reinterpretation through physical adaptation for these specific problems.

The third study shows the difference between distributed problem solving and distributed

learning. Children receive problems in quadrant 3 where they have a strong schema but an

imperfect environment. In this case, they can impose their interpretations and repurpose the

environment to solve the problems even though they cannot solve the problems in their head. In

contrast, on poorly understood problems, the structure of the environment drives any useful

actions.

Finally, the last two studies tested an implication for transfer. This implication is that

PDL learning yields the flexibility necessary to leverage new environments, whereas inductive

learning does not. Many educational tasks provide materials designed to help students solve

particular problems leading to the inductive learning of quadrant 1. This learning creates a

trajectory towards quadrant 2 where people can efficiently off-load cognition to stable

environments. However, inductive learning is often dependent on the specific structures of the

learning environment. Therefore, if the structures are unavailable, children will be unable to use

what they have learned. In other words, too much reliance on well-structured environments can
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support performance at the expense of the insight that helps people develop understanding in

new situations (Gilmore, 1996). PDL, in contrast, requires children to adapt the environment and

their interpretations. Assuming that learners can make any headway at all, this process helps

them generate critical structural features rather than becoming dependent on the environment to

provide them. The interpretations that arise in PDL can put children on a trajectory to quadrant 3

where they can impose stable ideas on new environments to repurpose them in useful ways.

5. Experiment 1: Effects of action

Experiment 1 tested whether manipulating physical materials affected children’s

development of viable interpretations of fractions in operator problems. Operator problems are

like “make 1/4 of 8” (Behr et al., 1993). For this problem, a correct interpretation of the fraction

1/4 is “2.” In contrast, an incorrect whole-number interpretation of 1/4 might be “1” or “4”. In

the physical condition, children moved tile and pie pieces with their hands to help solve the

problems (see Fig. 3). In the pictorial condition, the same children used a pencil to draw on

pictures of pieces. We predicted that that the process of physically moving the pieces would help

children create physical partitions and interpret them as groups, which is a key step to finding the

fraction interpretation. To test this prediction, we examined the children’s interpretations and

their physical organization of the pieces.

--------------------- Insert Figure 3 about here -------------



Physically Distributed Learning     11

5.1. Methods

5.1.1. Participants

Thirty-two 9- and 10-year-old children were randomly selected from two fourth-grade

classes at the end of the school year. They had received prior instruction with manipulatives for

how to add simple fractions (e.g., 1/4 plus 1/4). (See Experiment 5 for more details on the prior

instruction.) They had not done operator problems.

5.1.2. Materials

Children used pie wedges and tiles to solve the problems (Fig. 2). Tiles are randomly

colored squares. Pies wedges are circles divided into halves, thirds, fourths, fifths, sixths,

eighths, 10ths, and 12ths. Each division is a different color (e.g., halves are pink, thirds are

orange). The pictorial materials were line drawings of pie or tile pieces plus a pencil. For each

problem, the pieces were spread haphazardly across the table or picture.

5.1.3. Design

The pictorial and physical materials comprised the materials factor in a within-subjects

design. For each material, children completed a problem with pies and a problem with tiles.

Order of problem presentation was counter balanced. The operator problems were interspersed

among other questions. The quantities for each problem differed (e.g., 1/3 of 9, 1/4 of 8). The

primary dependent measures were children’s verbal accuracy (interpretations) and their

arrangement of the pieces (adaptations) plus the number of moves they took and the number of

times they spontaneously restarted from scratch on a problem.
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5.2. Procedure

Children were videotaped as they worked individually with an interviewer. For the

physical materials, the interviewer provided the correct number of pieces and asked the children

to show a fraction of those pieces. For example, the interviewer might give a child 12 pieces and

ask her to show 1/4 of them. For the pictorial materials, the interviewer would give the child a

picture of 12 pieces and a pencil. The interviewer gave no feedback and no time limit. Children

stopped working on each problem when they decided they had finished and gave their final

answer.

5.2.1. Coding

In this and the following experiments, each solution received an interpretation score that

reflected the child’s verbal answer and an adaptation score that reflected the child’s physical

arrangement of the pieces. Adaptations and interpretations are not the same thing. For example, a

child could arrange the pieces well, but give the wrong verbal answer. In Fig. 2c above, one child

correctly partitioned the pieces, but gave the verbal answer “1” to the question of 1/4 of 8 pieces.

Conversely, a child could give the correct answer without using the pieces.

We counted an interpretation as correct if the child stated the correct numerical answer.

We coded an adaptation as partitioned if the child divided the entire set of pieces into equal

groups. Equal sharing activities can help children develop fraction interpretations (Empson,

1999; Streefland, 1993) and the activity of creating equal partitions could support this

development. The coding scheme was developed to address that possibility. The left of Fig. 4
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shows partitioned adaptations for the physical and the pictorial materials. Any other

configuration that a child created was a nonpartitioned adaptation. The right of Fig. 4 shows

some possibilities for how children created adaptations that were not partitioned.

A primary and a secondary coder checked reliability on the adaptation codes using a

subset (10%) of the students’ responses drawn randomly from the interviews. Inter-rater

agreement for the adaptation coding was 100% for this experiment and no less than 92% for any

of the subsequent experiments. The primary coder subsequently scored all of the students’

adaptations.

----------------- Insert Figure 4 about here ----------------

We also gathered two process measures. One measure indicated the children’s overall

physical activity by tallying the number of movements they made in reference to the materials.

These movements included touching, pointing, drawing, shifting, covering, combining, and

separating physical pieces. For the pictorial and physical pieces, children could make many of

the same moves (e.g., touching, pointing), but moves like shifting, combining, and separating,

worked differently. For example, a child could draw a circle around a group of pieces to indicate

combining them. A movement refers to an event; touching and moving a piece counted as a

single movement rather than the two discrete movements. For example, if a child counted out

four tiles by moving them one at a time, this was four moves; however, if a child moved the tiles

as a group, this was one move. The second measure indicated when children restarted a problem

by “erasing” the workspace and trying again. For example, a child could cross out or erase all the
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drawn lines on the picture or, in the physical condition, collect all the pieces to start again. These

measures are only a rough index of level of activity. Undoubtedly, children are engaging in more

cognitive activity in both the physical and pictorial conditions than these behavioral measures

capture. This may be particularly true for children in the pictorial condition, as pencil and paper

may be more difficult to manipulate than pieces.

5.3. Results

For the same children in the same session on the same class of problems, physically

manipulating the pieces had strong benefits compared to drawing on pictures of the pieces. Table

1 shows the percentages of children who gave accurate interpretations and created partitioned

adaptations in each condition. We first describe the measures separately and then consider their

relation to one another.

-------------------- Insert Table 1 about here ------------------

5.3.1. Measures taken separately

We found no significant effects involving tiles versus pies, so we combined the two for

the statistical analyses. For both the pictorial and physical conditions, a maximum interpretation

score was 2 points (correct for both the tile and pie problem), and a maximum adaptation score

was 2 points (partitioned for both the tile and pie problem). Four students’ videotapes were
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unusable for both the physical and pictorial problems. One additional student’s videotape was

missing for the pictorial problems. Consequently, 27 students were included in the following

analyses. In a fully within-subjects analysis, children’s interpretations were more accurate with

the physical materials than with the pictures, M = 1.4, SE = 0.14 and M = .33, SE = .13,

respectively; F (1, 26) = 37.1, MSE = 0.42, p < .001. Similarly, children created partitioned

adaptations more frequently with the physical materials than with the pictorial materials, M =

1.3, SE = 0.16 and M = 0.04, SE = 0.04, respectively; F (1, 26) = 64.8, MSE = 0.3, p < .001.

The children were also more active with the physical materials. The average number of

moves per physical problem was 22.2 (SE = 2.1) compared to 9.1 (SE = 1.6) per picture problem,

F (1, 26) = 24.6, MSE = 89.3, p < .001. Notably, the number of moves for the physical condition

was well above the minimum number of moves needed to solve a problem. For example, a

partitioned adaptation for 1/4 of 8 requires four moves with the physical or pictorial materials

(i.e., move or circle two pieces at a time into four separate groups). Thus, children were not

executing an efficient plan to solve the problems in the physical condition. Similarly, children in

the physical condition frequently started over by “erasing” the space. Children restarted more

times in the physical condition than in the pictorial condition, M = 1.7, SE = 0.13 and M = 1.1,

SE = 0.04, respectively; F (1, 26) = 20.5, MSE = .3, p < .001.

5.3.2. Relations between measures

 In the physical condition, children gave more correct interpretations, made more

partitioned adaptations, moved the pieces more, and tried more strategies. At the same time,

within a condition, children’s interpretation scores did not correlate significantly with their

adaptation scores (physical, r = .03, p = .88; pictorial, r = .2, p = .33), their number of moves
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(physical, r = -.13, p = .51; pictorial, r = -.00, p = .99), or their number of restarts (physical, r =

.12, p = .53; pictorial, r = -.17, p = .41). Thus, being able to move the pieces in the physical

condition helped children but did not guarantee success. The lack of a strong correlation between

adaptations and interpretations within a condition implies that the ability to adapt the

environment and the ability to interpret the environment do not stem from a single underlying

schema for these problems.

To further explore the relation between interpretation and adaptation, we aggregated the

data a second way. For each problem, children sometimes restarted. By ignoring problem

boundaries, we considered both aborted and final attempts as separate “tries” to get a more

refined account of change over time. Most children completed three total tries with the physical

materials and two with the pictures. Table 2 shows the data for the first, second, and third

attempts with the physical problems and the first and second attempts with the pictorial

problems. The table shows the percentage of tries that ended in partitioned and nonpartitioned

adaptations and the percentage of correct interpretations for each. (Recall that children did not

receive feedback, so they could make a correct interpretation but still decide to restart on the

problem). Table 2 also shows the number of moves children made when they created partitioned

and nonpartitioned adaptations.

------------- Insert Table 2 about here -----------------

Creating a partitioned structure did not guarantee interpretive success. When children

made partitioned adaptations with the physical materials, they still gave incorrect interpretations

approximately 40–70% of the time. Conditional probabilities help clarify the implications of this
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finding. When we collapsed the physical and pictorial conditions, a partitioned structure yielded

a .44 probability of making a correct verbal answer, whereas a nonpartitioned structure yielded a

.22 probability of making a correct verbal answer. The chance of making a partitioned structure

was .56 in the physical condition and .02 in the pictorial condition. Thus, the physical materials

helped the students make more partitioned structures, which presumably improved interpretation.

At the same time, a partitioned structure did not guarantee a correct interpretation, such that 56%

of the partitioned structures were not correctly interpreted. Rearranging the pieces was important

to developing a correct interpretation, but children could adapt the environment and still not be

prepared to interpret that structure.

5.4. Discussion

Children solved more operator problems when they manipulated the pieces than when

they drew on a picture of the pieces. It is important to note that in most cases, the same child who

could do a problem with physical materials could not do a similar problem with a picture.

Different hypotheses could explain the superiority of the physical condition. The PDL

hypothesis is that moving the pieces permitted children to gradually adapt their environment and

in the process change their interpretations. In the pictorial condition, the children interpreted the

pieces as whole numbers, and they chose one and/or four pieces in response to a problem like 1/4

of 8. This was a sensible response, given their many prior experiences counting objects. When

taking action is hard, people are more likely to follow a pre-existing interpretation (O'Hara &

Payne, 1998; Svendsen, 1991). This may be what children did with the pictures. They may have

chosen the first interpretation available.
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In contrast, moving the pieces in the physical condition helped the children overcome

their previously correct but misapplied interpretation. As Shirouzu, Miyake, and Masukawa

(2002) argued, a benefit of physical manipulation is that it supports reinterpretation of the

visible. This reinterpretation could have happened in the following way: The children naturally

collected the pieces into piles and moved them around. The movement of the piles relative to one

another, plus a pile’s collection within a single hand, created a gestalt that helped children see the

piles as distinct entities. This helped the children let go of their single-piece whole-number

interpretation so they could sometimes count a collection of pieces as a single group. Coupled

with an intuitive constraint that the groups should be the same size, the children were able to

partition the pieces into the number of groups shown in the denominator of the fraction and

sometimes appreciate that the number of pieces in one group constituted the answer.

An alternative to the PDL hypothesis is that the children did not learn the correct

interpretation by interacting with the situation. Instead, the children already had a grouping

schema for fractions that regulated both their adaptations and interpretations, and the physical

materials helped them execute that schema by plan. An example of this sort of theorizing comes

from the work on speech–gesture mismatch (Goldin-Meadow, Alibali, & Church, 1993). A

typical mismatch example occurs with the liquid conservation task where children need to

determine whether a tall, narrow glass has the same amount of liquid as a short, wide glass.

Young children often say the glasses have the same amount of water because they are at the

same height, but with their hands, they gesture indicating the width. The speech–gesture

mismatch can foreshadow the development of mature liquid conservation (Church & Goldin-

Meadow, 1986). The common explanation for this phenomenon is that children have a single

underlying representation that is being expressed in different modalities with differing degrees of
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effectiveness (McNeil, 1987). By analogy, in the case of the manipulatives, the children might

have a single underlying representation that regulates their ability to “express” both the

adaptation and its interpretations.

The evidence from the physical condition did not support this alternative hypothesis.

First, the children moved the pieces much more than necessary to solve the problems by plan.

Second, the level of movement was the same for correct and incorrect answers, which would not

occur if the children were following a plan to achieve the correct answers. Finally, the children

did not always interpret a partitioned adaptation into countable groups, which suggests they did

not know the goal state of their manipulations from the outset.

However, these data primarily came from the physical condition. The alternative

hypothesis has its greatest credibility in explaining the failure in the pictorial condition: Children

may have had a plan, but its execution was too difficult in the pictorial condition. Children may

have performed worse in the pictorial condition because they did not think to use their plan, or

because they did not have the cognitive resources to imagine rearranging the pieces into groups.

Experiment 2 addressed these possibilities.

6. Experiment 2: Effects of Action II

The goal of Experiment 2 was to replicate and extend the findings of Experiment 1. In

particular, we wanted additional evidence that physical manipulation helped children develop the

fraction interpretation and did not just enable children to execute an already formed

interpretation by off-loading some of the burden to the environment (quadrant 2). As before, all

the children solved problems with physical and pictorial materials. However, we introduced three
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variations. First, the experiment involved younger children who had even less experience with

fractions. Second, the experiment compared children’s abilities to solve the operator problems

when described numerically (e.g., 1/4 of 8) versus when described as a sharing problem. Finally,

children received the pieces randomly arranged or they received the pieces preorganized into

appropriate partitions.

We included younger children who had little instruction with fractions and manipulatives

to reduce the chances that they had a school-based schema for solving these operator problems.

A difficulty with this approach, however, is that children need some prior knowledge to

understand what they are being asked to do. To get around this difficulty we asked some of the

children to solve the problems in the context of a story about sharing fairly. For example, we

asked the children how much one person should get if four people are going to share eight pieces

fairly. Children of this age have a good understanding of fair-share contexts, so their everyday

knowledge may help constrain their activities (Empson, 1999; Streefland, 1993).

Half of the children heard fair-share problems and the other half heard the original

numerical statement of the problem. If the children could not solve the problems for the

numerical version (with or without manipulatives), it would show they did not have prior

knowledge of a partitioned adaptation solution to the problem. If the physical materials still

showed an advantage over the pictorial materials for the fair-share context, it would show that

the benefits of physical manipulation in this study were not the result of executing an algorithm

children knew.

The remaining change involved the presentation of the pieces. One presentation was as

before, with pieces placed randomly on the table or in the picture. The other presentation placed

the pieces in configurations that matched partitioned adaptations. Fig. 5 shows an example of the
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two presentations. If the sole benefit of manipulation is alleviating working memory burdens,

then the preorganized presentation should show a strong advantage over the random

presentation; the preorganized presentation removed the need to imagine the intermediate or final

states. Additionally, if children had a pre-existing schema for these problems, then presumably

they would recognize the significance of the preorganization for the solution. Alternatively, if

children did not have a solid schema, they might not recognize the significance of the

preorganized materials, and the arrangement would not help them solve the problem. If so, this

would suggest that children at this stage of knowledge development need the interactive process

of gradually adapting their environment and refreshing their interpretations so the partitions can

yield interpretations of groups.

-------------- Insert Figure 5 about here --------------

6.1. Methods

6.1.1. Participants

Twenty 9- and 10-year-old children were randomly selected from two new fourth-grade

classrooms at the beginning of their school year. The children had not used manipulatives for

operator problems, though they had done standard third-grade tasks like identifying fractions and

showing fractional amounts (e.g., shade one-fourth of four pieces).
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6.1.2. Design and procedure

The procedure was similar to Experiment 1 with individual videotaped sessions, no

feedback, no time limit, and randomized problem order. The dependent measures were the same

as Experiment 1, and as before, all children solved half of the problems using pictures and half of

the problems using physical pieces. New to this experiment, we presented half of the problems

with the pieces preorganized and half with the pieces randomly arrayed for both the physical and

pictorial conditions. Also new to the experiment was the between-subjects factor of problem

context. Children in the number context heard the fraction instructions as before (e.g., "Make

two-fifths of these 10 pieces"). Children in the story context heard the fair-share scenario (e.g.,

"Here are 10 pieces. Imagine you had to share these pieces equally with five people. How many

pieces would two people get?").

The coding for interpretation and adaptation was the same as in Experiment 1. It should

be noted that children could make nonpartitioned adaptations even when they received the pieces

preorganized into groups. For example, to show 1/4 of 8 in the pictorial condition, children might

ignore the four groups of two pieces and circle one piece. Alternately, they might circle four

pieces out of different groups. In the physical condition, children might recombine all the pieces

into one big pile as they started working.

6.2. Results

Fig. 6 presents the effects of the physical and pictorial conditions on children’s

interpretations and adaptations by problem context. For the story context, physical manipulation

improved children’s interpretations, and nearly all the children in the physical and pictorial

conditions made partitioned adaptations. Therefore, the benefit of manipulation was not simply
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to create a final configuration from which children could read off the answer, because both

conditions made appropriate final configurations. Manipulating the physical materials also

helped children reinterpret the adaptations they created. For the number context, physical

manipulation mildly but nonsignificantly increased the frequency of partitioned structures.

However, given the impoverished context and their lack of fraction knowledge, children could

not interpret the partitioned structures very well and had the same level of interpretation as when

they worked with the pictorial materials.

--------------- Insert Figure 6 about here ---------------

Fig. 7 displays the effects of the random and preorganized presentations of the materials

by problem context. For both the story and the number context, children’s interpretations

exhibited a modest but nonsignificant improvement when they received the preorganized

presentation. Surprisingly, the children’s final adaptations were not affected by the organization

of the materials. Children in the story condition were near ceiling regardless of initial

presentation, whereas children in the number condition tended to neglect the preorganized

structure and organize the pieces their own way. The children’s adaptations were not dependent

on the configurations that were handed to them.

---------------- Insert Figure 7 about here ---------------
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6.2.1. Measures taken separately

We used repeated measures logistic regression models (the SAS procedure GENMOD).

The within-subjects factors were material (physical, pictorial) and organization (random display,

preorganized display), and the between-subjects factors were context (number, story). We first

evaluated main effects and then introduced interaction terms to see if they provided any

additional explanation of the variance. For the analysis of the interpretations, there was a

significant effect of context, χ2 (1, N = 20) = 12.4, p < .001, and of material, χ2 (1, N = 20) = 4.5,

p < .05, but no effect of organization. Adding interaction terms to the model provided no

additional explanation of variance. For the adaptation analysis, there was an effect of context on

the frequency of partitioned adaptations, χ2 (1, N = 20) = 15.3, p < .001, but no effect of material

or organization (see Table 3). Adding interaction terms to the model provided no additional

explanation of variance.

-------------------- Insert Table 3 about here ------------------

On the activity measures, a multivariate analysis crossed all the conditions and showed

no main or interaction effects on the dependent measures of the number of moves and restarts.

Descriptively, the most notable trend was that the children made more moves with the pictures

than with the physical pieces, which was the opposite result from Experiment 1. This indicates

that the difference between the physical and pictorial materials is not action per se. Additional

trends were that children made more moves with the story context, as might be expected given

that they had the fair-share story to guide their activity. Children also exhibited a trend to make

more moves and restarts with the randomly organized pieces than with the preorganized ones.
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6.2.2. Relationship between measures

Table 4 shows how children’s interpretations and their level of activity related to

adaptations over time. We reaggregated the data the same way as in Experiment 1.

---------------------Insert Table 4 about here ------------------

As in Experiment 1, correct interpretations and partitioned adaptations did not appear to

come from a common underlying schema. Correct interpretations were associated with

partitioned adaptations, but partitioned adaptations did not guarantee correct interpretations.

When we collapsed the conditional probabilities across conditions, a partitioned structure yielded

a .46 probability of making a correct verbal answer, whereas a nonpartitioned structure yielded a

.06 probability of making a correct verbal answer. The chance of making a partitioned structure

was .67 across the physical materials and .53 across the pictorial materials. Thus, the physical

materials helped the students make more partitioned structures, which presumably improved

interpretation. At the same time, a partitioned structured did not guarantee a good solution, such

that 54% of the partitioned structures were not correctly interpreted. Thus, whether children

received a prepartitioned display or created their own, the partitioned structure was not sufficient

for generating the correct interpretation, though it did help.
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6.3. Discussion

Again, physical manipulation exhibited an advantage over pencil and paper. This study

helped further show that the benefit of manipulation was due to distributed learning and not

simply due to off-loading known operations to the environment. The opportunity to rearrange the

pieces helped the children develop a fraction interpretation more than being presented with a

useful “off-loading” structure at the outset.

With respect to interpretation, the children who received the fair-share version of the

problems had an advantage. Children who received the number version did not benefit

interpretively from the opportunity to manipulate the pieces, though they did exhibit a trend to

make more partitioned adaptations. The fact that children of this age could not solve the number

version of the problem suggests that the advantage of manipulation in the fair-share version was

not due to a pre-existing fraction algorithm. Moreover, the fair-share version was not sufficient

for the children to generate an efficient plan. The children consistently made many more moves

than necessary, and the number of moves for the fair-share version was no less than for the

number version, where the children had no plan. Instead of providing a plan of action and

interpretation, the fair-share story provided a frame for organizing activity, which eventually led

to a solution. For example, sharing fairly constrained the children to partition the pieces into

equal sets, which children gradually came to interpret as groups.

In the story context, the opportunity to manipulate the pieces was more valuable than

showing a preorganized configuration from which the children could potentially “read off” the

solution. When allowed to manipulate the pieces, the children showed little benefit from seeing

the pieces preorganized. When working with the pictures, the preorganization helped somewhat,
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but it still did not bring the exact same children to the level they achieved when given the

opportunity to manipulate the pieces. Adults, who understand fractions reasonably well, can

quickly interpret the significance of the preorganized version of the problem. However, for

children, the fraction interpretation of the physical partitions is not immediate, which is one

reason that it is a mistake to assume that children can easily associate a physical referent to its

symbolic equivalent in educational settings (Martin, 2003; Uttal, Scudder, & DeLoache, 1997).

Children do not always know which aspect of the referent is relevant (Scaife & Rogers, 1996).

However, why would moving the pieces have more sway for developing the interpretation of

groups than receiving the partitioned structure at the outset?

One answer is that the opportunity to move the pieces helped the children let go of their

initial and well-practiced whole-number interpretation of the pieces. This whole-number

interpretation was so strong that without action, it inhibited the discovery of the grouping

interpretation even when the pieces were displayed preorganized. In contrast, the physical

manipulation helped the children let go of their initial interpretations. For example, Schwartz and

Holton (2000) found that taking physical action, even with closed eyes and without direct

contact, can help people let go of a given visual perspective and imagine an object from another

point of view. For these children, by interacting with the environment in an open-ended manner,

they more easily explored or searched for other possible interpretations and structures.

A second, complementary answer is that the children did not know what problem the

partitioned structure solved unless they actively tried to organize the pieces themselves (Bruner,

1973; Vygotsky, 1978). When studying middle school children learning statistics, Schwartz and

Martin (2004) found that the active effort to invent ways to solve problems made children much

more ready to appreciate a solution when it appears. Simply telling or showing the solution does
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not help if people do not recognize the problems the solution resolves (Bransford, Franks, Vye,

& Sherwood, 1989). By grappling with ways to organize the pieces, for example to find a way to

use all the pieces, children can interpret the significance of groups when their actions happen to

place all the pieces into equivalent partitions.

Experiment 2 provides a useful qualification on the value of manipulation. Based on

Experiment 1, one might argue that children simply made more movements with the physical

materials, which increased their chances of generating the partitioned adaptation. However, in

Experiment 2, children made more moves with the pictures than with the manipulatives. This

shows that the difference is not activity per se, but rather the types of activities that the

environment supports. For the pictures, children could take many actions (e.g., covering pieces

with a hand), but they could not easily grab and move piles of pieces to suggest the idea of

counting groups as opposed to discrete pieces. This points to the significance of how different

physical environments afford different types of actions, which may be more or less useful.

In the first two experiments, we primarily focused on manipulation versus no

manipulation. In the remaining experiments, we examined the interaction between different

physical environments and manipulation.

7. Experiment 3: Effects of knowledge

The preceding experiments demonstrated a PDL “sweet spot” where children can

manipulate the environment to help generate new interpretations of quantity. An important goal

of these studies was to show that the children were actually learning through manipulation rather

than using the environment to help them off-load some of the cognitive burden of implementing
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a known problem-solving routine. For the next experiment, we wanted to further highlight the

uniqueness of PDL by showing behavior on either side of the sweet spot. At one extreme, when

people have a great deal of knowledge and do not need to depend on an emergent interpretation,

they can impose a pre-existing interpretation to repurpose an environment that might not be

ideally structured.  A person who is good at counting, for example, can count just about any

object, and if necessary, even make a continuous quantity into countable discrete units (e.g., piles

of sand). At the other extreme, when people have very little knowledge, they may be more prone

to environmental structures in their adaptations, and they may not be able to reinterpret the

situation when a useful adaptation appears.  The structure of the environment shapes behavior

but does not yield learning.

The third experiment explored the interaction of prior knowledge and environmental

structure with fifth graders who solved multiplication problems and fraction addition problems.

Multiplication served as the high-knowledge task. Children in fifth grade are generally facile

with concepts of multiplication, though they often cannot do complex multiplication problems in

their heads without pencil and paper. Given a physical situation, they need to adapt the

environment to help solve the problems. Therefore, the multiplication problems allowed us to

evaluate physically distributed cognition when children have high knowledge.

Fraction addition served as the low-knowledge task, because fifth graders typically have

had minimal experience with it in school. Fraction addition is more complex than the operator

problems of the first two studies. For the earlier problems, the challenge was to create partitions

and interpret them as groups. Fraction addition requires making and interpreting wholes as well

as groups. To take a simple case, consider 1/4 + 2/4 (harder cases have unlike denominators).

Imagine that children have successfully created the two fractions by pulling one piece from a
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collection of four pieces (1/4) and two pieces from another collection of four (2/4). To add them,

the children combine the pulled pieces (2 + 1). The challenge is that when they combine the

pulled pieces they have to appreciate that they make three out of four, rather than just three

pieces. The children need to interpret the pieces as part of a whole that may not be visually

apparent

7.1. Methods

For both the multiplication and fraction problems, children solved several problems using

four different materials. One class of material came as individual units of the same size (tiles and

beans). The other class of material had a built in partitioned structure. One partitioned material

was pie pieces, which lend themselves to making a whole with equal subparts. The other was a

geoboard, a board with a grid of nails and rubber bands that can be used to mark out groups. For

the multiplication problems, our hypothesis was that the high-knowledge task of multiplication

would enable the children to distribute their cognition to all the physical environments equally

well. However, for fraction addition, the children would be more prone to the structure of the

environment, such that the partitioned materials would support more partitioned adaptations of

the problem. For example, in Fig. 3 above, three tile pieces and three pie pieces were set apart

from the rest. When looking at the tile pieces, it is hard to know they should form part of a

whole. In contrast, the pie wedges fit into a circle, so they are more readily viewed as a part of a

whole. So, for example, given pies, children would be likely to create a circular “whole”

arrangement instead of simply setting the wedges haphazardly next to each other as they might

do with tiles. Therefore, we expected the partitioned materials to help children make more
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partitioned adaptations than the unit materials. Even so, given the prior results that children can

adapt environments well but not interpret them correctly, we did not think the children would

give many correct verbal answers for the low-knowledge task.

7.1.1. Participants

Sixteen 10- and 11-year-old children were selected randomly from three fifth-grade

classrooms. They had studied multiplication but had minimal exposure to fraction addition. As a

manipulation check for our characterization of high- and low-knowledge tasks for this

population, the children completed a short pre-assessment in which they solved single-digit

multiplication problems and unlike-denominator fraction addition problems. For multiplication,

93% of the children could solve a single-digit multiplication problem in their head and on paper.

This high rate of success indicated that children indeed had high knowledge of multiplication. In

contrast, 13% of the children could do a fraction addition problem in their head, and 44% could

do it on paper. This much lower rate of success indicated that children’s knowledge of fraction

addition was low. These results matched our expectations based on their standardized

mathematics curricula.

7.1.2. Materials

Children manipulated four different materials: tiles, beans, geoboard, and pies. Tiles and

beans are unit materials. Beans came with small paper cups (for grouping) that children could

use if they wished. The geoboard and pies are partitioned materials. The geoboard is a 7 in. x 7

in. board with 25 evenly spaced nails and rubber bands for demarcating groups of nails.  The
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students were familiar with these materials. We asked which of the materials they had used in

their mathematics lessons, and all students reported that they had used all of the materials.

7.1.3. Design and procedure

In a fully within-subjects design, the factor of high- and low-knowledge task

(multiplication versus fraction addition) was crossed with the factor of material structure

(partitioned versus unit) with two instances of each material structure. Children sat in front of

mounds of the four manipulatives. They chose which manipulative they wanted to use for each

problem with the restriction that they could not use a manipulative twice for a problem type.

They grabbed whatever pieces they thought were necessary and could return or take more pieces

during a problem if they wished. Half the children completed the four multiplication problems

first and half completed the four fraction problems first. For the multiplication problems, we

ensured the students needed to use the materials to solve the problems. We found the level of

multiplication problem that they could not do mentally and then used that class of problem for

the recorded trials (either one-digit multiplicands or two- by one-digit multiplicands). All

children solved fraction addition problems that used denominators that were multiples of one

another (e.g., 1/4 + 1/8). Children were videotaped in individual interviews. Children had no

time limit and did not receive feedback. Dependent measures included interpretations and final

adaptations.

7.1.4. Coding

As before, a correct interpretation was a numerically accurate verbal answer. The coding

for adaptations differed slightly from earlier experiments because of the new types of problems.



Physically Distributed Learning     33

Fig. 8 provides a schematic of different adaptations. For partitioned adaptations, children had to

collect pieces separately for each fraction and then partition each into groups. For nonpartitioned

adaptations, children often simply indicated the number of pieces that corresponded to one of the

numerals in each fraction. For multiplication, a partitioned adaptation needed to show a total

amount split into groups. For nonpartitioned adaptations, children might simply show the

quantity for each number in the problem or the total number of pieces in the answer without any

grouping.

--------------- Insert Figure 8 about here -------------

7.2. Results

High knowledge enabled the children to use the materials to reach correct answers,

whereas low knowledge did not. For each pair of problems within a condition (e.g., unit

materials for multiplication), a child could receive a maximum score of 2 points for correct

interpretations and 2 points for partitioned adaptations. Table 5 presents the results. The structure

of the materials did not affect children’s interpretations in either condition, and children were

much more accurate for multiplication than for fraction addition. We analyzed the data using a 2

x 2 ANOVA on children’s interpretations with task and material structure as within-subject

factors. Three children were excluded because they did not receive one of the problems. Analysis

revealed a main effect of task, F(1,12) = 30.5, MSE = .39, p < .001, with children being more
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successful at multiplication. We found no effect of material structure or interaction between task

and structure on interpretations.

---------------------- Insert Table 5 about here -------------------

Though the materials did not affect the children’s interpretation, they did affect the

adaptations children made in the low-knowledge condition. For the fraction addition problems,

children made more partitioned adaptations with the partitioned materials than with the unit

materials. We analyzed the data using a 2 x 2 ANOVA on adaptation score with the within-

subjects factors of task and structure. Two additional children were excluded from this analysis

because they did not use the materials to solve at least one problem (they had given up trying).

The analysis yielded a main effect for task, F(1,10) = 83.1, MSE = 0.4, p < .001; a main effect

for structure, F(1,10) = 5.7, MSE = 0.06, p < .05; and an interaction between task and structure,

F(1,10) = 5.7, MSE = 0.06, p < .05. The interaction was due to the effect of the materials’

structure in the fraction addition condition. Simple effects analyses indicated there was not a

significant difference between the unit and partitioned materials for multiplication. However, for

fraction addition, children made better adaptations with partitioned materials, F(1,10) = 5.7, p <

.05. Thus, with high knowledge, children flexibly adapted all the materials, whereas with low

knowledge, they were more prone to the environment and only created useful adaptations when

the environment suggested them. However, those adaptations did not immediately translate into

more successful problem solving, as shown by the similar interpretation across materials.
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7.3. Discussion

Experiment 3 helped locate when physically distributed cognition is most productive.

When people already have a strong understanding, as in the current case of multiplication, they

can repurpose many environments to help with extensive problem solving. The ideas they begin

with help them decide how to interpret and manipulate the environment. Though the children

could not solve the problems mentally, they were quite successful using the materials to support

multiplication, regardless of the material’s physical structure. In contrast, when people have very

low knowledge, as was the case for fraction addition, the structure of the environment can help

shape their activities, but people may not be prepared to reinterpret and capitalize on the

resulting environmental structures. In this experiment, children adapted the partition-structured

environment in potentially more useful ways than the unit-structured environment, but they were

not able to reinterpret these structures to solve problems more successfully. The result was

similar to Experiment 2, where children received preorganized arrays of pieces but could not

uniformly see the grouping structure.

Finally, similar to Vygotsky’s (1978) Zone of Proximal Development, Experiments 1 and

2 documented a window in which hands-on activity can be particularly helpful. When people

have incipient understanding, as in the case of the operator problems of Experiments 1 and 2,

manipulation can support the emergence of new interpretations that capitalize on new

organizations of the physical environment.
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8. Experiment 4: Effects of materials

Thus far, it is not clear how the structure of the environment affects the narrow window

of PDL. The fraction addition condition of Experiment 3 suggested that the structure of the

environment should have an effect on the adaptations available to children with incipient

knowledge. Yet, because the children had such low knowledge of fraction addition, the study did

not demonstrate any effects of material structure on their interpretations. Thus, the following two

experiments examine the effects of material structure on interpretation more closely. To do this,

it is particularly important to examine transfer to new settings, because the quality of people’s

interpretations may be masked by the structure of the initial learning environment.  For example,

one might imagine a highly engineered environment that nearly guarantees good performance

during initial learning. Yet, the environment may do so much of the work that it is unnecessary

for people to develop an interpretation of how the environment enables this work.  Cash registers

that calculate correct change for store clerks do not necessarily help those clerks to do math

when they can no longer rely on the cash register. Therefore, performance in an initial learning

environment may be a bad index of whether people have developed abstract mathematical ideas.

A transfer task that requires individuals to operate in a new material environment can be a better

index of understanding.

We made a tentative hypothesis about the types of materials that are likely to support

PDL and its extension to new environments at transfer. We hypothesized that a supportive

physical environment for learning includes materials that require (and enable) children to

generate new structures and interpretations that are central to a concept.  This will help them

understand the cognitive function that a structural form needs to support, and this will enable
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them to repurpose new situations to recreate this functionality.  In the following experiments, we

ask children to learn fraction addition. One central conceptual move for fraction addition is to

view added pieces as part of a new whole (e.g., 1/3 + 1/3 = 2/3 and not just 2).

We also hypothesized that an unsupportive environment for learning includes physical

materials that obviate the need for adaptation and reinterpretation around a central concept. The

environment may support the induction of how to solve problems in that specific environment,

but one consequence of an over-engineered environment is minimal transfer to new

environments (Gilmore, 1996). The children will have difficulty when they confront situations

that do not include equal structure. They will have only induced efficient procedures for

offloading cognitive operations in a specific task environment.

To test these tandem hypotheses, children learned with either pies or tiles, and then we

assessed how well they transferred to new materials. We thought that children who learned with

pies would transfer more poorly. Learning with pie pieces shortcuts the need for adaptation and

reinterpretation by providing the whole for free. For example, with pies, children can solve a

problem like 1/3 + 1/3 by pushing two 1/3 wedges together. They may never explicitly notice

how the circle is making the two wedges appear as 2/3 of a whole instead of just 2 pieces.

Although the children can solve 1/3 + 1/3, the hidden consequence of the pies is that children

may never grapple with the adaptations needed to spawn new interpretations involving wholes. If

our analysis is correct, it would help explain why children have trouble developing the concept

of a whole when working with pie pieces (Baroody & Lai, 2002) and why some researchers have

found pies ineffective for instruction (Kerslake, 1986; Mack, 1990; Moss & Case, 1999). The

pies do too much work. In contrast to the pies, the tiles require children to adapt the environment

so that they can explicitly interpret the presence of a whole. For example, three tiles by
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themselves do not carry the idea of three tiles out of a larger specific whole.  The children have

to adapt the environment and their interpretations so the tiles can carry this function. We thought

that this process of adapting and reinterpreting the tile pieces would be better for learning as

measured by children’s abilities to work with new environments at transfer.

Children learned over three sessions to solve increasingly difficult fraction addition

problems with either pies or tiles. At the end of each session was a transfer phase in which

children tried to solve problems with different materials. In the transfer phase, children worked

on problems at the same level of difficulty as the problems they had worked with earlier in the

session. Our hypothesis was that the tile children would do better at transfer than the pie children

would, because they would be less dependent on the structure of the initial learning environment

and would be able to adapt and reinterpret the new materials.

8.1. Methods

8.1.1. Participants

Sixteen 10- and 11-year-old children from three fifth-grade classrooms were assigned

randomly to the pie and tile conditions, with the restriction that the children’s achievement levels

(based on state scores) were similar across conditions. Equating achievement levels was

important because initial differences could have amplified over the course of the learning phase,

which we wanted to prevent.
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8.1.2. Materials

The study used tiles, pies, bars, and beans without cups. Bars are plastic rectangles that

are divided into halves, thirds, and so on. Bars and pies are similar in that they are both divided

into fractional pieces and use the same color scheme (e.g., the halves in both sets are pink).

Beans and tiles are relatively similar because the pieces come in one size.

8.1.3. Design

A between-subjects factor determined whether children’s base learning materials were

tiles or pies. In a microgenetic design over 3 days, the children learned to complete progressively

complex fraction addition problems with their base material (see Table 6). On each day, children

completed two phases: (a) a learning phase with their base material that included informative

feedback, and (b) a transfer phase using new materials without feedback. For the learning phase,

the primary dependent measures were the children’s highest problem level mastered each day,

the level of feedback children needed to succeed at each level, and the final adaptation used on

each problem. For the transfer phase, children received each level of problem they had tried

during learning. They used three transfer materials for each problem level—bars, beans, and the

base material used by children in the other condition (pie children used tiles at transfer, and tile

children used pies). The dependent measures at transfer were interpretations and final

adaptations.

---------------- Insert Table 6 about here -----------
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8.1.4. Procedure

The children worked with the researcher one-on-one in three videotaped sessions spread

over a week. On each day in the learning phase, children began at Level 1 and progressed as far

into the problem levels (Table 6) as they could within 20 minutes. The researcher first asked the

children to solve the problem in their head. Afterwards, the researcher asked the children to solve

a Level 1 problem using their base material. If the children succeeded on two problems in a row

without feedback support, the researcher repeated the process with the next level of problem. If

the children made a mistake, the researcher provided instructional feedback (described below)

until the children could solve two new problems in a row without further feedback. During the

10-minute transfer phase of each day, the children tried to solve problems with each transfer

material at all the levels they had attempted that day.

As mentioned, when children did not solve a problem correctly in the learning phase,

they received increasingly informative feedback. The first time they were incorrect at a problem

level, they received Level 1 feedback. If they were incorrect again, they received Level 2

feedback, and so on. There were four levels of feedback support as shown in Fig. 9. At Level 1

we showed children what the end state of the problem would look like with their materials and

told them the answer. At Level 2 we repeated the first hint and then showed children how to set

up the partitions for the problem. At Level 3 we repeated Levels 1 and 2 and then demonstrated

how to make particular fractions with the materials. At Level 4 we repeated the previous levels

and showed children how to combine the two fractions that they had made with the materials.

The grouping method shown in Fig. 9 works for both tiles and pies.

----------------- Insert Figure 9 about here ------------



Physically Distributed Learning     41

8.2. Results

8.2.1. Initial learning with base material

Children in the pie and tile conditions ultimately learned to the same level of verbal

accuracy with their base materials. Students received a score of 1–6 each day for the highest

level problem they mastered that day (two problems correct in a row). Table 7 shows the highest

average problem level the children achieved each day. In a 2 x 3 ANOVA, learning condition

was a between-subjects factor and day was a within-subjects factor. Children in both groups

significantly improved over the course of 3 days, F(2, 28) = 21.5, MSE = 0.5, p < .001. The

analysis revealed no significant effect of learning condition or interaction between learning

condition and day. Descriptively, the pie group did not do as well as the tile group on the 1st and

2nd days, but they caught up by the 3rd day.

----------------------- Insert Table 7 about here ---------------

Table 8 indicates that the children in both conditions did not differ in the amount of

instructional feedback they needed. Interestingly, Level 1 feedback, which simply showed the

end state, was sufficient about half of the time for the children to infer the intermediate steps

needed to reach the end state. Novick and Morse (2000) found that the ease of seeing

intermediate steps in a final-state diagram of an origami figure predicted people’s subsequent

ability to recreate the figure. In the current study, children who had tried but failed to structure

the materials were evidently in a good position to extract the intermediate states. This is a useful
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educational finding, because it shows that under appropriate conditions, teachers can have

children infer a mathematical procedure rather than telling them a procedure they might just copy

without comprehension.

------------------ Insert Table 8 about here -----------------

8.2.2. Transfer to new materials

 In the transfer phase, children only tried problems at the levels they had attempted that

day. To equate children who had reached different levels, we computed percent correct across

problems and materials. We computed two different transfer scores. A problem solving transfer

score measured how well children did with the new materials for problems they showed they

could solve mentally during the learning phase. We called this problem solving transfer because

the children already had a mental schema for the problems that they could apply. The learning at

transfer score measured how well children did with the new materials on problems they could

not do mentally during the learning phase. We called this learning at transfer because the

children had to learn how to rely on the transfer materials to solve the problems.

Fig. 10 shows that the tile children did better than the pie children on both forms of

transfer, with a descriptively greater advantage for the learning at transfer measure. The drop-off

for both groups on Day 3 reflected the fact that the children were working on harder problems.

(Recall that children successfully solved harder problems each day in the learning phase, and

therefore, received harder problems in the transfer phase.)
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--------------- Insert Figure 10 about here --------------

Collapsing data across the days, the tile children were correct on 95% (SE = 2%) of the

problem-solving transfer problems and 55% (SE = 6%) of the learning-at-transfer problems. The

corresponding numbers for the pie children were 89% (SE = 3%) and 35% (SE = 4%). A 2 x 2

ANOVA used transfer type (problem-solving vs. learning) as the within-subjects factor and

learning condition (tiles, pies) as the between-subjects factor with percent of correct solutions

across the materials as the dependent measure. Analysis revealed a main effect of learning

condition on accuracy, F(1, 14) = 12.0, MSE = 0.01, p < .01. Children who learned to solve

problems with tiles solved similar problems with new materials more frequently than children

who learned to solve the problems with pies. We also found a main effect of transfer type, F(1,

14) = 107.1, MSE = 0.02,  p < .001. As in Experiment 3, when children had high knowledge as

indicated by their abilities to solve problems mentally, they were better able to use many

materials. The descriptively apparent interaction in Fig. 10 between transfer type and learning

condition was not significant, F (1, 14) = 2.7, MSE = 0.02, p = .12.

The tile children also showed superior adaptations at transfer. With the transfer materials,

the tile children created partitioned adaptations 90% of the time compared to 59% of the time for

the pie children. Table 9 shows the proportion of partitioned adaptations (and interpretations) for

each material for each day (collapsed across problem solving and learning transfer). A 2 X 3 X 3

ANOVA used learning condition (pies, tiles) as the between-subjects factor with transfer

material (bars, opposite, beans) and day as within-subjects factors. Proportion of partitioned

adaptations was the dependent measure. Analysis revealed a main effect of learning condition,
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F(1, 14) = 7.4, MSE = 0.48, p < .05, and a main effect of transfer material due to a small

advantage for the bean materials, F(2, 28) = 3.4, MSE = 0.05, p < .05. We found no other effects;

Fs < 1.2. Tile children made more partitioned adaptations regardless of day or material. Notably,

the tile group did better with the bar materials than the pie children did, even though the bars had

a structure and color scheme that is more similar to the pies.

--------------- Insert Table 9 about here -----------

8.3. Discussion

All children improved with their primary learning material, but those who learned with

tiles transferred to new materials more effectively; they generated better adaptations and

interpretations of the new materials. In contrast, the pie children were dependent on the pie

structure to such a degree that they even did worse than the tile children with the colored bars,

which are similar to pies. Our explanation is that the pie children did not have to learn to adapt

materials to support the reinterpretation of parts and wholes because they got parts and wholes

“for free.” The tile children had to discover how to adapt and interpret wholes with their unit

materials and this helped when confronting new materials. These results point to an important

difference between interface design and learning design. Interfaces that make tasks easier for

problem solving may not be the best interfaces for learning (Gilmore, 1996; O'Hara & Payne,

1998; Svendsen, 1991).
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One alternative explanation for these results is that the tile group learned a more general

procedure for solving the problems. A problem with this explanation is that the two groups

learned the same procedure for solving fraction problems. We did not teach the pie children a

narrow procedure that could only conceivably work for pies, because this would make the failure

at transfer less interesting. Thus, the difference was not in the instructive feedback they received

but rather in the materials they manipulated. However, one might argue that we taught the pie

and tile children a counting and grouping method that favored the tile condition because it did

not capitalize on the unique geometric properties of pies. The pie children may have seen the

wholes and parts demonstrated by the pies and been confused by the counting method we taught

them. Consequently, the instruction may have had some negative consequences for the pie

children’s overall understanding. Experiment 5 directly addresses this issue by teaching the pie

children a “pie-friendly” method and the tile children the “tile-friendly” method.

9. Experiment 5: Effects of materials II

Experiment 5 tested whether the pie children were disadvantaged by the teaching method

in Experiment 4. The instructional method did not explicitly take advantage of the spatial

properties of the pies, which might account for the advantage of using the tiles. To test this

question, the pie group learned a method that used the spatial equivalence of the pies (a 1/4 piece

is the same size as two 1/8 pieces). Our hypothesis was that instruction in using this method,

which capitalizes on the pie’s spatial structure (see Fig. 11), would still not put the pie children

ahead of the tile children in transfer situations.  The method depends on the specialized structure
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of pies, and children would not develop “stand-alone” ideas that could operate independently of

the specialized environment.

------------------------- Insert Figure 11 about here ---------------

9.1. Methods

9.1.1. Participants

Nine- and 10-year-old children (fourth grade) were assigned randomly to one of two

rooms. Each room implemented a different instructional treatment, pie or tile instruction. Sixteen

children were selected randomly from each condition to participate.

9.1.2. Design and Procedure

For 3 days, the children worked as a whole class on same- and different-denominator

fraction addition problems with either tiles or pies. On the 4th day, in individual videotaped

interviews, children solved fraction addition problems with pies and tiles interspersed with other

problems.

In the tile condition, the children learned the “counting and grouping method”

exemplified by the Level 4 feedback of Experiment 4 (see Fig. 9). In the pie condition, children

learned a “trading method” that relied on the proportional sizes of the pieces (Fig. 11 shows the

trading method for adding 1/4 + 1/2). The steps were as follows: (a) Pull a one-fourth piece from

the whole set, (b) pull a one-half piece from the whole set, (c) trade the one-half piece for two

one-fourth pieces, and (d) join and count the fourths pieces to come up with three fourths.



Physically Distributed Learning     47

9.2. Results

As before, learning with tiles had a greater positive effect on interpretations and

adaptations when transferring to new materials. Children solved two pie and two tile problems.

Table 10 shows the average scores. With respect to the accuracy of their interpretations, tile

children scored the same with tiles and pies, whereas the pie children performed better with pies

but worse with tiles. A 2 X 2 ANOVA used learning condition (tiles or pies) as a between-

subjects factor and familiarity of the materials (base or transfer material) as the within-subjects

factor. Analysis revealed a main effect of familiarity, F (1, 30) = 6.3, MSE = 0.3, p < .05 and an

interaction between familiarity and learning condition, F (1, 30) = 6.3, MSE = 0.3, p < .05.

Simple main effects revealed that on problems using their base materials, the pie children

performed better than the tile children, F (1, 30) = 5.6, MSE = 0.3, p < .05, whereas with transfer

materials, there was no difference between the conditions. However, the pie children performed

worse with the transfer material than with their base material, F (1, 30) = 13.4, p < .01, whereas

the tile children’s performance showed no difference. Thus, pie children were better with their

base material, and the tile children were more able to learn to solve the problems with the

transfer material.

-------------- Insert Table 10 about here -------------

With respect to adaptations, the tile children performed similarly with both materials. In

contrast, the pie children correctly partitioned all the pie problems but did poorly with the tiles.
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Learning condition was the between-subjects factor and familiarity of the materials was the

within-subjects factor in a 2 x 2 ANOVA. Analysis revealed a main effect of familiarity on the

number of partitioned adaptations, F(1, 30) = 57.2, MSE = 0.2, p < .001. Children made more

partitioned adaptations with their base material. We also found an interaction between learning

condition and familiarity, F(1, 30) = 17.8 MSE = 0.2, p < .001. Simple main effects revealed that

the tile children performed worse than the pie children with their base material, F(1, 30) = 6.8,

MSE = 0.2, p < .05, whereas the pie children performed worse than the tile children with the

transfer materials, F(1, 30) = 6.2, MSE = 0.5, p < .05. Thus, although the pie children started

higher with their base material, they adapted the transfer materials worse than the tile children

did.

9.3. Discussion

The advantage of the tile children at transfer suggests that the results of Experiment 4

were not due to a mismatch between the teaching method and the pie materials. Children who

learned with the grouping and counting methods with the tiles were equally accurate with pies at

transfer and exhibited a small drop in partitioned adaptations when working with pies. In

contrast, the pie children learned to use the pies quite well with the trading method of instruction

but exhibited a large drop in interpretation and adaptation when transferring to the tiles. The

trading method depended on the built-in spatial structure of the pies, and the children did not

develop an interpretation of fractions or an ability to take actions that could extend beyond the

pies.
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 An alternative account of the results is that pies are simply easier than tiles. The tile

students did not drop on the pie problems because pies are easy. The pie students dropped on the

tile problems because tiles are hard, and the tile students had learned a specific method to help

them. The problem with this account is that the tile students did not actually use the “easy”

geometric structure of the pies during transfer. They treated the pies as though they were tiles,

for example, by making groups with pie wedges of different sizes (e.g., putting a 1/3 and 1/6

piece together to indicate two pieces). Therefore, the tile children had learned a method of

adaptation and interpretation that interfered with their ability to interpret the useful structure of

the pies but was still general enough to let them adapt any material successfully.

10. General discussion

10.1. Empirical summary

 Five studies examined whether, when, and how 9- and 10-year-old children learn by

distributing their cognition to physical materials. Across the studies, children could solve fraction

problems by moving physical materials, even though they frequently could not solve the same

problems in their head, even when shown a picture of the materials. The two processes of PDL

were adapting and reinterpreting the environment. As children adapted the physical situation,

they moved from an interpretation of individual pieces to an interpretation of partitioned

structures as groups that could be individuated and counted in their own right.   Additionally,

after initial learning, the ability to repurpose new environments to support cognition was a

marker of strong understanding. Initial opportunities to adapt and reinterpret environments led
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towards this form of understanding, whereas opportunities to operate in environments that

precluded adaptation and reinterpretation did not.

10.2. Effects of adaptation and reinterpretation

Experiment 1 demonstrated that manipulation helped children solve fraction problems

that they could not solve when looking at pictures of the same pieces. When the children could

not manipulate the pieces, they tended to use a pencil to circle pieces that they interpreted as

whole numbers. When the same children could manipulate the physical materials, they

eventually made partitioned structures they could interpret as groups. The adaptation coevolved

with the reinterpretation. Children did not simply implement a preconceived strategy with the

pieces. They often started over within a problem, moving the pieces around until they could

interpret the problem in a satisfying way.

Experiment 2 showed that the process of manipulating the pieces into a partitioned

structure was important for reinterpretation. Preorganized pictures of the pieces did not help the

children develop good interpretations as much as manipulating the pieces. For the younger

children of Experiment 2, the benefit of manipulation depended on eliciting the prior knowledge

of sharing fairly, which guided their activity. The data also showed that action per se is

insufficient. In Experiment 2, children took more actions using pencil and paper than they did

with the physical materials, but this increased activity did not propel them to greater insight.

Experiment 3 bracketed PDL. When children had relatively high knowledge

(multiplication), they could use many types of materials to distribute their cognition. They were

not developing new interpretations, but rather, they were repurposing environments to serve their
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interpretations. In contrast, when children had relatively low knowledge (fraction addition), the

structure of the environment shaped their behaviors, and they were unable to develop new

interpretations.  The children only created appropriately partitioned structures with certain types

of materials (e.g., pie pieces), and they were unable to interpret the resulting structures to solve

the fraction problems.

Experiments 4 and 5 demonstrated that the benefit of PDL depends on the structure of the

manipulable environment. The structure of the manipulatives had an effect on children’s ability

to transfer fraction addition to new situations with new physical properties. Importantly, it

showed that environments with supportive problem-solving structures can lead to less learning

than environments that require active adaptation and reinterpretation. The opportunity to adapt

tiles and reinterpret them as groups and parts of wholes helped children handle new situations

better than the children who worked with pies. The pie materials more readily offered an

interpretation of groups and wholes, but as a consequence, the children did not learn how to

make and interpret new grouping and whole structures, and they could not handle new situations

with different physical characteristics.

In combination, the results suggested that simply seeing a final good structure is

insufficient for children to develop new interpretations. Distributed activity was necessary to

allow adaptation and interpretation to coevolve, so that the children could appreciate the

mathematical meaning of a good physical structure once it appeared.
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10.3. Towards a model of physically distributed learning

PDL raises interesting methodological and explanatory challenges. In many experiments,

investigators can begin with the assumption of a fixed stimulus that does not change during the

process of learning, problem solving, or development. In the current work, children changed the

stimulus materials both physically and interpretively. The five studies showed that children

changed the structures made by the materials and in the process changed their interpretations of

those structures. For the developing child, the environment (or stimulus) is not a given; for the

researcher, the structure of the situation becomes a relation between child and environment, such

that changes to one change the other.

Often, it is theoretically safe to view the environment as fixed and to document changes

to the individual in relation to that environment. However, when people can fundamentally adapt

the environment and the interpretations that the environment supports, process accounts that only

model a person’s thoughts and that assume a consistently structured world become cumbersome.

One alternative is to abstract the environment and person as components of a larger dynamic

space. Fig. 12 provides one approach using the transfer data from Experiment 4. This figure

requires some explanation.

------------------ Insert Figure 12 about here --------------

During the transfer phase each day, children completed problems at the levels they had

attempted during the learning phase. For each problem level, they used three transfer materials.
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The horizontal axis in Fig. 11 represents the number of partitioned physical structures they made

across the three transfer materials for a given problem level (from 0 to 3). The vertical axis

represents the number of accurate interpretations (answers) for each of the three transfer

materials. The 16 regions in the graph represent different ratios of adaptive to interpretive

accuracy. To help read the figure, imagine it only showed a single point. The point would stand

for a student’s performance across the three materials for a single problem level on a single day.

It would represent the student’s success in adaptive restructuring relative to interpretative

success. A point in a region on the diagonal would represent that the student correctly partitioned

and interpreted the materials at the same rate; a point in the upper right corner would mean 100%

correct on both. A point below the diagonal would indicate the child made more good

adaptations than interpretations. A point above the diagonal would indicate the child made more

good interpretations than adaptations. Fig. 12 uses arrows rather than points to indicate

trajectories of change. The arrows represent performance changes between pairs of days. The tail

of an arrow indicates the region a student was in for a given problem level on one day, and the

head of the arrow points to the region the student attained on the next day for the same level of

problem. Children typically moved to adjacent squares, with only 20% jumping across a square

(omitted to simplify the figure). Circular arrows mean there was no change between days.

The sample is too small for conclusive statistical analyses of these results. The graph

often has only 1–3 participants per region. However, the adaptive-interpretive space reveals

some interesting patterns.

1. Begin with the plot for the tile children. One thing to notice is that most of the children

adapted the environment better than they interpreted it before they reached full understanding;

they are generally at or below the diagonal.
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2. The second thing to notice is that the upper right region of 100% performance is a

strong attractor state. The flow of arrows leads through the physical structure to the upper right

corner. Once children enter the region, they rarely leave on subsequent trials.

3. Next, consider the plot for the pie children. In this case, the plot shows more

movement towards and through the upper diagonal of the space. Children’s interpretations are

driving the performance of the system. Also, the upper right region is not a strong attractor state.

It does not always draw the children from the remote regions; fewer children end in the region;

even when they arrive, they are likely to leave.

Compared to the tiles, learning with the pies does not yield a stable and directed adaptive-

interpretive space when children transfer to new materials. Across the two graphs, physical

structuring leads the way towards stable and full understanding, whereas correct interpretations

do not. Evidently, a strong pathway to knowledge comes through the ability to make adaptations

that are just ahead of one’s interpretations. As fits our PDL story, people manipulate the

environment until a structure emerges that they can interpret meaningfully.

10.4. Development and educational possibilities

These experiments were not instructional experiments. They examined how children

solved problems, learned, and transferred in individual settings. This approach misses important

factors including social influences, classroom norms, and task structures that influence how

manipulatives will impact learning. At the same time, studies like these can illuminate particular

ways that manipulatives influence children’s action and thinking. This information should be

able to inform instructional practice and vice-versa.
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The primary implication for learning that we draw from this research is not that children

should only manipulate tiles to learn about fractions. It seems likely that working with many

representations and materials is best for overall development of fraction understanding, and that

perhaps computer “virtual” environments that combine the abilities to move and draw on pieces

could offer more value than real manipulatives (Ainsworth, Bibby, & Wood, 2002; Clements,

2002; Moyer, Bolyard, & Spikell, 2002). Instead, our account of PDL suggests a rationale for the

use of manipulatives that is complementary but different from current views on their use.

Researchers support several alternative views but have little agreement on why manipulatives

might benefit learning (Chao, Stigler, & Woodward, 2000). One idea is that exposure to multiple

representations generates better understanding of underlying mathematical principles (Ainsworth

et al., 2002; Moreno & Mayer, 1997). Another hypothesis is that a manipulative’s structure

should instantiate important mathematical concepts; for example, cuisennaire rods demonstrate

the base-10 system of numeration (Fuson & Briars, 1990). Another view is that external

resources primarily help problem solvers keep track of problem elements without wasting

internal memory resources (Cary & Carlson, 1999).

Our view of PDL is that the coupled processes of adapting and reinterpreting the

environment drive quantitative development. So, rather than assuming that the quantitative

meaning of a physical situation is manifest for children, the process of adapting the situation to

develop an interpretation may best prepare children to understand quantity. This implies that

simply showing children how to use a manipulative to solve a mathematical problem does not

guarantee they will develop appropriate interpretations, and in fact, it may block the adaptation-

reinterpretation activity. Instead, it may be better to provide children a chance to grapple with

structures and interpretations that can prepare them to learn subsequently (Bransford et al., 1989;
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Schwartz & Bransford, 1998). In Experiment 4, for example, children inferred the appropriate

steps for solving the problem over 50% of the time when they simply received feedback that

showed the desired end state. Similarly, children in Experiments 4 and 5 were more prepared to

learn how to use new materials when they actively grappled with the tile structure instead of

working with the pie structure. The pie structure circumvented the need for adaptation and

reinterpretation.

It may seem inefficient to have children waste time developing inappropriate structures

and interpretations—why not just tell or show them the correct procedure to start with? One

answer is that giving the solution before children have actively engaged in the quantitative

challenge prevents the children from learning as deeply, for example, when measured by their

abilities to transfer (Hatano & Oura, 2003; Schwartz & Martin, 2004). The activity of adaptation

and reinterpretation in distributed learning is an important element of development. It prepares

children to appreciate the meaning of the solution when it appears.

The pedagogical challenge is to determine the appropriate level of scaffolding for the

process of PDL. Based on the current work, useful scaffolds should help a child find and work

with critical aspects of problem, without doing the work for the child. An analogy comes from

training wheels on a bicycle. If the wheels constantly touch the ground, like a tricycle, the child

may never learn to balance. However, by keeping the wheels slightly above the ground, the child

has to struggle with the critical element of balance. For learning about quantity, good scaffolds

need to support key adaptations and reinterpretations. For example, working with a whole block

that could not be subdivided would not support creating the adaptations needed to solve a

problem like 1/3 of 12. However, if a scaffold carries too much of the burden, it interferes with
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the student’s active process of struggling with the ideas. For example, if the material is

subdivided into thirds, the student does not need to think about what 1/3 of 12 means.

Manipulatives can help children learn because they provide an environment for

quantitative activity in which children can adapt and reinterpret. The assumption is not that

children will necessarily discover the correct interpretation, but rather, that the activity will

prepare them to understand the interpretation of a structure once it becomes available. This may

be the hidden value of hands-on activities: They prepare children to learn from new resources,

perhaps from a physical demonstration or a lecture, even in those cases when children do not

generate the conventional solutions for themselves.
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Tables

Table 1
Percent of Good Interpretations and Adaptations by Materials

Materials Correct interpretations Partitioned adaptations
Physical

Pies 59% 64%

Tiles 81% 68%

Mean 70% 66%

Pictorial
Pies 19% 4%

Tiles 13% 0%

Mean 16% 2%
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Table 2
Interpretations and Moves Broken Out by Adaptation Over Problem-Solving Tries

Moves (SE)
Try Adaptations % Correct1 Correct Incorrect

Physical materials
Try 1 (n = 28) Partitioned 64% 33% 18.5 (4.4) 13.0 (2.1)

~ Partitioned 36% 20% 9.0 (1.7) 8.8 (1.4)

Try 2 (n = 28) Partitioned 46% 60% 17.7 (4.0) 16.3 (3.5)
~ Partitioned 52% 46% 7.8 (2.0) 9.0 (2.1)

Try 3 (n = 21) Partitioned 52% 36% 12.3 (1.7) 17.4 (2.4)

~ Partitioned 48% 30% 13.7 (3.8) 15.4 (3.1)

Pictorial materials
Try 1 (n = 27) Partitioned 0% – –

~Partitioned 100% 11% 10.0 (1.4) 9.7 (1.5)
Try 2 (n = 27) Partitioned 4% 100% 7.0 (n/a) -

~Partitioned  96% 19% 5.4 (2.1) 8.3 (3.3)
1 Percent of correct interpretations within partitioned/nonpartitioned adaptations..
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Table 3
Measures Broken out by Problem Context, Material, and Organization

Condition

Correct

interpretations Partitioned
adaptations Moves (SE) Restarts (SE)

Number (n = 10)
Physical

Random display 10% 30% 22.2 ( 6.5) 1.5 (0.3)

Preorganized 10% 40% 17.6 ( 3.7) 1.3 (0.2)

Pictorial
Random display 0% 10% 27.4 (12.7) 1.2 (0.2)

Preorganized 20% 20% 22.9 ( 7.9) 1.1 (0.1)

Story (n = 10)
Physical

Random display 80% 90% 27.4 ( 9.7) 1.4 (0.2)

Preorganized 80% 90% 22.6 ( 5.5) 1.3 (0.3)

Pictorial
Random display 40% 100% 43.7 (14.5) 1.3 (0.3)

Preorganized 60% 90% 22.8 ( 8.4) 1.1 (0.1)
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Table 4
Interpretations and Moves Broken out by Adaptation Over Problem-Solving Tries, Experiment 2

Moves (SE)
Adaptations Correct1 Correct Incorrect

STORY CONTEXT

Physical materials

Try 1 (n = 10) Partitioned 90% 56% 11.4 (2.8) 17.5 (4.0)
 ~Partitioned 10% 100% 1.0 (n/a) –

Try 2 (n = 10) Partitioned 90% 67% 32.7 (10.4) 19.0 (0.5)

 ~Partitioned 10%  0% – 8.0 (n/a)
Try 3 (n = 5) Partitioned 100% 60%  16.3 (9.7) 16.5 (4.6)

~Partitioned 0% – – –

Pictorial materials

Try 1 (n = 10) Partitioned 90% 56% 30.6 (10.7) 26.0 (5.5)

~Partitioned 10%  0% – 19.0 (n/a)

Try 2 (n = 10) Partitioned 90% 44% 29.5 (17.8) 34.2 (11.9)

~Partitioned 10%  0% –

NUMBER CONTEXT

Physical materials
Try 1 (n = 10) Partitioned 40% 25% 5.0 (n/a) 16.3 (5.6)

~Partitioned 60% 0% – 13.0 (5.2)
Try 2 (n = 10) Partitioned 40% 25% 19.0 (n/a) 22.3 (1.2)

 ~Partitioned 60% 0% – 16.3 (4.9)

Try 3 (n = 4)  Partitioned 50% 0% – 18.5 (3.2)
~Partitioned 50% 0% – 16.0 (8.5)

Pictorial materials
Try 1 (n = 10) Partitioned 10% 0% – 140.0 (n/a)

~Partitioned 90% 11% 6.0 (n/a) 12.1 (1.9)
Try 2 (n = 10)  Partitioned 20% 0% – 29.5 (3.9)

~Partitioned 80% 0% – 18.9 (5.1)
1 Percent of correct interpretations within partitioned/nonpartitioned adaptations..
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Table 5

Average Number of Good Interpretations and Adaptations (out of 2 Possible) Broken out by

Problem Type and Material

Knowledge/materials
Correct interpretations

(SE) Partitioned adaptations (SE)
High knowledge (Multiply)

   Partitioned materials 1.2 (0.1) 2.0 (0.0)

   Unit materials 1.4 (0.2) 2.0 (0.0)

Low knowledge (Add fractions)

   Partitioned materials 0.4 (0.2) 0.6 (0.2)

   Unit materials 0.4 (0.2) 0.2 (0.2)
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Table 6
Problem Levels, Experiment 4

Sum Same denominator Multiples denominators Different denominators

Sum < 1 Level 1
e.g., 2/4 + 1/4

Level 3
e.g., 1/12 + 5/6

Level 5
e.g., 1/4 + 1/3

Sum > 1 Level 2
e.g., 2/3 + 2/3

Level 4
e.g., 2/4 + 5/8

Level 6
e.g., 2/3 + 3/4
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Table 7
Highest Problem Level Passed, Learning Phase, Experiment 4

Group Day 1 (SE) Day 2 (SE)
Day 3 (SE)

Tiles
1.63 (.25) 2.75 (.29) 3.00 (.43)

Pies 0.88 (.28) 1.75 (.39) 2.75 (.23)
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Table 8
Level of Instructional Feedback as a Percentage of Total Feedback, Experiment 4

Group
Level 1 Level 2 Level 3 Level 4

Tiles
47% 22% 25% 6%

Pies 55% 21% 21% 3%
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Table 9
Proportion of Good Interpretations and Adaptations at Transfer by Condition and Material,

Experiment 4

Correct interpretations
Partitioned adaptations

Day/material Tiles (SE) Pies (SE) Tiles (SE) Pies (SE)
Day 1

   Bars .8 (.1) .5 (.1) .8 (.1) .5 (.1)

   Other .8 (.1) .7 (.2) .8 (.1) .3 (.1)

   Beans .8 (.1) .7 (.1) .9 (.2) .6 (.2)

   Mean .80 .63 .83 .47

Day 2
   Bars .8 (.1) .8 (.1) .9 (.1) .7 (.1)

   Other .6 (.0) .8 (.1) .9 (.1) .6 (.1)

   Beans .7 (.0) .8 (.1) 1.0(.1) .8 (.1)

   Mean .70 .80 .93 .70

Day 3
  Bars .7 (.1) .6 (.1) .9 (.1) .7 (.1)

  Other .7 (.1) .5 (.1) .9 (.1) .5 (.1)

  Beans .8 (.1) .5 (.1) 1.0(.1) .5 (.1)

  Means .73 .53 .93 .57
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Table 10
Proportion of Good Interpretations and Adaptations at Transfer by Condition and Material,

Experiment 5

Correct interpretations
(SE)

Partitioned adaptations
(SE)

Learned with tiles

Familiar materials (tiles) 1.1 (0.1) 1.6 (0.2)

Unfamiliar materials (pies) 1.1 (0.1) 1.2 (0.2)

Learned with pies
Familiar materials (pies) 1.5 (0.1) 2.0 (0.0)

Unfamiliar materials (tiles) 0.9 (0.1) 0.6 (0.2)
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Figures

Fig. 1. Physical actions and learning. We distinguished four ways actions could support learning.

Ideas and environments can be stable or adaptable. We presume these dimensions are

continuous, but represent them in discrete quadrants for clarity in discussion.

Fig. 2. Typical configurations and interpretations for the problem of “Make 1/4 of 8.” Panel 2a

shows two collections, one of one piece and one of four pieces, that are interpreted as two

separate whole numbers. 2b shows a partition into two groups of four.  The interpretation is that

one group of four pieces is one-fourth of the total. 2c shows partitioning into four equal groups.

In 2c, each partition is correctly interpreted as one group of two pieces.

Fig. 3. Pie and tile manipulatives. Materials used in Experiments 1–5.

Fig. 4. Examples of partitioned and nonpartitioned adaptations of 1/4 of 8. The left panels show

partitioned adaptations created with physical materials and with pictures. In both cases, the set of

eight pieces is divided into four equal groups of two. The right panels give examples of

nonpartitioned adaptations. In both cases, the set is not partitioned equally, and instead one piece

is isolated.

Fig. 5. Random display and preorganized material presentation for 1/4 of 8. As in Experiment 1,

the random display presentation lays the materials out over the space or table in an unorganized
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fashion. The preorganized presentation shows the materials partitioned in an effective way for

solving the problem.

Fig. 6. Effects of material and problem context on interpretation and adaptation, Experiment 2.

In Experiment 2, children in the story context made correct interpretations and partitioned

adaptations more often than children in the number context with both physical and pictorial

materials. Children in the story context made partitioned adaptations as often with pictorial as

with physical materials, though they correctly interpreted their adaptations more often when they

manipulated the pieces. Children in the number context made partitioned adaptations more often

with the physical materials, but this did not improve their interpretations.

Fig. 7. Effects of display organization and problem context on interpretation and adaptation,

Experiment 2. In Experiment 2, children in the story context made correct interpretations and

partitioned adaptations more often than children in the number context with both random and

organized presentation of the materials. Children in the story context made partitioned

adaptations as often with random and organized presentation of the materials, though they

correctly interpreted their adaptations slightly more often with the organized presentation of the

materials. Children in the number context made partitioned adaptations and interpreted them

correctly with similar frequency with both presentations.

Fig. 8. Adaptations for fraction addition and multiplication, Experiment 3. A partitioned

adaptation for 1/4 + 1/2 shows partitioned representations of the two fractions. A nonpartitioned

adaptation for fraction addition might show 1/4 as one piece and 1/2 as one piece. A partitioned
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adaptation for 3 x 4 shows three groups of four pieces each. A nonpartitioned adaptation might

show direct representations of the numbers in the problem (e.g., 3 and 4).

Fig. 9. Feedback levels, Experiment 4. For example, for the problem 1/4 + 1/2, Level 1 showed

children the end state and stated, “The answer is 3/4.” Level 2 showed children how to setup the

fractions in the problem, “Use four pieces to make both halves and fourths.” Level 3 indicated

what part showed the particular fraction, “Here's one whole, and here’s one fourth of it. Here's

another whole, and here's one half of it.” Level 4 modeled the addition process, “Put the 1/4 and

the 1/2 together to get 3/4.”

Fig. 10. Transfer by condition, day, and ability to solve problems mentally, Experiment 4.

Problem-solving transfer problems are those that children could solve without materials.

Learning at transfer problems are those that children had not yet successfully solved without

materials. Both the pie and tile groups performed better at transfer on problem-solving problems.

The pie group performed worse than the tile group on learning-at-transfer problems.

Fig. 11. Pie trading method for 1/4 + 1/2. In Step 1, we showed how to find the pieces that fit

four into one whole circle and take out one of them to make 1/4. In Step 2, we showed students

how to find the pieces that fit two into one whole circle and take out one of them to make 1/2. In

Step 3, we showed students how to fit fourths into the half to find out how many of them to

trade. Finally, in Step 4, we showed students how to put all the fourths together to get 3/4.
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Fig. 12. Movement through the space of interpretive and adaptive accuracy in the transfer phase

of Experiment 4. A straight arrow indicates a change in either adaptive or interpretative accuracy

from one day to the next. A diagonal arrow indicates a change in both adaptive and interpretive

accuracy. A curved arrow indicates no change in either adaptive or interpretive accuracy. See

text for a detailed explanation of the figure.
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Fig. 2

a. b. c.
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Fig. 3
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Fig. 5
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Fig. 6

Fig. 7
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Fig. 9
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Fig. 10
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Fig. 11
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Fig. 12
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