
Abstract
The emphasis on processors that are both low power

and high performance has resulted in the incorporation of
dynamic voltage scaling into processor designs. This fea-
ture allows one to make fine granularity trade-offs between
power use and performance, provided there is a mechanism
in the OS to control that trade-off. In this paper, we describe
a novel software approach to automatically controlling
dynamic voltage scaling in order to optimize energy use.
Our mechanism is implemented in the Linux kernel and
requires no modification of user programs. Unlike previous
automated approaches, our method works equally well with
irregular and multiprogrammed workloads. Moreover, it
has the ability to ensure that the quality of interactive per-
formance is within user specified parameters. Our experi-
ments show that as a result of our algorithm, processor
energy savings of as much as 75% can be achieved with
only a minimal impact on the user experience.

1. Introduction
The performance of microprocessors has been improv-

ing at an exponential rate and this trend is likely to continue
for several years to come. However, increased performance
does not come for free. One of the most important conse-
quences of higher performance has been a dramatic increase
in power consumption. While an Intel 386 processor con-
sumed about 2 Watts of energy, a Pentium 4 can use as
much as 55 Watts. In a mobile environment, batteries have
not kept pace with the increased energy requirements,
which means that either application performance or battery
time suffers. However, even in environments where energy
storage is not an issue, energy cost and heat management
may become problems [9].

There is still a need to continue to improve processor
performance, since not all applications are “fast enough,”

but an increasing number are. A way to bridge the gap
between high performance and low power is to allow the
processor to run at different performance levels depending
on the application’s requirements. Some processors, such as
the Intel XScale [2] and Transmeta Crusoe [8] allow the fre-
quency of the processor to be reduced with proportional
reduction in voltage. Slowing down frequency without volt-
age scaling is not useful, since the power savings is offset
by an equal increase in execution time, yielding no reduc-
tion in the total amount of energy consumed. However,
since energy is proportional to the square of the voltage,
reducing the operating voltage can yield significant energy
savings [13]. 

The central issue with processors whose performance
can be changed is how the right level of performance can be
obtained. The goal is to reduce the performance of the pro-
cessor without causing an application to miss its deadlines
(see Figure 1). Completing a task before its deadline and
then idling is less energy efficient than running the task
more slowly to begin with, and meeting its deadline exactly.

Our aim is to design an algorithm that balances energy
savings with the following requirements:
• No modification of user programs.
• Works with irregular and multiprogrammed workloads.
• Ensures that user-perceived performance does not suffer.

Previous interval-based approaches to automated perfor-
mance setting did not fully achieve the goals outlined in the
last two points. These approaches focus on the ratio of idle-
to busy-time as the indicator of the right performance set-
ting [15][5][6][12]. While the results looked promising for
regular workloads (such as audio playback, where processor
utilization is periodic), the proposed schemes do not work
well for interactive or irregular applications.

The aforementioned papers point out that looking at
idle time alone as the indicator of the right performance
level is not sufficient. In their future work section, Weiser et
al. propose an alternative approach, where jobs are classi-
fied into background, periodic and foreground classes [15].
They suggest that the added semantic information could be
used to improve the scheduling algorithms. Govil et al., in
their future work section, propose a similar solution, where
process type along with information specified by the pro-
cesses (e.g. deadline) could be used for performance setting
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[5]. Our approach follows along the lines of these earlier
works; however, we derive deadline and classification infor-
mation automatically from the OS kernel, by examining the
communication patterns between the executing tasks (Sec-
tion 3). This information is used to isolate execution epi-
sodes corresponding to different communication patterns.
We can classify execution episodes into one of the follow-
ing categories: interactive, periodic producer, and periodic
consumer. These classifications can be used to derive dead-
lines for the execution episodes. For example, for an inter-
active episode, the deadline is the perception threshold,
which we assume to be between 50ms and 100ms. The
deadline for a producer is the point at which the consumer
actually needs the produced data. Episode classification
guides performance-setting decisions on a per-task and per-
episode basis and is also used to dynamically evaluate the
impact of past decisions on user-perceived performance
(Section 4).

We focus primarily on interactive applications, since
we believe that this is one of the most difficult, but also the
most important class of applications for performance scal-
ing. We also consider the effects of a concurrently running
background application (an MP3 player) and a variety of
assumptions about the power and performance models on
the performance-setting strategy (Section 6).

2. Previous work
In the context of real-time systems, researchers have

explored voltage and frequency scaling as a means of reduc-
ing power consumption. Papers [10][7][14] present algo-
rithms and theoretical models that allow one to incorporate
voltage scheduling into real-time schedulers. However,
these papers are not directly applicable to general-purpose
operating systems, since the workloads are expected to have
well defined characteristics (periodicity, resource require-
ments, deadlines, etc.). Moreover, the user must explicitly
specify these characteristics to the scheduler.

Our research is more closely related to the work
described in [13][15][5], where performance-setting deci-
sions are made automatically, guided by the ratio of idle
time to busy time on the processor. A weakness with the
existing approaches are that they are not very accurate and

can be easily confused by irregular processor utilization. We
improve on these algorithms by using task-level information
form the OS kernel. A more detailed summary of the
directly related work follows below:

The main ideas behind automatic performance setting
were sketched out by Weiser et al. [15]. Their mechanism
uses the amount of idle time as the guide for finding the
optimum level of performance. The practical policy pro-
posed in this paper is called PAST. In this policy the utiliza-
tion for the most recent interval is computed and, if it is
above a certain threshold performance, is increased, but if
the interval includes mostly idle time, performance is
reduced.

While the PAST algorithm looks very attractive due to
its simplicity and effectiveness on some benchmarks, Govil
et al. [5] point out its shortcomings and propose improve-
ments. One of their complaints is that PAST looks back only
at a single interval and thus it smoothes speed poorly: the
algorithm keeps on changing performance levels without
coming to a steady state, missing out on opportunities to
save power. To remedy the situation, the authors propose a
number of algorithms that use varying amounts of predic-
tion to improve their accuracy. They conclude that smooth-
ing, rather than sophisticated prediction might be the most
effective. Accordingly, they propose an algorithm, PEAK,
that looks for recurring patterns of processor utilization,
with special attention to short bursts of high utilization, and
attempts to set processor speed accordingly.

Pering et al. evaluate interval-based voltage scaling
algorithms for use on a handheld device [12]. One of the
key contributions of this paper is the use of the clipped-
delay metric, which takes into account that the length of
some events can be increased without affecting the user (see
Section 4.1.1). In practice, the effectiveness of this tech-
nique depends on the allowed increase in delay. The algo-
rithm may degrade performance slightly but yield
significant power reduction. While the algorithms used in
this paper worked, their performance fell short of optimum.
Moreover, the algorithms used some specific knowledge
about the executing programs, which may be impractical on
a production system. Pering et al. show that while interval-
based voltage scaling algorithms work well on benchmarks
with regular processor utilization (such as audio playback),
they do not fare well on irregular workloads, such as inter-
active workloads or video playback.

These conclusions are corroborated by Grunwald et al.
[6]. They also find that using a weighted average of proces-
sor utilization as a guide to future utilization (the AVGN
policy) does not yield the clock speed that would maximize
processor utilization. Another problem with this algorithm
is that the requirement to average N intervals introduces a
delay in responding to processor demand. The authors find
that existing heuristics did not fare as well on an actual
implementation as previous studies had suggested.

3. Episode detection
We first applied our interactive-episode detection algo-

rithm to measure the effects of multiprocessing on interac-
tive performance [3]. In this section we summarize this
methodology and also show how it can be extended to find
periodic episodes.

FIGURE 1. Performance scaling

This figure shows two different runs of the same workload. In A, the work-
load runs at full speed and finishes well in advance of its deadline. In B, the
execution of the workload is stretched to its deadline, which allows for
energy savings on processors that implement voltage scaling.

D
eadline

Pe
rfo

rm
an

ce
Pe

rfo
rm

an
ce

A

B
Time
Automatic Performance Setting for Dynamic Voltage Scaling May 30, 2001 2 of 12



The first step in determining the optimum level of per-
formance is to distinguish the important parts of the execu-
tion from unimportant periods. We use the communication
characteristics of the executing applications as the basis of
this classification. Episodes are triggered by communication
events with specific tasks but multiple tasks may be
involved during the execution of an episode. For example,
an interactive episode involving ghostview is triggered by a
message from the X server to ghostview. In return, events
are processed by the application and it may send messages
to the X server, the window manager and its rendering
engine (ghostscript). All of these processes are part of the
episode.

Two types of episodes are detected: interactive and
periodic, with producer and consumer subcategories (see
Figure 2). All other processor activity is classified as back-
ground activity. It is important to note that during its life-
time a task can fall into more than one of these
classifications. For example, a music playback process may
be part of an interactive episode when it is updating the GUI
and be a producer when it is decoding music data.

We monitor which tasks communicate with a few well
known system tasks (such as the X server and the sound
daemon). These tasks are then monitored for communica-
tion through specific system calls that are then used to clas-
sify them into one of the above categories. In addition, we
collect run-time statistics about processor utilization. Thus,
instead of relying on the programmer, we extract the neces-
sary information from the system automatically, using sim-
ple changes to the OS kernel.

As a consequence of our approach, the only idle time
that shows up within an episode is due to device or commu-
nication latencies (hard idle-time) and cannot be removed
by performance changes of the processor. Soft idle-time, on
the other hand, occurs between episodes and is mostly due
to latencies inherent in user interactions. This type of idle
time can be reduced by slowing down the execution of epi-
sodes.

3.1 Interactive episodes
The beginning of an interactive episode is initiated by

the user and is usually signified by a GUI event, such as
pressing a mouse button or a key on the keyboard. Finding
the end of an episode is more difficult since there is no event
that automatically gets generated when the computer is done
responding. To find interactive episodes, we keep track of
the set of tasks that communicate with each other as a result
of a user-initiated GUI event.

The start of an interactive episode is initiated by the
GUI controller (X server in our case) sending a message
through a socket to another task. When this happens both
the GUI controller and the receiver of the task are added to
what we refer to as the task set of the episode. If the mem-
bers of the task set communicate with non-member tasks,
then the as yet non-member tasks are also added. The end of
the episode is reached when all the following conditions are
met for tasks in the task set:
• None of the tasks are executing.
• Data written by the tasks have been consumed.
• None of the tasks remains unfinished, as a results of

being preempted the last time it ran (i.e., all tasks gave
up time on their own by blocking in a system call).

• None of the tasks are blocked on device I/O.
To compute this information, we need to monitor which

system calls are accessed by each task, and how data flows
between the communication structures in the kernel. Moni-
toring requires only minor modifications to the kernel and
has very little overhead both in terms of memory footprint
and execution time. The modifications consist mainly of
additions of a few variables to kernel data structures (i.e.
task_struct, socket, etc.) and then of updating them when
communication takes place. For example, we have modified
the kernel’s socket data structure so that we can determine
the last writer of the socket when it is read. For a more com-
plete description of the implementation details, see [3].

Detecting interactive episodes is only the first step
towards performance prediction. Section 4.1 describes how
the episode’s deadline can be found.

3.2 Periodic episodes
Detecting periodic activity is similar to detecting inter-

active episodes. However, instead of using communications
with the X server as the trigger for starting the episode, we
base this decision on whether the initiating task is periodic.
To detect periodic activity, we keep track of two pieces
information for each task:
• Last execution time.
• Length of the n last periods.

If a task exhibits only a small amount of variation in period
length over the last n runs (< 5%), then we treat it as a peri-
odic task.
FIGURE 2. Episode types

There are two principle groups of episodes: periodic and interactive. Periodic
episodes can be further categorized into producer and consumer, where the
communication between these episodes establishes their performance level.

Episode
Interactive
Periodic

Producer

Consumer
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FIGURE 3. Producer and consumer episodes

The figure shows communications between a producer and a consumer pro-
cess. The processor can be slowed down to stretch the producer episode to
the beginning of the consumer episode.
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3.2.1 Producer-consumer episodes
Producer-consumer episodes form a special subcate-

gory of periodic episodes, where the optimum performance
level is established by the distance from producer to con-
sumer, not by the distance between periods. A case in point
is the Linux esd sound daemon, which wakes up periodi-
cally to check for sound playback requests and to send data
to the sound card. If esd’s playback buffer is not empty, it
sends some of the data to the sound card. If the buffer is
close to being empty, it wakes up and unblocks the music
decoders (e.g. MP3 players), which causes them to generate
the next few frames of data.

Figure 3 illustrates interaction between a producer and
a consumer process. The distance between the run of the
producer and where the data is needed establishes the per-
formance level of the producer. The producer episodes can
be stretched to the beginning of their associated consumer
episodes. To determine how much the consumer can be
slowed down, we first need to determine what the consumer
is doing. This information can either be specified by the
user on a per-process basis, or one can compute it by
observing which devices or processes the consumer com-
municates with. If the task is communicating with a device,
the buffer sizes and the speed requirements of the device
establish the minimum speed of the consumer episode. In
our current scheme we assume that the consumer can be
slowed down to the same speed as the producer.

4. Performance prediction
Our prediction mechanism operates on a per-task basis

and uses different algorithms for interactive and periodic
episodes. In both cases, the predictor computes the perfor-
mance factor, which is the ratio of the desired execution
speed and the processor’s maximum speed.

4.1 Interactive episodes
It is difficult to come up with a good prediction strategy

for the optimum performance level of interactive episodes,
since interactive episodes are completely dependent on the
user, not on some activity within the computer. There is no
predictable pattern of recurrence and the lengths of interac-
tive episodes can have orders of magnitude of difference.
Our detection scheme allows us to differentiate between dif-
ferent types of episodes (i.e. interactive, producer, con-
sumer) but cannot distinguish between different instances of
the same episode in the same task (e.g. when the same but-
ton is pushed in the GUI as before).

We believe that the ability to distinguish between inter-
active episode instances would improve prediction accu-
racy. However, this would require the kernel to have
knowledge about the location in the user program that initi-
ated the given interactive episode. While not impossible,
distinguishing the real call-sites from the kernel is difficult
to do. A simple comparison based on the user-mode pro-
gram counter (PC) is not sufficient, since programs usually
go through at least one level of indirection (through libC)
when calling a system call, and thus all instances of a pro-
gram’s calls to a given system call would have the same
user-mode PC. Moreover, since interactive episodes are
usually generated as a result of GUI interaction, the neces-
sary number of indirection levels is probably higher due to
the use of GUI libraries (e.g. gtk, Xlib). To find the PC

FIGURE 4. Cumulative interactive episode length distributions

Left line shows the cumulative number, right line the cumulative percentage
of time spent in interactive episodes whose lengths are less than or equal to
the time specified on the x axis. The x axis is drawn using a logarithmic scale.
Vertical lines from right to left: a) 50ms, b) 12.5ms and c) 5ms.
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value that really distinguishes one interactive episode from
another, one would have to chase pointers through multiple
levels, where the actual number of levels depends on the
environment (stack layout, libraries, etc.).

Instead of basing a predictor on the ability to distin-
guish between interactive episode instances, we looked for a
simpler solution that only relies on episode type (i.e. inter-
active, periodic producer or periodic consumer) for predic-
tion.

Figure 4 shows the cumulative distribution of interac-
tive episode lengths for four interactive benchmarks. In
each graph, there are two cumulative distributions: the one
on the left shows the cumulative number and the one on the
right shows the cumulative time spent in interactive epi-
sodes of a given length or shorter. To account for the large
variation of interactive episode lengths, the time axis is log-
arithmic. Three vertical lines (a, b, and c from right to left)
delineate the perception threshold (50ms), the point under
which all episodes finish under the perception threshold at
1/4th of peak performance (12.5ms), and 1/10th peak per-
formance (5ms). These values were selected because cur-
rent processors that are capable of performance and voltage
scaling have a minimum performance of about 1/4th peak
performance, and future processors could possibly extend
the rage of performances to 1/10th of peak value.

These graphs show that while most episodes are very
short, the vast majority of time is actually spent in a small
fraction that correspond to the long episodes. For example,
in Ghostview, 92% of the time is spent in 4% of the epi-
sodes. This distribution holds true on the Xemacs bench-
mark as well, however in this case even the relatively long
episodes fall under the perception threshold. Xemacs is an
example of an application where one could run almost all of
its interactive episodes in the lowest performance level
without ever exceeding the perception threshold.

The cumulative episode length distribution graphs
imply that a predictor that predicts that an interactive epi-
sode only needs the minimum available processor perfor-
mance would be right more than 90% of the time. However,
since these episodes tend to make up only a small percent-
age of total time—and consequently have a small contribu-
tion to energy use—it is more important to focus on
accurately predicting the performance level of the relatively
long episodes.

Our performance-factor predictor for interactive epi-
sodes works by starting off with an initial performance fac-
tor, set to the minimum performance factor of the processor,
and then by successively refining its value. Since the initial
setting is only relevant for the first interactive episode, the
choice of initial value does not have a significant impact on
response time or energy savings. The algorithm uses the fol-
lowing three steps:
• Starts running the episode at the predicted performance

factor.
• At the end of the episode, computes the duration that cor-

responds to executing at full performance. Use this infor-
mation to compute the optimal performance factor for
the episode.

• Uses the weighted average of optimum performance fac-
tors (PF) as a prediction for future performance factors.

The main observation that we use in our predictor is that it
is straightforward to compute what the optimum perfor-
mance level should have been once an interactive episode is
over. During the execution of the episode, the performance-
setting of the processor might be changed by external events
(e.g. periodic episodes start executing), so the algorithm
must keep track of the observed performance factors (pfi)
during the episode’s execution. At the end of the episode,
this information can be used to estimate how long the epi-
sode would have been at full performance (see Equation 1).

(EQ 1)

This equation computes the full speed execution time for an
interactive episode given n different observed performance
levels during the episode. The variable ti specifies the length
of execution at the i-th performance level during an interac-
tive episode, and idlei is the corresponding amount of idle
time.

Based on the estimate of the episode execution time at
full performance, the optimum performance level can be
estimated for an interactive episode. Equation 2 gives the
equation for computing the optimum performance factor for
episodes where TFullSpeed falls between the minimum-per-
formance threshold and the PerceptionThreshold, where
Tidle specifies the amount of idle time during the episode.

(EQ 2)

The minimum-performance threshold specifies the episode
duration that could be slowed down to the processor’s mini-
mum performance level and still finish under the perception
threshold. If the perception threshold is assumed to be 50ms
and the processor’s minimum performance is 1/4th of peak,
then this value is 12.5ms. Episodes that are shorter than the
minimum-performance threshold can be run at the proces-
sor’s minimum performance level. Episodes that are longer
than the perception threshold need to run at full perfor-
mance.

We predict the performance factor for the next interac-
tive episode of a given task simply as the average of the
optimum performance factors of past interactive episodes,
weighted by the duration of each episode.

(EQ 3)

Equation 3 shows the computation for the predicted perfor-
mance factor based on the optimum performance factors
(pfj) for k past interactive episodes. Tj refers to the estimated
full-speed time of an interactive episode. The size of k can
be varied to eliminate saturation and to allow temporal vari-
ations of episodes lengths to affect the predictor (see Sec-
tion 4.3).

TFullSpeed pfi ti idlei–( ) idlei+
i 1=

n

∑=

pfoptimum
TFullSpeed Tidle–

PerceptionThreshold Tidle–
--------------------------------------------------------------------------=

PFprediction

pfjTj
j 1=

k

∑

Tj
j 1=

k

∑
---------------------=
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Since there can be orders of magnitude of difference
between the lengths of interactive episodes (see Figure 4),
this strategy means that the predicted performance factor for
short episodes will almost certainly be higher than necessary.
This effect is mitigated by the observation that short epi-
sodes have only a minimal impact on power consumption.

To recover from prediction errors we set an episode-
duration threshold, after which if the episode is still execut-
ing, the performance level is raised to full speed. We refer to
this threshold as the PanicThreshold. While the Pan-
icThreshold can ensure that interactive performance does
not degrade below a certain level, the goal of the predictor is
to set the right performance level at the beginning of the
episode, without the need to transition to a higher perfor-
mance setting later on.

The setting for the PanicThreshold reflects the user’s
tolerance for worst-case performance degradation and deter-
mines how speculative the performance factor predictor can
be. If the user has no tolerance for possible performance
degradation, there is no opportunity for speculation and
consequently energy savings. In this case one would be
forced to be conservative and always run at full perfor-
mance to avoid misprediction errors that might extend the
episode beyond the perception threshold.

Equation 4 shows the computation for the PanicThresh-
old for a given performance factor (PF) and perception thre-
sold.

(EQ 4)

This formula allows a longer panic threshold when the ini-
tial performance setting is high, because in those cases more
work actually gets done per unit time and therefore the cost
of an incorrect setting (in terms of its impact on the user) is
lower. We also make the assumption that the user allows
more performance degradation for episodes whose lengths
are close to the perception threshold than for longer epi-
sodes. In the worst case, if an episode were to be exactly
50ms at full speed, then its length will be stretched to 97ms
given a performance factor of 1/4. On the other hand given

the same performance factor, an episode that would have
been 200ms at full speed would only be stretched to 247ms.

4.1.1 The perception threshold
In this paper we use a range of perception thresholds

during some of our experiments. Our motivations for this
are twofold:
• The higher perception thresholds allow us to estimate the

energy and interactive characteristics on a future, higher-
performance processor. The 100ms threshold on today’s
processor roughly corresponds to the 50ms threshold on
a processor with twice the performance.

• The perception threshold varies by individual and task
and may be used as a user settable indicator for his pref-
erence for high-performance or energy savings.

Literature about human-computer interaction [11][1] indi-
cates that 20-30 frames per second are sufficient for the
human visual system to perceive the images as a continuous
stream. This suggests that the perception threshold is around
50ms. Human subject tests in [1] show that perceptual cau-
sality—when two events are perceived to be fused
together—ends around 100ms, and for some test subjects
quality degradation begins at around 50ms.

Other experiments have shown that for simple opera-
tions, such as dragging an object through the screen, as few
as 5 updates per second are sufficient to maintain an interac-
tive feel (200ms perception threshold). For non-continuous
operations, as much as 1-2 second delays are acceptable
[11]. However, when human motor operations form a feed-
back loop with visual activity, then it is more important to
have a faster response time.

4.2 Incorporating periodic episodes
The optimum performance factor for periodic activity

can be computed easily by either stretching the periodic epi-
sode’s execution to the beginning of the next episode or to
the beginning of the associated consumer episode. Since

PanicThreshold PerceptionThreshold 1 PF+( )=
FIGURE 5. Performance factor settings during the execution of the Acrobat Reader benchmark

Two runs of the Acrobat Reader benchmarks are shown side by side with and without MP3 playback during the run. Perception threshold
was set to 200ms, and data was generated using our simplest strategy (Basic predictor and XSB model without quantization, see Section
6.2). More sophisticated models have significantly fewer performance-level transitions when MP3 is executing in the background. Spikes
to full performance represent instances when the PanicThreshold was reached. Note that the graphs do not show transitions to sleep mode.
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periodic (such as video or sound playback) applications
sometimes adjust the quality of playback based on processor
performance, it is important to switch to full performance
when a periodic application starts executing, so that it has a
chance to adapt to the highest performance level. Our
assumption is that the user’s emphasis is on service quality
over energy savings. Others have addressed the trade-off
where service quality can be reduced to save energy [4].

An important consideration is to find the performance
factor when interactive episodes are present in addition to
the periodic activity. Our strategy is very simple:
• When there is no interactive episode executing on the

processor, we set the performance factor to the one com-
puted for the periodic activity.

• At the beginning of an interactive episode we switch to
the performance factor that was predicted for the task’s
interactive episodes, if it is higher than the periodic per-
formance factor.
Figure 5 illustrates this strategy during two runs of the

Acrobat Reader benchmark. When there is no periodic
activity, performance is determined only by the prediction
for interactive episodes. However, when periodic activity is
present, the algorithm switches between the two perfor-
mance levels, causing significantly more performance tran-
sitions. The spikes that transition the processor to full
performance are triggered by interactive episodes whose
lengths exceed the PanicThreshold. Aside from the initial
start at full performance when MP3 is executing in the back-
ground, there is only one extra transition due to reaching the
PanicThreshold on the second figure. 

Periodic episodes have the effect of extending the run-
times of interactive episodes [3], which means that the inter-
active performance-factor predictor should be updated when
periodic activity starts. Instead of making the prediction for-
mula more complicated, our approach allows the perfor-
mance predictor to quickly adapt to the presence of the
periodic activity. The next section describes how this is
done exactly.

4.3 Implementation details of the Basic predictor
The main features of the Basic predictor are summa-

rized below:
• Interactive episode performance level prediction based

on optimum performance factors of past episodes. Esti-
mates of the optimal performance factors are computed
at the end of each interactive episode.

• PanicThreshold bounds worst-case performance.
• Periodic performance level computed by observing peri-

odic episodes and their communication patterns.
• Switches between periodic and interactive performance

factors depending on which episode is executing.
An attractive feature of the predictor is that it requires

very little state. We use two variables per task: one keeps
track of the sum of episode length weighted performance
factors (totalPF) and the other keeps track of the total time
spent in episodes (totalTime). In both cases time is the esti-
mated full-speed execution time of the episode. The perfor-
mance factor prediction is thus totalPF divided by
totalTime.

One problem with an averaging based predictor is that
if the execution time is long, then temporal variation may
not influence the predictor for a very long time. One way of
alleviating this problem is periodically rescaling the vari-
ables by dividing them both by the same amount. This way
the predictor can better accommodate a changing workload.

Performance prediction for interactive episodes in the
presence of periodic activity relies on rescaling to allow the
predictor to adapt to the changing workload. Our studies in
[3] have shown that even lightweight background activity,
such as MP3 playback, extends the duration of perceptible
interactive episodes by an average of 14%. This implies that
performance factors predicted based on data without the
background activity would underestimate the necessary per-
formance. To alleviate this problem, when periodic activity
is detected, the totalTime variable is set to 100ms and
totalPF is recomputed based on the new value. While pro-
viding a reasonable initial prediction, this change allows
new performance factor data to take hold quickly.

5. Simulation methodology
Our simulator is driven by traces collected using a

modified Linux kernel (2.3.99-pre3) running on a Dell Pre-
cision workstation 410, with only one of the two Pentium II
450Mhz processors enabled (512M RAM). The software
environment was Mandrake Linux 7 with Helix Gnome 1.2.
The traces used in this study are the same as the uniproces-
sor traces used in [3]. All benchmarks were run by a live
user. While we have collected multiple runs in each config-
uration, in this paper we only use a single run for each simu-
lation. We aimed to repeat each run with MP3 in the
background as accurately as possible, but there are slight
variations between the runs. All the significant events (e.g.,
mouse clicks, text entry) were performed in the same order
during each benchmark run. However, the exact path of
mouse movement (and therefore the interactive episodes
corresponding to them) and the amount of time between
events varies from one run to the other.

The traces include all significant OS events during the
benchmarks execution: thread swap events, system calls,
and task information (e.g. name, pid, etc.). Based on this
information, our simulator can reconstruct the communica-
tion events between the tasks (which imply the synchroniza-
tion points between them) and simulate the effects of
performance scaling. The upside of our methodology is that
we have the flexibility to investigate a wide set of architec-
tural parameters. The downside is that the absence of actual
hardware prevents us from measuring total energy con-
sumption and from calibrating our results.

6. Energy and performance implications
Our aim is to develop a performance scaling technique

that can guarantee that user-perceived performance does not
degrade below a user-settable level. A detailed microarchi-
tecture-level power analysis is beyond the scope of this
paper; however, we can derive some estimates regarding the
expected energy savings using a few simple assumptions.

The metric we use is the energy factor, which is the
ratio of the energy used by the scaled workload divided by
its predicted energy use at full performance. Equation 5
gives the energy factor formula for a given workload,
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assuming that the workload is divided into n pieces that exe-
cute at the scaled voltage (vi) and frequency (fi, specified in
Mhz) for the scaled amount of time (ti, in seconds). T refers
to the total execution time at full speed, while the max sub-
script refers to the maximum value of the given variable.

(EQ 5)

Our model focuses on the CPU alone and does not take
the power consumption of other devices (such as memory
and peripherals) into account.

6.1 Processor and power scaling model
Our performance model is based on assumptions from

the Intel XScale microarchitecture [2]. Our traces were col-
lected on a 450Mhz Pentium II based workstation, and we
make the simplifying assumption that these traces corre-
spond to the full-speed performance on each of the simu-
lated models.

We assume that for each performance transition, there
is a 20 microsecond pause, during which the processor does
not execute any instructions. This pause is due to the time it
take to resynchronize the PLLs for the changed frequency
value. After this, the performance transition time—during
which the voltage level is changed—is assumed to be 1 mil-
lisecond regardless of starting and ending performance
level. During this time, we assume that the processor is exe-
cuting instructions at the rate corresponding to the lower of

the two performance levels, but energy is being consumed
at the higher.

Figure 6 shows the known frequency-voltage values
that we used to compute voltage equations (Equations 5, 6,
and 7) for arbitrary frequency levels between the minimum
and maximum frequencies. The XSBase model corresponds
closely to the high-end XScale part (80200M733) described
in [2].

(EQ 6)

However, since this model only has a 2.32x frequency
range, we extended it to 5.15x by allowing it to go as low as
150Mhz in the XSA model.

(EQ 7)

The XSB models the parameters of a high-end device
that is a research prototype. This processor can vary its per-
formance between 150Mhz and 1000Mhz for a 6.67x swing.

(EQ 8)

We use the energy factor as our metric for computing
energy reduction. It is the ratio of a given workload’s energy
consumption using our performance-setting strategy over its
energy consumption using the processor’s peak perfor-
mance. In all our energy calculations, we assume that the
OS power manager puts the processor into a low power
sleep mode immediately when no instructions are execut-
ing. We do not attribute a power cost to this operation and
assume that it happens instantaneously.

During our evaluation we specify a quantization factor
for each of the power models. On an actual processor not all
frequency/voltage pairs can be directly set up, one must
choose from a set of predetermined values. This means that
when the performance estimator requests a given perfor-
mance setting, the actual performance value is rounded up
to the next quantum. In our experiments we mostly focus on
models where frequency is quantized at 5% steps (100%,
95%, 90%, etc.). We denote quantized models with the suf-
fix ‘q’ followed by the quantum size.

EnergyFactor

vi
2fiti

i 1=

n

∑

vmax
2 fmaxT

--------------------------=
vXSBase 5 8–×10 f2– 0.0012f 0.6261+ +=

vXSA 4 7–×10 f2– 0.0015f 0.5324+ +=

vXSB 5 7–×10 f2 0.0005f 0.6624+ +=

FIGURE 6. Frequency-voltage pairs in our energy models

The table shows the given frequency-voltage pairs of our models. Dark areas
represent frequency levels that are not supported in a given model.

Model
Frequency (Mhz)

150 333 400 600 773 800 1000
XSBase 1 1.1 1.3 1.5

XSA 0.75 1 1.1 1.3 1.5

XSB 0.75 1.2 1.4 1.75
TABLE 1. Performance characteristics (XSB, 50ms perception threshold)

Benchmarks

No MP3 in background MP3 playback in background

Performance 
transitions

Mean 
perceptible 

IE length 
increase

Median 
perceptible 

IE length 
increase

Energy 
factor

Performance 
transitions

Mean 
perceptible 

IE length 
increase

Median 
perceptible 

IE length 
increase

Energy 
factor

Acrobat Reader 543 13% 7% 0.91 668 13% 11% 0.84

FrameMaker 155 20% 11% 0.89 191 9% 7% 0.75

Ghostview 510 5% 1% 0.98 1149 5% 1% 0.91

GIMP 919 5% 4% 0.97 1731 5% 4% 0.91

Netscape 1026 18% 14% 0.87 1739 21% 12% 0.82

Xemacs 381 23% 20% 0.30 1417 29% 33% 0.34
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6.2 Performance and energy characteristics
In this section we examine the characteristics of the

basic performance setting algorithm and propose some
improvements. Our evaluation focuses on the following
three main goals:
• Minimizing the number of performance-level transitions.
• Minimizing the amount of increase in the duration of

perceptible interactive episodes.
• Maximizing energy reduction.

These three aspects are closely interrelated. Reducing the
number of performance-level transitions is important,
because each transition has a delay and energy cost that neg-
atively affects both the perceptible performance and energy
savings. On the other hand, increasing the interactive epi-
sode duration has a positive effect on energy savings,
because the longer interactive episodes may stretch, the
slower they can run. However, this has a negative impact on
the user-perceived performance. While the increase in per-
ceptible interactive episode duration in all cases falls within
the acceptable range (since ensuring this is part of the per-
formance-setting algorithm’s job, see Section 4.3), we seek
to minimize it, i.e. our methodology favors faster response
time over energy savings.

The perceptible interactive episode-length increase is
computed for all scaled episodes that fall above the percep-
tion threshold by dividing the scaled episode length by
either the full-speed episode length or the perception thresh-
old, depending on whether the original episode length was
longer or shorter (respectively) than the perception thresh-
old.

Table 1 shows our baseline results using the XSB
model (without quantization) and 50ms perception thresh-
old and assumptions described in Section 6.1. The mean
perceptible interactive episode length increase in all cases is
under 30%. Applications that have many short episodes
(e.g. Xemacs and Netscape) tend to have the largest
increase, while workloads with long episodes (e.g. Ghost-
view and GIMP) exhibit the smallest increase. This makes
sense given that our acceptable delay function (Pan-
icThreshold) allows more performance degradation for
shorter episodes than for longer ones. One should also note
that the number of performance transitions increases signifi-
cantly (up to four times) when MP3 playback is running in
the background. This is because, when a periodic episode is
running, the performance setting algorithm alternates
between the setting for interactive episodes and the setting
for the periodic task. The energy factor tends to be lower
when MP3 is running than without. The reason for this is
TABLE 2. Performance characteristics (XSBq5, 50ms perception threshold)

Benchmarks

No MP3 in background MP3 playback in background

Performance 
transitions

Mean 
perceptible 

IE length 
increase

Median 
perceptible 

IE length 
increase

Energy 
factor

Performance 
transitions

Mean 
perceptible 

IE length 
increase

Median 
perceptible 

IE length 
increase

Energy 
factor

Acrobat Reader 28 12% 5% 0.92 664 12% 10% 0.86

FrameMaker 15 17% 11% 0.90 184 7% 6% 0.77

Ghostview 10 4% 0% 0.99 1135 4% 0% 0.92

GIMP 28 4% 3% 0.98 1533 5% 3% 0.92

Netscape 32 17% 12% 0.88 1547 20% 11% 0.84

Xemacs 15 15% 14% 0.26 1416 29% 31% 0.32
TABLE 3. Performance characteristics with MP3 playback in background (XSBq5, 50ms perception threshold)

Benchmarks

MP3
IEPerf Transition start latency = 1ms

MP3
IEPerf Transition start latency = 5ms

Performance 
transitions

Mean 
perceptible 

IE length 
increase

Median 
perceptible 

IE length 
increase

Energy 
factor

Performance 
transitions

Mean 
perceptible 

IE length 
increase

Median 
perceptible 

IE length 
increase

Energy 
factor

Acrobat Reader 637 11% 4% 0.86 125 13% 6% 0.75

FrameMaker 153 8% 7% 0.76 81 12% 9% 0.73

Ghostview 1031 5% 1% 0.91 222 6% 1% 0.86

GIMP 854 5% 4% 0.88 334 6% 6% 0.83

Netscape 1072 18% 12% 0.83 340 20% 14% 0.72

Xemacs 1047 29% 32% 0.32 980 34% 39% 0.31
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that in most cases the MP3 player requires a lower perfor-
mance setting than the interactive application. Xemacs is an
exception: the benchmark’s interactive episodes require a
lower performance-setting than the MP3 player.

Table 2 illustrates the effects of quantization on the
results. This model corresponds more closely to an actual
hardware implementation than the one used in the previous
table. Quantization tends to slightly reduce energy savings
and also reduce perceptible interactive episode lengths. The
only benchmark where this was not the case is Xemacs,
where quantization corrects a few mispredictions, causing
both an increase in energy savings and a decrease in the
average perceptible episode length.

Perhaps the most striking improvement over the data in
Table 1 is the dramatic reduction in the number of perfor-
mance-level transitions (in some cases more than 300-fold)
when no MP3 playback is running concurrently with the
interactive application. This behaviour is also due to the fact
that when there is no periodic background activity, the suc-
cessively predicted performance levels are close to each
other, causing quantization to eliminate the minor correc-
tions. When MP3 playback is present, the deliberate transi-
tions between interactive and periodic modes keeps the
number of transitions high.

The number of performance transitions can be further
reduced based on an observation of Figure 4. We have
pointed out that the majority of interactive episodes are very
short (less than 1ms) and that very little time is spent in
those episodes (<5%). When there is no periodic back-
ground activity, the effect of the short interactive episodes is
negligible since the performance level is always set at the
predicted interactive performance level, however when
there is an MP3 player in the background, these short inter-
active episodes cause an unnecessary transition from the
periodic to the interactive performance level. When the
interactive episode is very short, this transition simply
wastes energy, since the episode is likely to be finished
before the transition is over.

This observation suggests a strategy that waits for a
certain amount of time before starting a transition to the
interactive performance level. Table 3 illustrates the effects
of a transition-start latency before interactive episodes. The
data is only shown for the benchmarks with MP3 playback
in the background, because there was no significant change
in results when background activity was not present.

Contrasting with Table 2 shows that a 1ms transition-
start latency leaves the energy factors mostly unchanged but
causes a small reduction in the number of performance tran-
sitions. Extending the transition-start latency to 5ms causes
both a significant reduction in energy consumption and in
the number of performance transitions (up to a 5-fold reduc-
tion). Moreover, the average perceptible interactive episode-
lengths stay at around the same level as before.

6.3 The Enhanced predictor
The previous section suggests two minor changes to the

Basic predictor: 1) to quantize the allowable performance
levels; and 2) to wait for a certain time before changing the
performance factor when an interactive episode starts. For
simplicity we only use a statically specified transition start
latency of 5ms in the Enhanced predictor. A more sophisti-
cated predictor could dynamically compute a per-process
value.

Figure 7 shows the energy factors using the Enhanced
predictor and the XSBaseQ5, XSAq5 and XSBq5 power
models given a variety of perception thresholds. Our results
show that while on the measurement machine there is little
opportunity for power savings, as the peak performance of
the processor gets faster, energy savings will be more pro-
nounced. We must note that our traces were collected on a
450Mhz Pentium II machine, and today’s high-end proces-
sors are already 2-3 times faster. We estimate that the energy
factor on today’s high-end desktops could be in the 10%-
75% range at the 50ms-100ms perception threshold.

In the figure, energy factors corresponding to the
XSAq5 model are connected by a line at each perception
FIGURE 7. Energy factors corresponding to different perception thresholds using three quantized (5%) models

These graphs show results using the Enhanced predictor corresponding to a variety of perception thresholds. At each perception threshold level, we show the
energy factors for the QSBaseQ5 (top point), XSAq5 (middle point, connected) and XSBq5 (bottom point) models.
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threshold, the results for the XSBaseQ5 and XSBq5 are
shown as the bars above and below each point (respec-
tively). In all cases, XSBq5 achieves the largest energy sav-
ings, while XSBaseQ5 achieves the least. For most
applications the difference between the three models is
small: in most cases less than 5%. However, the difference
is significant on the Xemacs benchmark runs, since this
application spends most of its time at the lowest perfor-
mance setting allowed in each model. In this case, the lower
minimum performance levels of the XSA and XSB models
give them a significant edge.

Periodic activity has the effect of vertically compress-
ing the graph towards its center. The load due to the back-
ground activity increases the energy savings for benchmarks
with long interactive episodes. On the other hand, one can
observe the exact opposite effect when the interactive epi-
sodes are short (Xemacs).

6.4 Desired hardware improvements
We have already shown that by reducing the number of

performance-level changes, quantization can have a positive
effect on both energy savings and interactive performance.
In our measurements we found that the quantum size does
not greatly impact our results. Using the Enhanced predic-
tor, the difference in energy savings due to quantum sizes of
5%, 10%, and 20% are negligible. While, in all cases the
5% quantum size has the smallest energy factor, the 20%
quantum size is only behind by at most 1%. On the Oracle
predictor, the difference in energy savings due to different
quantum sizes is always under 5%.

Figure 8 contrasts the energy factors and effects on
interactive episode lengths of three different models. The
three connected datapoints for each benchmark correspond
to the Enhanced predictor, an aggressive hardware model
combined with the Enhanced predictor (see Section 6.4) and
the Oracle predictor (where the predictor has perfect infor-
mation, but the hardware model remains realistic). Points
that are closer to the lower left corner of the graph are better.

Since the maximum increase of interactive episode lengths
is bound by the PanicThreshold (see Equation 4), the
increase shown in the graphs is not detrimental to the user
experience. However, our goal is to minimize the interactive
episode length increase for a given energy factor.

The Oracle predictor differs from the Enhanced predic-
tor in that it has exact knowledge of the lengths of interac-
tive episodes as soon as they begin. For this reason, there is
no need to introduce a 5ms latency before transitioning to a
new performance level (see Section 6.2 and Table 3 for why
this latency is necessary in the Enhanced predictor). The
detection of periodic episodes works the same way as in the
enhanced predictor. The model used for the data is XSBq5
with 50ms perception threshold.

The figure shows that while there is a small reduction
of the energy factors, the primary difference between the
Enhanced and the Oracle predictors is that the latter has a
significantly smaller average increase of interactive episode
lengths. In fact the increase is due only to the latencies
inherent in the power model, not to prediction error. If the
Oracle predictor was allowed to extend the interactive epi-
sodes by the same amount as the Enhanced predictor, then
one would see an additional 10%-20% percent increase in
energy savings on benchmarks that have not already
reached the minimum performance-level of the processor.

For all our measurements we assume that there is a 20
microsecond pause when a performance transition is initi-
ated, and that a transition takes 1 millisecond. The current
pause duration, which we believe is indicative of what can
realistically be expected, is short enough that eliminating it
has neither a significant impact on energy savings, nor on
perceptible interactive performance. However, there might
be other reasons for lowering it, such as latencies incurred
during communication with peripheral devices. 

Reducing the lengths of performance transitions, on the
other hand, has a positive effect on both perceptible perfor-
mance and energy savings. While shortening performance
transitions has an overall positive effect, a better prediction
FIGURE 8. Energy factor and response time improvements with Oracle predictor and faster transition times

The graphs show how the energy factors and response times change when an Oracle predictor is used (◆ ) or the latencies due to performance and voltage
changing are eliminated (■ ) compared to the realistic Enhanced predictor with the XSBq5 model (❏ ) with 50ms perception threshold. The datapoints for each
benchmark are connected. Benchmarks from top to bottom: Ghostview, GIMP, Acrobat Reader, FrameMaker, Netscape, Xemacs.
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mechanism (as shown by the Oracle predictor) could
achieve even more significant improvements. We believe
that the Enhanced predictor could be improved by giving it
the ability to distinguish between episode instances (as dis-
cussed in Section 4.1), not just episode types.

7. Conclusions and future work
In this paper we describe an automatic episode detec-

tion mechanism that can be used to guide the performance-
setting decisions for a processor that supports dynamic per-
formance and voltage scaling. This system can derive and
predict episode deadlines automatically, without the need to
modify existing user programs. We have shown that our
approach can achieve significant energy savings while
ensuring that interactive performance stays at an acceptable
level. We are currently working on the evaluation of our
algorithms on a system that is capable of dynamic voltage
scaling.

While our current implementation is tied closely to the
Linux kernel and its application environment, we believe
that the ideas proposed in this paper are also applicable to
other operating systems. We developed our methodology for
Linux by observing common program design and communi-
cation patterns. While the specifics may vary from one OS
to another, most modern operating systems have abstrac-
tions that a similar monitoring environment could be built
on (i.e. inter-process communication, multithreading, sys-
tem calls).

Our mechanism works without modifications of user
programs, however an optional API might be useful for
applications that want to take full advantage of performance
scaling. One of the biggest shortcomings of the current pre-
dictor is its inability to distinguish episode instances from
one another. An API that would allow the programmer to
delineate and name critical episodes and perhaps optionally
specify its type and deadline would help. The API might
consist of the following system calls:

episode_begin <id> [type] [deadline]
episode_end <id>

The id is a per-task identifier assigned by the programmer to
distinguish one episode from another. The type field option-
ally categorizes the episode into interactive, periodic, pro-
ducer or consumer categories. The deadline field optionally
specifies the maximum length of the episode. The idea
behind this API is that its main role is to give hints to the
existing prediction and communication-tracking mecha-
nism, instead of superseding it. For example, there is no
need to specify dependencies between episodes since that
information can be derived automatically from information
in the kernel.

We have shown that along with peak performance, it is
also important to allow the processor to run slowly. While
there will always be applications that can only run accept-
ably at the processor’s fastest setting, an increasing number
of applications are able to take advantage of the lower per-
formance modes of the processor. As peak performance of
the processor increases, it is important to widen the gap
between the minimum and maximum performance levels of
the processor.

We believe that the core idea of our technique—on-line
monitoring and dynamic adaptation—could be extended to

allow the kernel to make better scheduling and service-qual-
ity decisions.
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