Robert Phillips

University of South Carolina Aiken. April 2009

Abstract

We show that the two sequences a(n) and b(n) (defined below) have no common element. That is, for all positive integers n and m, we never have a(n) = b(m). The proof depends on the fact that the two Chebyshev sequences $T_n(x)$, x = 2, 3 can be used to approximate a and b and it is easy to prove that $|T_n(2) - T_m(3)| \ge 1$ for all positive integers $n \ne m$.

Recall that $t(n) = \frac{n(n+1)}{2}$ is the *n*-th trianglular number.

Theorem 1. For a given positive integer e, there never exist positive integers n and m such that

$$2t(e) = t(n)$$
 and $3t(e) = t(m)$.

The proof follows after we develop some facts.

The sequence of positive integers a(e) for which there exists a positive integer n such that 2t(a(e)) = t(n) is item A053141 in EIS.¹.

The sequence of positive integers b(e) for which there exits a positive integer m such that 3t(b(e)) = t(m) is item A061278 in EIS.

The basic formulas we will need need are:

1. $p = \frac{1}{4} - \frac{1}{4\sqrt{2}}$ and $q = \frac{1}{4} + \frac{1}{4\sqrt{2}}$ 2. $r = \frac{1}{4} - \frac{1}{4\sqrt{3}}$ and $s = \frac{1}{4} + \frac{1}{4\sqrt{3}}$ 3. $\alpha = 3 - 2\sqrt{2}$ and $\beta = 3 + 2\sqrt{2}$ 4. $\gamma = 2 - \sqrt{3}$ and $\delta = 2 + \sqrt{3}$

Using standard matrix methods we can develop the following explicit formulae for the sequences a and b

$$a(n) = -\frac{1}{2} + (3 - 2\sqrt{2})^n \left(\frac{1}{4} - \frac{1}{4\sqrt{2}}\right) + (3 + 2\sqrt{2})^n \left(\frac{1}{4} + \frac{1}{4\sqrt{2}}\right)$$

¹EIS is The Encyclopedia of Integer Sequences

and

$$b(n) = -\frac{1}{2} + (2 - \sqrt{3})^n \left(\frac{1}{4} - \frac{1}{4\sqrt{3}}\right) + (2 + \sqrt{3})^n \left(\frac{1}{4} + \frac{1}{4\sqrt{3}}\right)$$

This reminds us of an explicit formula for the ChebyshevT polynomials of the first kind:

$$T_n(x) = \frac{1}{2} \left((x - \sqrt{x^2 - 1})^n + (x + \sqrt{x^2 - 1})^n \right)$$

which yields for x = 2, 3

$$T_n(2) = \frac{1}{2} (\gamma^n + \delta^n) \text{ and } T_n(3) = \frac{1}{2} (\alpha^n + \beta^n),$$

where α, β, γ and δ are defined above.

Then we can write:

1. $a(n) = p\alpha^n + q\beta^n - \frac{1}{2}$ 2. $b(n) = r\gamma^n + s\delta^n - \frac{1}{2}$

Lemma 1. As $n \to \infty$, $p\alpha^n \to 0$ and $r\gamma^n \to 0$. Therefore as $n \to \infty$,

$$q\beta^n \to a(n) + \frac{1}{2} \text{ and } s\delta^n \to b(n) + \frac{1}{2}.$$

Summing up, using the equations preceeding this lemma, we have this result: As $n \to \infty$,

$$2T_n(3) \to \beta^n \text{ and } 2T_n(2) \to \delta^n,$$

and this leads finally to: as $n \to \infty$

$$2qT_n(3) \to a(n) + \frac{1}{2} \text{ and } 2sT_n(2) \to b(n) + \frac{1}{2}.$$

Our theorem at the beginning of this article requires us to show that no a(n) can equal a b(m). First we show this is true for the sequences $T_n(2)$ and $T_n(3)$. That is we show $T_n(2) = T_m(3)$ is impossible for any two integers n and m. In fact this is quite simple because these two sequences satisfy Pell equations. That is, for any positive integer n there always exist two positive integers x and y so that the following equations are true:

$$T_n(2)^2 - 3x^2 = 1$$
 and $T_n(3)^2 - 8y^2 = 1$

So suppose for two positive integers n and m there exists an integer ksuch that $k = T_n(2) = T_m(3)$. Then

$$k^2 - 3x^2 = 1$$
 and $k^2 - 8y^2 = 1$

for positive integers x and y. This leads to $(\frac{x}{y})^2 = \frac{8}{3}$ which is impossible. Here is what we know. First, for all positive integers n and m,

$$|T_n(2) - T_m(3)| \ge 1.$$

To continue: For all positive integers $n \ge m$ we have $T_n(3) > T_m(2)$ and hence:

$$|qT_n(3) - sT_m(2)| = s(\frac{q}{s}T_n(3) - T_m(2)) > s|T_n(3) - T_m(2)|$$

because q > s.

Proof. We have proven that

$$2qT_n(3) \rightarrow a(n) + \frac{1}{2}$$
 and $2sT_n(2) \rightarrow b(n) + \frac{1}{2}$

and that $|qT_n(3)-sT_m(2)|$ can never approach zero which means |a(n)-b(m)|can never be zero.

References

- 1. I. G. Bashmakova. Diophantus and Diophantine Equations. The M.A.A. Dolciana Mathematical Expositions-No. 20., (1997)
- 2. Graham Everest et al Reccurence Sequences. Mathematical Surveys and Monographs Vol. 104
- 3. Encyclopedia of Integer Sequences, available at http://www.research.att.com/~njas/sequences/Seis.html.