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Abstract

We show that the two sequencs a(n) and b(n) (defined below) have
no common element. That is, for all positive integers n and m, we
never have a(n) = b(m). The proof depends on the fact that the two
Chebyshev sequences Tn(x), x = 2, 3 can be used to aproximate a and
b and it is easy to prove that |Tn(2)−Tm(3)| ≥ 1 for all positive integers
n 6= m.

Recall that t(n) = n(n+1)
2 is the n-th trianglular number.

Theorem 1. For a given positive integer e, there never exist positive inte-
gers n and m such that

2t(e) = t(n) and 3t(e) = t(m).

The proof follows after we develop some facts.

The sequence of positive integers a(e) for which there exists a positive
integer n such that 2t(a(e)) = t(n) is item A053141 in EIS.1 .

The sequence of positive integers b(e) for which there exits a positive
integer m such that 3t(b(e)) = t(m) is item A061278 in EIS. .

The basic formulas we will need need are:
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Using standard matrix methods we can develop the following explicit
formulae for the sequences a and b
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1EIS is The Encyclopedia of Integer Sequences
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and
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This reminds us of an explicit formula for the ChebyshevT polynomials of
the first kind:

Tn(x) =
1
2

(
(x−

√
x2 − 1)n + (x +

√
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)
which yields for x = 2, 3

Tn(2) =
1
2

(γn + δn) and Tn(3) =
1
2

(αn + βn) ,

where α, β, γ and δ are defined above.

Then we can write:

1. a(n) = pαn + qβn − 1
2

2. b(n) = rγn + sδn − 1
2

Lemma 1. As n →∞, pαn → 0 and rγn → 0. Therefore as n →∞,

qβn → a(n) +
1
2

and sδn → b(n) +
1
2
.

Summing up, using the equations preceeding this lemma, we have this result:
As n →∞,

2Tn(3) → βn and 2Tn(2) → δn,

and this leads finally to: as n →∞

2qTn(3) → a(n) +
1
2

and 2sTn(2) → b(n) +
1
2
.

Our theorem at the beginning of this article requires us to show that no
a(n) can equal a b(m). First we show this is true for the sequencs Tn(2) and
Tn(3). That is we show Tn(2) = Tm(3) is impossible for any two integers n
and m. In fact this is quite simple because these two sequences satisfy Pell
equations. That is, for any positive integer n there always exist two positive
integers x and y so that the following equations are true:

Tn(2)2 − 3x2 = 1 and Tn(3)2 − 8y2 = 1
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So suppose for two positive integers n and m there exists an integer k
such that k = Tn(2) = Tm(3). Then

k2 − 3x2 = 1 and k2 − 8y2 = 1

for positive integers x and y. This leads to (x
y )2 = 8

3 which is impossible.
Here is what we know. First, for all positive integers n and m,

|Tn(2)− Tm(3)| ≥ 1.

To continue: For all positive integers n ≥ m we have Tn(3) > Tm(2) and
hence:

|qTn(3)− sTm(2)| = s(
q

s
Tn(3)− Tm(2)) > s|Tn(3)− Tm(2)|

because q > s.

Proof. We have proven that

2qTn(3) → a(n) +
1
2

and 2sTn(2) → b(n) +
1
2

and that |qTn(3)−sTm(2)| can never approach zero which means |a(n)−b(m)|
can never be zero.
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