Elementary Graph Algorithms

CSE 780

Reading: Chapter 22

1 Basic Depth-First Search

• Algorithm

procedure Search(G = (V, E))// Assume $V = \{1, 2, ..., n\}$ // // global array visited[1..n] // $visited[1..n] \leftarrow 0;$ for $i \leftarrow 1$ to nif visited[i] = 0 then call dfs(i)

procedure dfs(v)

 $visited[v] \leftarrow 1;$

for each node w such that $(v, w) \in E$ do

if
$$visited[w] = 0$$
 then call $dfs(w)$

- Questions
 - How to implement the for-loop (i) if an adjacency matrix is used to represent the graph and (ii) if adjacency lists are used?
 - How many times is *dfs* called in all?
 - How many times is "if $visited[\cdot] = 0$ " executed in all?
 - What's the over-all time complexity of the command "for each node w such that $(v,w) \in E$ "
- Time complexity
 - Using adjacency matrix: $O(n^2)$
 - Using adjacency lists: O(|V| + |E|)

• Definitions

- Depth first tree/forest, denoted as G_{π}
- Tree edges: those edges in G_{π}
- Forward edges: those non-tree edges (u, v) connecting a vertex u to a descendant v.
- Back edges: those edges (u, v) connecting a vertex u to an ancestor v.
- Cross edges: all other edges.
- If *G* is undirected, then there is no distinction between forward edges and back edges. Just call them back edges.

2 Depth-First Search Revisted

```
procedure Search(G = (V, E))

// Assume V = \{1, 2, ..., n\} //

time \leftarrow 0;

vn[1..n] \leftarrow 0; /* vn stands for visit number */

for i \leftarrow 1 to n

if vn[i] = 0 then call dfs(i)
```

procedure dfs(v)

 $vn[v] \leftarrow time \leftarrow time + 1;$ for each node w such that $(v, w) \in E$ do if vn[w] = 0 then call dfs(w); $fn[v] \leftarrow time \leftarrow time + 1$ /* fn stands for finish number */

3 Topological Sort

- Problem: given a directed acyclic graph G = (V, E), obtain a linear ordering of the vertices such that for every edge (u, v) ∈ E, u appears before v in the ordering.
- Solution:
 - Use depth-first search, with an initially empty list *L*.
 - At the end of procedure dfs(v), insert v to the front of L.
 - *L* gives a topological sort of the vertices.
- Observation: the list of nodes in the descending order of finish numbers yields a topological sort .

4 Strongly Connected Components

- A directed graph is *strongly connected* if for every two nodes u and v there is a path from u to v and one from v to u.
- Decide if a graph *G* is strongly connected:
 - *G* is strongly connected iff (i) every node is reachable from node 1 and (ii) node 1 is reachable from every node.
 - The two conditions can be checked by applying dfs(1) to G and to G^T , where G^T is the graph obtained from G be reversing the edges.
- A subgraph G' of a directed graph G is said to be a *strongly connected component* of G if G' is strongly connected and is not contained in any other strongly connected subgraph.
- An interesting problem is to find all strongly connected components of a directed graph.
- Each node belongs in exactly one component. So, we identify each component by its vertices.
- The component containing v equals

 $\{dfs(v) \text{ on } G\} \cap \{dfs(v) \text{ on } G^T\},\$

where $\{dfs(v) \text{ on } G\}$ denotes the set of all vertices visited during dfs(v) on G.

- Algorithm:
 - 1. Apply depth-first search to G and compute fn[u] for each node.
 - 2. Compute G^T .
 - 3. Apply depth-first search to G^T :

 $visited[1..n] \leftarrow 0$ for each vertex u in decreasing order of fn[u] do if visited[u] = 0 then call dfs(u)

4. The vertices on each tree in the depth-first forest of the preceding step form a strongly connected component.

5 Articulation Points and Biconnected Components

5.1 Definitions

- Let G be a connected, undirected graph.
- An *articulation point* of *G* is a vertex whose removal disconnects *G*.
- A *bridge* of *G* is an edge whose removal disconnects *G*.
- A graph is *biconnected* if it contains no articulation point.
- A *biconnected component* of *G* is a maximal biconnected subgraph.
- Each edge belongs to exactly one biconnected component. (See Figure 23.10 on page 495 of the textbook.)
- Note: for convenience, we have defined a single edge to be biconnected.

5.2 Identifying All Articulation Points

- Let G_{π} be any depth-first tree of G.
- An edge in G is a back edge iff it is not in G_{π} .
- The root of G_π is an articulation of G iff it has more than one child in G_π.
- A non-root vertex v in G_π is an articulation point of G iff v has a child w in G_π such that no vertex in subtree(w) is connected to a proper ancestor of v by a back edge. (subtree(w) denotes the subtree rooted at w in G_π.)
- Define

 $low[w] = \min \begin{cases} vn[w] \\ vn[x] : x \text{ is joined to some vertex in subtree}(w) \text{ by a back edge} \end{cases}$

 A non-root vertex v in G_π is an articulation point of G iff v has a child w such that low[w] ≥ vn[v]. • Note that

 $low[v] = \min \left\{ \begin{array}{l} vn[v] \\ vn[w] : w \text{ is connected to } v \text{ by a back edge} \\ low[w] : w \text{ is a child of } v \end{array} \right.$

• Computing low[v] for each vertex v:

```
procedure Art(v, u)

/* visit v from u */

low[v] \leftarrow vn[v] \leftarrow time \leftarrow time + 1;

for each vertex w \neq u such that (v, w) \in E do

if vn[w] = 0 then

call Art(w, v)

low[v] \leftarrow \min\{low[v], low[w]\}

else

low[v] \leftarrow \min\{low[v], vn[w]\}

endif

endif
```

• Initial call: Art(1,0).

• **Problem:** Print all articulation points.

procedure
$$Art(v, u)$$

/* visit v from u */
 $low[v] \leftarrow vn[v] \leftarrow time \leftarrow time + 1;$
for each vertex $w \neq u$ such that $(v, w) \in E$ do
if $vn[w] = 0$ then
call $Art(w, v)$
 $low[v] \leftarrow \min\{low[v], low[w]\}$
if $(vn[v] = 1)$ and $(vn[w] \neq 2)$ then
print v is an articulation point
if $(vn[v] \neq 1)$ and $(low[w] \ge vn[v])$ then
print v is an articulation point

else

$$low[v] \leftarrow \min\{low[v], vn[w]\}$$

endif

endfor

• **Problem:** Identify all biconnected components.

```
procedure Art(v, u)

/* visit v from u */

low[v] \leftarrow vn[v] \leftarrow time \leftarrow time + 1;

for each vertex w \neq u such that (v, w) \in E do

if vn[w] < vn[v] then add (v, w) to Stack

if vn[w] = 0 then

call Art(w, v)

low[v] \leftarrow min\{low[v], low[w]\}

if low[w] \ge vn[v] then

Pop off all edges on top of Stack until (inclusively) edge (v, w)
```

//these edges form a biconnected component//

else

 $low[v] \leftarrow \min\{low[v], vn[w]\}$

endif

endfor