
Elementary Graph Algorithms
CSE 780

Reading: Chapter 22

1 Basic Depth-First Search

• Algorithm

procedure Search(G = (V, E))

// Assume V = {1, 2, . . . , n} //

// global array visited[1..n] //

visited[1..n]← 0;

for i← 1 to n

if visited[i] = 0 then call dfs(i)

procedure dfs(v)

visited[v]← 1;

for each node w such that (v, w) ∈ E do

if visited[w] = 0 then call dfs(w)

• Questions

– How to implement the for-loop (i) if an adjacency matrix

is used to represent the graph and (ii) if adjacency lists are

used?

– How many times is dfs called in all?

– How many times is “if visited[·] = 0” executed in all?

– What’s the over-all time complexity of the command “for

each node w such that (v, w) ∈ E”

• Time complexity

– Using adjacency matrix: O(n2)

– Using adjacency lists: O(|V |+ |E|)

1

• Definitions

– Depth first tree/forest, denoted as Gπ

– Tree edges: those edges in Gπ

– Forward edges: those non-tree edges (u, v) connecting a

vertex u to a descendant v.

– Back edges: those edges (u, v) connecting a vertex u to an

ancestor v.

– Cross edges: all other edges.

– If G is undirected, then there is no distinction between for-

ward edges and back edges. Just call them back edges.

2

2 Depth-First Search Revisted

procedure Search(G = (V, E))

// Assume V = {1, 2, . . . , n} //

time← 0;

vn[1..n]← 0; /* vn stands for visit number */

for i← 1 to n

if vn[i] = 0 then call dfs(i)

procedure dfs(v)

vn[v]← time← time + 1;

for each node w such that (v, w) ∈ E do

if vn[w] = 0 then call dfs(w);

fn[v]← time← time + 1 /* fn stands for finish number */

3

3 Topological Sort

• Problem: given a directed acyclic graph G = (V, E), obtain a

linear ordering of the vertices such that for every edge (u, v) ∈
E, u appears before v in the ordering.

• Solution:

– Use depth-first search, with an initially empty list L.

– At the end of procedure dfs(v), insert v to the front of L.

– L gives a topological sort of the vertices.

• Observation: the list of nodes in the descending order of finish

numbers yields a topological sort .

4

4 Strongly Connected Components

• A directed graph is strongly connected if for every two nodes u

and v there is a path from u to v and one from v to u.

• Decide if a graph G is strongly connected:

– G is strongly connected iff (i) every node is reachable from

node 1 and (ii) node 1 is reachable from every node.

– The two conditions can be checked by applying dfs(1) to

G and to GT , where GT is the graph obtained from G be

reversing the edges.

• A subgraph G′ of a directed graph G is said to be a strongly
connected component of G if G′ is strongly connected and is not

contained in any other strongly connected subgraph.

• An interesting problem is to find all strongly connected compo-

nents of a directed graph.

• Each node belongs in exactly one component. So, we identify

each component by its vertices.

• The component containing v equals

{dfs(v) on G} ∩ {dfs(v) on GT},

where {dfs(v) on G} denotes the set of all vertices visited during

dfs(v) on G.

5

• Algorithm:

1. Apply depth-first search to G and compute fn[u] for each

node.

2. Compute GT .

3. Apply depth-first search to GT :

visited[1..n]← 0

for each vertex u in decreasing order of fn[u] do

if visited[u] = 0 then call dfs(u)

4. The vertices on each tree in the depth-first forest of the

preceding step form a strongly connected component.

6

5 Articulation Points and Biconnected Com-
ponents

5.1 Definitions

• Let G be a connected, undirected graph.

• An articulation point of G is a vertex whose removal disconnects

G.

• A bridge of G is an edge whose removal disconnects G.

• A graph is biconnected if it contains no articulation point.

• A biconnected component of G is a maximal biconnected sub-

graph.

• Each edge belongs to exactly one biconnected component. (See

Figure 23.10 on page 495 of the textbook.)

• Note: for convenience, we have defined a single edge to be bi-

connected.

7

5.2 Identifying All Articulation Points

• Let Gπ be any depth-first tree of G.

• An edge in G is a back edge iff it is not in Gπ.

• The root of Gπ is an articulation of G iff it has more than one

child in Gπ.

• A non-root vertex v in Gπ is an articulation point of G iff v has a

child w in Gπ such that no vertex in subtree(w) is connected to

a proper ancestor of v by a back edge. (subtree(w) denotes the

subtree rooted at w in Gπ.)

• Define

low[w] = min

{
vn[w]
vn[x] : x is joined to some vertex in subtree(w) by a back edge

• A non-root vertex v in Gπ is an articulation point of G iff v has

a child w such that low[w] ≥ vn[v].

8

• Note that

low[v] = min


vn[v]
vn[w] : w is connected to v by a back edge
low[w] : w is a child of v

• Computing low[v] for each vertex v:

procedure Art(v, u)

/* visit v from u */

low[v]← vn[v]← time← time + 1;

for each vertex w 6= u such that (v, w) ∈ E do

if vn[w] = 0 then

call Art(w, v)

low[v]← min{low[v], low[w]}

else

low[v]← min{low[v], vn[w]}

endif

endfor

• Initial call: Art(1, 0).

9

• Problem: Print all articulation points.

procedure Art(v, u)

/* visit v from u */

low[v]← vn[v]← time← time + 1;

for each vertex w 6= u such that (v, w) ∈ E do

if vn[w] = 0 then

call Art(w, v)

low[v]← min{low[v], low[w]}

if (vn[v] = 1) and (vn[w] 6= 2) then

print v is an articulation point

if (vn[v] 6= 1) and (low[w] ≥ vn[v]) then

print v is an articulation point

else

low[v]← min{low[v], vn[w]}

endif

endfor

10

• Problem: Identify all biconnected components.

procedure Art(v, u)

/* visit v from u */

low[v]← vn[v]← time← time + 1;

for each vertex w 6= u such that (v, w) ∈ E do

if vn[w] < vn[v] then add (v, w) to Stack

if vn[w] = 0 then

call Art(w, v)

low[v]← min{low[v], low[w]}

if low[w] ≥ vn[v] then

Pop off all edges on top of Stack until (inclusively) edge (v, w)

//these edges form a biconnected component//

else

low[v]← min{low[v], vn[w]}

endif

endfor

11

