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Abstract

Dynamic binary translation (DBT) is a runtime instrumentation
technique commonly used to support profiling, optimization, se-
cure execution, and bug detection tools for application binaries.
However, DBT frameworks may incorrectly handle multithreaded
programs due to races involving updates to the application data
and the corresponding metadata maintained by the DBT. Existing
DBT frameworks handle this issue by serializing threads, disal-
lowing multithreaded programs, or requiring explicit use of locks.

This paper presents a practical solution for correct execution
of multithreaded programs within DBT frameworks. To eliminate
races involving metadata, we propose the use of transactional mem-
ory (TM). The DBT uses memory transactions to encapsulate the
data and metadata accesses in a trace, within one atomic block.
This approach guarantees correct execution of concurrent threads
of the translated program, as TM mechanisms detect and correct
races. To demonstrate this approach, we implemented a DBT-
based tool for secure execution of x86 binaries using dynamic in-
formation flow tracking. This is the first such framework that cor-
rectly handles multithreaded binaries without serialization. We
show that the use of software transactions in the DBT leads to a
runtime overhead of 40%. We also show that software optimiza-
tions in the DBT and hardware support for transactions can reduce
the runtime overhead to 6%.

1. Introduction

Dynamic binary translation (DBT) has become a versatile tool
that addresses a wide range of system challenges while maintain-
ing backwards compatibility for legacy software. DBT has been
successfully deployed in commercial and research environments to
support full-system virtualization [39], cross-ISA binary compati-
bility [7, 29], security analyses [9, 18, 25, 28, 32], debuggers [24],
and performance optimization frameworks [3, 5, 38]. DBT facil-
itates deployment of new tools by eliminating the need to recom-
pile or modify existing software. It also enables the use of newer
hardware which need not be fully compatible with the old software
architecture.

The DBT process involves dynamically translating an existing
binary, and replacing or adding instructions as needed. All code
execution is controlled by the DBT, and only translated code blocks
are executed. A cache that stores translated basic blocks or traces
is typically used to reduce the runtime overhead. For applications
such as security analyses [9, 25, 28], profiling [19], and bug de-
tection [24], DBT may also maintain metadata that tracks the state
of memory locations. For instance, DBT can be used to imple-
ment dynamic information flow tracking (DIFT), a technique that
detects security vulnerabilities such as buffer overflows and other

attacks based on memory corruption [8, 10, 25]. In this case, the
metadata allows the DBT to taint memory locations that have been
received or derived from untrusted sources (e.g., network input).
If the program dereferences a tainted code pointer or executes a
tainted instruction, a security vulnerability is reported.

However, the use of metadata can lead to race conditions when
multithreaded binaries are dynamically translated. Since opera-
tions on metadata are handled by additional instructions, updates
to data and corresponding metadata are not atomic. Multiple threads
operate on the same or neighboring data and thus, this lack of
atomicity can lead to inaccurate or incorrect metadata values. In
the case of DIFT, this can translate to false negatives (undetected
security attacks) or false positives (incorrect program termination).
Existing DBT systems handle this problem by disallowing the use
of multithreaded programs [4, 28], serializing thread execution [24],
or requiring that tool developers explicitly implement the locking
mechanisms needed to access metadata [19]. None of these solu-
tions are satisfactory. First, multithreaded programs are becoming
increasingly common due to the availability of multi-core chips.
Second, thread serialization cancels the performance benefits of
multithreading. Finally, providing locks for metadata accesses is
a tedious process that introduces significant storage and runtime
overheads and limits the scope of many DBT optimizations.

This paper improves the applicability of DBT by making it safe
for multithreaded programs. To address the issue of metadata
atomicity in a functionally-correct and low-overhead manner, we
employ transactional memory (TM) [17]. TM has been used thus
far to simplify parallel programming by supporting the atomic
and isolated execution of concurrent blocks that operate on shared
data. We use TM within the DBT framework to enclose the data
and metadata accesses within an atomic transaction. Hence, TM
mechanisms can automatically detect races on metadata and cor-
rect them through transaction rollback and re-execution. Since the
TM system executes transactions optimistically in parallel assum-
ing races are rare, threads are not serialized.

To demonstrate the synergy between DBT and TM, we use a
DBT system to implement a DIFT-based secure execution frame-
work for x86 binaries. This framework can detect memory cor-
ruption vulnerabilities such as buffer overflows and format string
attacks. The DBT automatically introduces transactions in the
translated code and can run on top of software-only, hybrid, or
hardware-based TM systems.

The specific contributions of this work are:

• We propose the use of transactional memory to address the cor-
rectness and performance challenges for dynamic binary trans-
lation of multithreaded programs. We show that TM eliminates
races on accesses to metadata without thread serialization.

• We implement a DBT-based framework for secure execution of
x86 binaries through dynamic information flow tracking. The
framework uses transactions at the granularity of DBT traces.
This is the first DBT framework that handles multithreaded bi-



naries in a safe, highly performant manner.
• We study the runtime overhead of introducing TM in a DBT

framework by using a software-only TM system and by ap-
proximating hardware-accelerated and hybrid TM systems. We
show that even without hardware support, the overhead is ap-
proximately 40%. Software optimizations in the DBT that avoid
tracking certain classes of data and hardware support for trans-
actions can reduce the runtime overhead to 6%.

Overall, we show that TM extends metadata-based DBT tools
to multithreaded applications.

The remainder of the paper is organized as follows. Section 2
summarizes DBT technology and the challenges posed by multi-
threaded binaries. Sections 3 and 4 present the use of TM for DBT
metadata atomicity. Section 5 describes our prototype system for
DBT-based secure execution of multithreaded programs. Section
6 presents the performance evaluation, Section 7 discusses related
work, and Section 8 concludes the paper.

2. Dynamic Binary Translation (DBT)

2.1 DBT Overview

DBT relies on runtime code instrumentation to dynamically trans-
late and execute application binaries. Before executing a basic
block from the program, the DBT copies the block into a code
cache and performs any required instrumentation. The DBT sys-
tem controls all code execution and only translated code from the
code cache is executed. Any control flow that cannot be resolved
statically, such as indirect branches, invokes the DBT to ensure
that the branch destination is in the code cache. Frequently exe-
cuted basic blocks in the code cache may be merged into a longer
trace. This reduces runtime overhead by allowing common hot
paths to execute almost completely from the code cache without
invoking the DBT system.

DBT may arbitrarily add, insert, or replace instructions when
translating code. This powerful capability allows DBT to serve
as a platform for dynamic analysis tools. DBT-based tools have
been developed for tasks such as runtime optimization [5], bug
detection [24], buffer overflow protection [18], and profiling [19].
A general-purpose DBT framework implements basic functional-
ity such as program initialization, code cache management, and
trace creation. It also provides developers with an interface (API)
that they can use to implement tools on top of the DBT. Using
the API, developers specify which, how, and when instruction se-
quences are instrumented. Finally, the DBT typically performs
several optimizations on the instrumented code such as function
inlining, common subexpression elimination, and scheduling.

DBT tools often maintain metadata that describe the state of
memory locations during program execution. For example, meta-
data can indicate if a memory location is allocated, if it contains
secure data, or the number of times it has been accessed. The
granularity and size of metadata can vary greatly from one tool
to another. Some tools may keep instrumentation information at
a coarse granularity such as function, page, or object, while other
tools may require basic block, word, or even bit-level granularity.
The popular Memcheck tool for the Valgrind framework uses a
combination of heap object, byte and bit-level metadata to detect
uninitialized variables, memory corruption, and memory leaks [23,
34]. Metadata are allocated in a separate memory region to avoid
interference with the data layout assumed by the original program.
Whenever the program code operates on data, the DBT tool inserts
code to perform the proper operations on the corresponding meta-
data. The additional code can be anything from a single instruction
to a full function call, depending on the tool.

2.2 Case Study: DBT-based DIFT Tool

In this paper, we use dynamic information flow tracking (DIFT)
as a specific example of a metadata-based DBT tool. However,
the issues with multithreaded programs are the same for all other
metadata-based DBT tools (profiling, bug detection, fault recov-
ery, etc.). DIFT is particularly interesting because it provides se-
curity features that are important for multithreaded server applica-
tions such as web servers.

DIFT is a powerful dynamic analysis that can prevent a wide
range of security issues [10, 25]. DIFT tracks the flow of untrusted
information by associating a taint bit with each memory byte and
each register. The OS taints information from untrusted sources
such as the network. Any instruction that operates on tainted data
propagates the taint bit to its destination operands. Malicious at-
tacks are prevented by checking the taint bit on critical operations.
For example, checking that code pointers and the code itself are
not tainted allows for the prevention of buffer overflows and for-
mat string attacks.

There are several DBT-based DIFT systems [4, 8, 25, 28]. The
metadata maintained by the DBT tool are the taint bits. Code is
instrumented to propagate taint bits on arithmetic and memory in-
structions and check the taint bits on indirect jumps. The research
focus has been primarily on reducing overheads using optimiza-
tions such as eliminating propagation and checks on known safe
data and merging checks when possible [28]. For I/O-bound ap-
plications, the overhead of DBT-based DIFT over the original run-
time (without DBT) is as low as 6% [28]. However, none of the
DBT-based DIFT tools provide highly performant, safe support for
multithreaded programs.

2.3 Metadata Races

DBTs cannot be readily applied to multithreaded binaries be-
cause of races on metadata access. Metadata are stored separately
from the regular data. They are also operated upon by separate in-
structions. Since the DBT metadata can be of arbitrary size and
granularity, it is impossible to provide hardware instructions to
atomically update data and metadata in the general case. The orig-
inal program is unaware of the DBT metadata and thus, cannot
use synchronization to prevent metadata races. Hence, if the DBT
does not provide additional mechanisms for synchronization, any
concurrent access to a (data, metadata) pair may lead to a race.

Figure 1 provides two examples of races for a DBT-based DIFT
tool. Consider a multithreaded program operating on variables t
and u. The DBT introduces the corresponding operations on the
metadata, taint(t) and taint(u). Initially, t is tainted (un-
trusted) and u is untainted (trusted). In Figure 1.(a), thread 1 swaps
t and u using a single atomic instruction (¶). The DBT inserts a
subsequent instruction that swaps taint(t) and taint(u) as
well (¹). However, the pair of swaps is not an atomic operation.
As thread 2 is concurrently reading u (·), it gets the new value of
u and the old value of taint(u) (¸). Even though thread 2 will
use the untrusted information derived from t, the corresponding
taint bit indicates that this is safe data. If z is later used as code or
as a code pointer, an undetected security breach will occur (false
negative) that may allow an attacker to take over the system.

Figure 1.(b) shows a second example in which the DBT up-
dates the metadata before the actual data. Thread 1 uses a single
instruction to copy t into u (¹). The previous instruction does
the same to the metadata (¶). However, the pair of instructions
is not atomic. As thread 2 is concurrently reading u, it gets the
new value of the metadata (·) and the old value of the data (¸).
Even though thread 2 will use the original, safe information in u,
the corresponding taint bit indicates that it is untrusted. If z is
later used as a code pointer or code, an erroneous security breach
will be reported (false positive) that will unnecessarily terminate a



// Thread 1
swap t,u
   ...
   ...
swap taint(t), taint(u)

1

Initially t is tainted and u is untainted.

1

4

// Thread 2
   ...
z = u
taint(z) = taint(u)
   ...

2
3

(a) Race on metadata swap (data updated first)

// Thread 1
taint(u) = taint(t)
   ...
   ...
u = t

1

1

4

// Thread 2
   ...
taint(z) = taint(u)
z = u
   ...

2
3

(b) Race on metadata store (metadata updated first)

Figure 1. Two examples of races on metadata (taint bit) accesses.

legitimate program.
In general, one can construct numerous scenarios with races

in updates to (data, metadata) pairs. Depending on the exact
use of the DBT metadata, the races can lead to incorrect results,
program termination, undetected malicious actions, etc. Current
DBT systems do not handle this problem in a manner that is both
functionally-correct and fast. Some DBTs support multithreaded
programs by serializing threads, which eliminates all performance
benefits of multithreading [24]. Note that in this case, thread switch-
ing must be carefully placed so that it does not occur in the middle
of a non-atomic (data, metadata) update. Other DBTs assume that
tool developers will handle this problem using locks in their instru-
mentation code [5, 19]. If the developer uses coarse-grain locks to
enforce update atomicity, all threads will be serialized. Fine-grain
locks are error-prone to use. They also lead to significant over-
heads if a lock acquisition and release is needed in order to protect
a couple of instructions (data and metadata update). More impor-
tantly, since locks introduce memory fences, their use reduces the
efficiency of DBT optimizations such as common sub-expression
elimination and scheduling.

2.4 Implications

Metadata races can be an important problem for any multithreaded
program. Even if the application is race-free to begin with, the
introduction of metadata breaks the assumed atomicity of basic
ISA instructions such as aligned store or compare-and-swap. Nu-
merous multithreaded applications rely on the atomicity of such
instructions to build higher-level mechanisms such as locks, bar-
riers, read-copy-update (RCU) [20], and lock-free data-structures
(LFDS) [16]. It is unreasonable to expect that the DBT or tool
developers will predict all possible uses of such instructions in
legacy and future binaries, and properly handle the corresponding
metadata updates. For instance, it is difficult to tell if the program
correctness relies on the atomicity of an aligned store.

We discuss the DBT-based DIFT tool as an illustrating example.
Metadata races around locks and barriers do not pose a security
threat, as lock variables are not updated with user input. On the
other hand, RCU and LFDS manipulate pointers that control the
correctness and security of the application and may interact with
user input. Hence, metadata races can allow an attacker to bypass
the DIFT security mechanisms.

Read-copy update (RCU) is used with data-structures that are
read much more frequently than they are written. It is a com-
mon synchronization technique used in several large applications
including the Linux kernel. RCU directly updates pointers in the
protected data structure, relying on the atomicity of aligned, word-
length stores. These pointers may be influenced by user input and
may reference objects that include critical code pointers. For in-
stance, Linux uses RCU to protect core components such as IPv4
route caches, directory caches, and file descriptors. NSA’s Secu-
rity Enhanced Linux uses RCU to protect access control informa-
tion [33].

Lock-free data structures use atomic instructions such as compare-
and-swap (CAS) to allow concurrent access without conventional
locking [16]. While they are complex to implement, LFDS ver-

sions of queues, lists, and hash-tables are often part of libraries
used in performance-critical software. Since they manipulate point-
ers within data structures, LFDS may access data from untrusted
sources.

Additionally, attackers may use memory safety vulnerabilities
to deliberately introduce race conditions into race-free applica-
tions. Attacks such as buffer overflows and format string vul-
nerabilities give the attacker the ability to write anywhere in the
program’s address space. For example, if network input is used as
an array index, the attacker can use one thread to overwrite thread-
private or stack data in other threads. This essentially bypasses any
techniques used to guarantee race-freedom in the original code.
Moreover, an attacker can target metadata races in order to bypass
security checks in DBT tools such as DIFT. By having one thread
write malicious code or data to another thread’s stack or thread-
local data, an attacker can induce false negatives similar to the
one in Figure 1.(a). Hence, the attacker may be able to overwrite
critical pointers such as return addresses without setting the corre-
sponding taint bit. This attack would not be possible on a single-
threaded program as the DIFT propagation and checks would flag
the overwritten data as untrusted.

3. DBT + TM = Thread-Safe DBT

To address metadata races in multithreaded programs, we pro-
pose the use of transactional memory (TM) within DBT systems.
This section concentrates on the functional correctness of this ap-
proach, while Section 4 focuses on performance issues.

3.1 Transactional Memory Overview

TM can simplify concurrency control in shared memory parallel
programming [17]. With TM, a programmer simply declares that
code segments operating on shared data should execute as atomic
transactions. Multiple transactions may execute in parallel and the
TM system is responsible for concurrency control. A transaction
starts by checkpointing registers. Transactional writes are isolated
from shared memory by maintaining an undo-log or a write-buffer
(data versioning). Memory accesses are tracked in order to de-
tect read/write conflicts among transactions. If a transaction com-
pletes without conflicts, its updates are committed to shared mem-
ory atomically. If a conflict is detected between two transactions,
one of them rolls back by restoring the register checkpoint and
either by restoring the undo-log or by discarding the write-buffer.

There have been many proposed TM implementations. Soft-
ware TM systems (STM) implement all TM bookkeeping in soft-
ware by instrumenting read and write accesses within a transac-
tion [12, 15, 30]. The overhead of software read and write barriers
can be reduced to 40% with various compiler optimizations [1,
30]. Hardware TM systems (HTM) implement both data version-
ing and conflict detection by modifying the hardware caches and
the coherence protocol. HTM systems do not require software
barriers for read and write accesses within a transaction, and thus
have minimal overhead [14, 21]. Hardware performs all book-
keeping transparently. More recently, there have been proposals



Tx_Begin
    ...
    ...
check_taint (BB3, flags)
branch (BB3, flags)
Tx_End

BB1:

Tx_Begin
    ...
    ...
Tx_End

BB2:

fall-
through

taken
branch

Tx_End
Tx_Begin
    ...
Tx_End

BB3:

BB1: Tx_Begin
    ...
swap t,u
swap taint(t), taint(u)
    ...
taint(u) = taint(t)
u=t
    ...
Tx_End

(a) Transaction at basic block
boundaries

(b) Correct instrumentation for
conditional branches

Figure 3. Transaction instrumentation by the DBT.

for hybrid TM systems [6, 31, 36]. While they still require read
and write barriers, hybrid systems use hardware signatures or ad-
ditional metadata in hardware caches in order to drastically reduce
the overhead of conflict detection in software transactions.

3.2 Using Transactions in the DBT

DBT systems can eliminate metadata races by wrapping any ac-
cess to a (data, metadata) pair within a transaction. Figure 2 shows
the code for the two race condition examples in Section 2.3, instru-
mented with transactions. The additional code defines transaction
boundaries and provides the read/write barriers required by STM
and hybrid systems. In Figure 2.(a), thread 1 encloses the data and
metadata swaps within one transaction. Hence, even if thread 2
attempts to read u in between the two swaps, the TM system will
detect a transaction conflict. By rolling back one of the two trans-
actions, the TM system will ensure that thread 2 will read either
the old values of both u and taint(u), or the new values for
both after the swap. Similarly, transactions eliminate the race in
Figure 2.(b). Since transactions are atomic, the order of data and
metadata accesses within a transaction does not matter.

For now, we assume that all data and metadata accesses are
tracked for transactional conflicts in order to guarantee correct-
ness. This is the default behavior of hardware TM systems. For
software and hybrid TM systems, this requires at least one barrier
for each address accessed within a transaction. We revisit this is-
sue in Section 4 when we discuss optimizations. We focus here on
the placement of transaction boundaries. To guarantee correctness,
data and corresponding metadata accesses must be enclosed within
a single transaction. Fine-grain transactions, however, lead to sig-
nificant performance loss as they do not amortize the overhead of
starting and ending transactions. Moreover, they interfere with
many DBT optimizations by reducing their scope. To partially al-
leviate these problems, our base design introduces transactions at
basic block boundaries, enclosing multiple accesses to data and
metadata pairs as shown in Figure 3.(a). The Tx Begin statement
is added at the beginning of the block. In most cases, the Tx End
statement is added after the last non control-flow instruction in the
block (branch or jump).

The Tx End placement is complicated for any DBT-based tool
that associates metadata operations with the control-flow instruc-
tion that ends a basic block. For instance, DIFT must check the
address of any indirect branch prior to taking the branch. If the ad-
dress is tainted, a security attack is reported. In this case, the DBT
must introduce code that checks the metadata for the jump tar-
get in the same transaction as the control flow instruction to avoid
metadata races. We handle this case by introducing the Tx End

// Thread 1
Tx_Begin
   ...
while (!done2){}
done1=true
   ...
Tx_End

1
4

// Thread 2
Tx_Begin
   ...
done2=true
while (!done1){}
   ...
Tx_End

2
3

initially done1=done2=false

Figure 4. The case of a conditional wait construct
within a DBT transaction.

statement at the beginning of the basic block that is the target of
the indirect jump. For conditional branches, we introduce Tx End
at the beginning of both the fall-through block and the target block
as shown in Figure 3.(b). If the target block includes a transac-
tion to cover its own metadata accesses, Tx End is immediately
followed by a Tx Begin statement.

3.3 Discussion

The DBT transactions may experience false conflicts due to the
granularity of conflict detection in the underlying TM system, and
the layout of data and metadata in memory. False conflicts can be
a performance issue, but do not pose correctness challenges. Even
if the contention management policy of the TM system does not
address fairness, the DBT can intervene and use fine-grain trans-
actions to avoid these issues.

The original binary may also include user-defined transactions.
If a user-defined transaction fully encloses a DBT transaction (or
vice versa), the TM system will handle it correctly using mech-
anisms for nested transactions (subsuming or nesting with inde-
pendent rollback). Partial overlapping of two transactions is prob-
lematic. To avoid this case, the DBT can split its transactions so
that partial overlapping does not occur. As long as the accesses to
each (data, metadata) pair are contained within one transaction,
splitting a basic block into multiple transactions does not cause
correctness issues.

A challenge for transactional execution is handling I/O opera-
tions. For DBT transactions, I/O is not an issue as the DBT can
terminate its transactions at I/O operations. Such operations typi-
cally terminate basic blocks or traces, and act as barriers for DBT
optimizations. Handling I/O operations within user-defined trans-
actions is beyond the scope of this work.

A final issue that can occur if DBT transactions span multiple
basic blocks (see Section 4), is that of conditional synchronization
in user code. Figure 4 presents a case where transactions enclose
code that implements flag-based synchronization. Without trans-
actions, this code executes correctly. With transactions, however,
execution is incorrect as the two transactions are not serializable.
For correctness, statement ¶ must complete after statement · and
statement ¸ after statement ¹. Once transactions are introduced,
statements ¶ and ¹ must complete atomically. Similarly, state-
ments · and ¸ must complete atomically. Regardless of the type
of the TM system and the contention management policy used,
the code in Figure 4 will lead to a livelock or deadlock. We han-
dle this case dynamically. If the DBT runtime system notices that
there is no forward progress (timeout on a certain trace or repeated
rollbacks of transactions), it re-instruments and re-optimizes that
code to use one transaction per basic block.



Initially t is tainted and u is untainted.

// Thread 1
Tx_Begin
wrbarrier(t)
wrbarrier(u)
swap t,u
...
...
wrbarrier(taint(t))
wrbarrier(taint(u))
swap taint(t), taint(u)

Tx_End

// Thread 2
...
Tx_Begin
rdbarrier(u)
wrbarrier(z)
z = u
rdbarrier(taint(u))
wrbarrier(taint(z))
taint(z) = taint(u)

Tx_End
...

// Thread 1
Tx_Begin
rdbarrier(taint(t))
wrbarrier(taint(u))
taint(u) = taint(t)
...
...
rdbarrier(t)
wrbarrier(u)
u = t

Tx_End

// Thread 2
...
Tx_Begin
rdbarrier(taint(u))
wrbarrier(taint(z))
taint(z) = taint(u)
rdbarrier(u)
wrbarrier(z)
z = u

Tx_End
...

(a) Elimination of the metadata swap race (b) Elimination of the metadata store race

Figure 2. Addressing metadata races using transactions. The read and write barriers are necessary for STM and
hybrid TM systems, but not for HTM systems.

4. Optimizations for DBT Transactions

The use of transactions in DBT eliminates metadata races for
multithreaded programs. However, transactions introduce three
sources of overhead: the overhead of starting and ending trans-
actions; that of the read and write barriers for transactional book-
keeping; and the cost of rollbacks and re-execution. This section
focuses on the first two sources of overhead, which are particularly
important for STM and hybrid systems. In Section 6, we show that
rollbacks and are not common for DBT transactions.

4.1 Overhead of Starting/Ending Transactions

Longer transactions improve performance in two ways. First,
they amortize the cost of starting and ending a transaction. Starting
a transaction includes checkpointing register state. Ending a trans-
action requires clean up of any structures used for versioning and
conflict detection. Second, long transactions increase the scope of
DBT optimizations, such as common subexpression elimination,
instruction scheduling, and removal of redundant barriers [1].

There are two ways to increase the length of DBT transactions:
• Transactions at trace granularity: Modern DBT frameworks

merge multiple basic blocks into hot traces in order to increase
the scope of optimizations and reduce the number of callbacks
to the DBT engine [4, 19, 24]. We exploit this feature by in-
troducing transactions at the boundaries of DBT traces. As the
DBT creates or extends traces, it also inserts the appropriate
Tx Begin and Tx End statements.

• Dynamic transaction merging: We can also attempt to dy-
namically merge transactions as DBT traces execute. In this
case, the DBT introduces instrumentation to count the amount
of work per transaction (e.g., the number of instructions). When
the transaction reaches the Tx End statement, the STM checks
if the work thus far is sufficient to amortize the cost of Tx Begin
and Tx End. If not, the current transaction is merged with the
succeeding one. Dynamic transaction merging is especially help-
ful if DBT transactions are relatively common, as is the case
with a DBT-based DIFT tool.
While both methods produce longer transactions, they differ in

their behavior. Trace-level transactions incur additional overhead
only when traces are created. However, the transaction length is
limited by that of the DBT trace. Dynamic transaction merging
incurs some additional overhead as traces execute, but can create
transactions that span multiple traces. Both approaches must take
into account that increasing the transaction length beyond a certain
point leads to diminishing returns. Moreover, very long transac-
tions are likely to create more conflicts. The ideal length of trans-
actions depends on the underlying TM system as well. Hardware

Time
    Initially   a=0

.
Tx_begin

.

.

.
Lock (A)

   a++; // a=2
Unlock (A)
Tx_end

Thread 2Thread 1
Tx_begin

.
Lock (A)
a++; // a=1
Unlock (A)

.

.

.

.
10

9
8
7
6
5
4
3
2
1

Conflict
Detected

Figure 5. An example showing the need for TM bar-
riers on data accesses even in race-free programs.

and hybrid TM systems typically use hardware mechanisms for
register checkpointing and allow shorter transactions to amortize
the fixed overheads.

4.2 Overhead of Read/Write Barriers

For STM and hybrid TM systems, the DBT must introduce
read and write barriers in order to implement conflict detection
and data versioning in transactions. Despite optimizations such
as assembly-level tuning of barrier code, inlining, and elimina-
tion of repeated barriers, the performance overhead of software
bookkeeping is significant [1]. Hence, we discuss techniques that
reduce the number read and write barriers for DBT transactions.

4.2.1 Basic Considerations for Barrier Use
In Section 3, we stated that all data and metadata accesses in

a DBT transaction should be protected with a TM barrier. This
is definitely the case for DBT-based DIFT tools. During a buffer
overflow attack, a thread may access any location in the applica-
tion’s address space (see Section 2.4). Unless we use barriers for
all addresses, we may miss metadata races that lead to false nega-
tives or false positives in the DIFT analysis. For other DBT-based
tools that require metadata, it may be possible to eliminate several
barriers on data or metadata accesses based on knowledge about
the sharing behavior of threads. One has to be careful about bar-
rier optimizations, as aggressive optimization can lead to incorrect
execution. One must also keep in mind that TM barriers imple-
ment two functions: they facilitate conflict detection and enable
rolling back the updates of aborted transactions.



For instance, assuming that the original program is race-free,
one may be tempted to insert barriers on metadata accesses but
eliminate all barriers on the accesses to the original data. Figure 5
shows a counter example. The two threads use a lock to increment
variable a in a race-free manner. The DBT introduces transactions
that enclose the lock-protected accesses. The transactions include
TM barriers for metadata but not for a. At runtime, thread 1 sets
a to 1 at timestep 4 and thread 2 updates a to 2 at timestep 7. At
timestep 10, the TM system detects a conflict between the trans-
action in thread 1 and another thread due to a different metadata
access. The system decides to rollback the transaction of thread 1.
Since there was no barrier on the access to a, its value cannot be
rolled back as there is no undo-log or write-buffer entry.

Now, assume that we execute the same code with a TM barrier
on a that does data versioning (e.g., creates an undo-log entry) but
does not perform conflict detection on a. At timestep 4, thread 1
will log 0 as the old value of a. When the system rolls back thread
1 at timestep 10, it will restore a to 0. This is incorrect as it also
eliminates the update done by thread 2. The correct handling of
this case is to insert TM barriers for a that perform both conflict
detection and data versioning, even though the original code had
locks to guarantee race-free accesses to a.

4.2.2 Optimizations Using Access Categorization
For DBT-based tools unlike DIFT, it is possible to eliminate or

simplify certain TM barriers by carefully considering data access
types. Figure 6 presents the five access types we consider and the
least expensive type of TM barrier necessary to guarantee correct
atomic execution of the code produced by the DBT:

• Stack and Idempotent stack accesses: For accesses to thread-
local variables on the stack [13], we need barriers for data ver-
sioning but not for conflict detection. Moreover, if the access
does not escape the scope of the current transaction (Idempo-
tent stack) there is no need for TM barriers at all.

• Private accesses: Similar to stack variables, certain heap-allocated
variables are thread-local. Their accesses do not require barriers
for conflict detection. If the transaction updates the variable, a
TM barrier is needed for data versioning.

• Benign race accesses: There are access to shared variables that
are not protected through synchronization in the original pro-
gram. Assuming a well-synchronized application, any races be-
tween accesses to these variables are benign. Hence, there is
no need for TM barriers for conflict detection, but there may be
barriers for data versioning on write accesses.

• Shared accesses: Any remaining access must be assumed to op-
erate on truly shared data. Hence, the DBT framework must in-
sert full read and write barriers depending on the type of access.
The only optimization possible is to eliminate any repeated bar-
riers to the same variable within a long transaction [1].

The DBT framework classifies accesses during trace generation
using well-known techniques such as stack escape and dynamic
escape analysis [13, 35]. It also adds instrumentation that col-
lects the information necessary for runtime classification [35]. The
success of the classification partially depends on the nature of the
DBT. For example, the information available in object-based bi-
naries such as Java bytecode increases the analysis accuracy and
provides additional optimization opportunities.

To identify Benign race accesses, the DBT must know the syn-
chronization primitives used by the application. It can be the case
that the lack of synchronization is actually a bug. The translated
code may change if and when the bug manifests in the execution.
This problem is not specific to DBTs. Any small system perturba-
tion such as the use of a faster processor, the use of more threads,
or a change in memory allocation may be sufficient to mask or
expose a race.

Instruction Type Example Taint Propagation
ALU r3 = r1 + r2 Taint[r3] = Taint[r1]
operation OR Taint[r2]
Load r3 = M[r1+r2] Taint[r3] = Taint[M[r1+r2]]
Store M[r1+r2] = r3 Taint[M[r1+r2]] = Taint[r3]
Register clear r1 = r1 xor r1 Taint[r1] = 0
Bounds check cmp r1, 256 Taint[r1] = 0

Table 1. Taint bit propagation rules for DIFT.

5. Prototype System

To evaluate the use of transactions in DBT, we used the Pin
dynamic binary translator for x86 binaries [19]. We implemented
DIFT as a Pintool and ran it on top of a software TM system.

5.1 DIFT Implementation

The analysis in our DIFT tool is similar to the one in [25, 28].
We maintain a taint bit for every byte in registers and main mem-
ory to mark untrusted data. Any instruction that updates the data
must also update the corresponding taint bit. Table 1 summa-
rizes the propagation rules. For instructions with multiple source
operands, we use logical OR to derive the taint bit for the destina-
tion operand. Hence, if any of the sources are tainted, the destina-
tion will be tainted as well.

To execute real-world binaries without false positives, register
clearing and bounds check instructions must be recognized and
handled specially. For the x86 architecture, instructions such as
sub %eax, %eax and xor %eax, %eax are often used to
clear registers as they write a constant zero value to their destina-
tion, regardless of the source values. The DIFT tool recognizes
such instructions and clears the taint bit for the destination reg-
ister. Programs sometimes validate the safety of untrusted input
by performing a bounds check. After validation, an input can be
used as a jump address without resulting in a security breach. We
recognize bounds checks by untainting a register if it is compared
with a constant value [25, 28].

To prevent memory corruption attacks, taint bits are checked
on two occasions. First, when new code is inserted into the code
cache, we check the taint bits for the corresponding instructions.
This check prevents code injection attacks. Second, we check the
taint bit for the operands of indirect control-flow operations (e.g.,
register-indirect jump or procedure call/return). This ensures that
an attacker cannot manipulate the application’s control-flow.

5.2 Software TM System

We implemented an STM system similar to the one proposed
in [1]. For read accesses, the STM uses optimistic concurrency
control with version numbers. For writes, it uses two-phase lock-
ing and eager versioning with a per-thread undo-log. The conflict
detection occurs at word granularity using a system-wide lock ta-
ble with 210 entries. Each lock word contains a transaction ID
when locked and a version number when unlocked. The least sig-
nificant bit identifies if the word is locked or not. Given a word
address, the corresponding lock word is identified using a hash
function. This approach may lead to some false conflicts but can
support transactional execution of C and C++ programs.

Figure 7 shows the pseudocode for the STM. Tx Begin() clears
the per-transaction data structures for data versioning and conflict
detection and takes a register checkpoint using the Pin API. Three
barrier functions are provided to annotate transactional accesses.
RD barrier() adds the address to the read-set for conflict detec-
tion. WR barrier() adds the address to the write-set for conflict
detection and creates an undo-log entry with the current value of
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Figure 6. The five data access types and their required TM barriers.

Tx_Begin(){
PIN::Checkpoint(buf);
RdSet.clear();
WrSet.clear();
UndoQ.clear();}

Tx_Commit(){
foreach addr in RdSet{
lock=lockTable.get(addr);
if(lock!=myID && lock!=RdSet.get(addr)){
Tx_Abort();} }

foreach addr in WrSet{
nextVer=WrSet.get(addr)+2;
lockTable.set(addr, nextVer);}}

Tx_Abort(){
foreach addr in UndoQ{

*addr=UndoQ.get(addr);}
foreach addr in WrSet{
nextVer=WrSet.get(addr)+2;
lockTable.set(addr, nextVer);}

PIN::Restore(but);}

WR_barrier(addr){
lock=lockTable.get(addr);
if(lock==myID){
UndoQ.insert(addr,*addr);
return;

} elif(lock%2==0 && CAS(myID,lock,addr)){
WrSet.insert(addr,lock);
UndoQ.insert(addr,*addr);
return;}

Tx_Abort();}

RD_barrier(addr){
lock=lockTable.get(addr);
if(lock==myID){
return;

} elif(lock%2==0){
RdSet.insert(addr,lock);
return;}

Tx_Abort();}

Figure 7. The pseudocode for a subset of the STM system.

the address. WRlocal barrier() does not create an undo-log entry
but adds the address into the write-set. This barrier is used for the
Stack, Private, and Benign race access types.

WR barrier() first checks the lock word for the address using
compare-and-swap. If it is locked by another transaction, a con-
flict is signaled. If not, the transaction remembers the current
version number and sets its ID in the lock word. It then creates
the undo-log entry. Note that there can be multiple entries for
the same address because we do not check for duplicates. Since
the transactions generated the DBT are typically small (50 to 200
instructions), duplicates are not common. Hence, we prefer to
waste some storage on the occasional duplicate rather than take
the time to search through the undo-log on each WR barrier() call.
RD barrier starts by checking the corresponding lock word. If
it is locked, a conflict is signaled. If not, the version number is
recorded in the read-set.

Tx End() first validates the transaction. The lock words for all
addresses in the read-set are checked. If any entry has a different
version number than the one in the read-set, or is locked by another
transaction, a conflict is signaled. Once the read-set is validated,
the transaction commits by releasing the locks for all addresses
in the write-set. The version numbers in the corresponding lock
words are incremented by 2 to indicate that the data has been up-
dated. On a conflict, the transaction rolls back by applying the
undo-log and then releasing the locks for addresses in its write-
set. It then restores the register checkpoint. We re-execute aborted
transactions after a randomized backoff period.

Register Conflict Data
Checkpointing Detection Versioning

STM SW SW read-set SW
(multi-cycle) /write-set undo-log

STM+ HW SW read-set SW
(single-cycle) /write-set undo-log

HybridTM HW HW SW
(single-cycle) signatures undo-log

HTM HW HW read-set HW
(single-cycle) /write-set undo-log

Table 2. The characteristics of the four TM systems
evaluated in this paper.

5.3 Emulation of Hardware Support for TM

We also evaluated the overhead of DBT transactions by emulat-
ing three systems with hardware support for transactional execu-
tion. Table 2 summarizes their characteristics. We used emulation
instead of simulation because Pin is available only in binary form.
Hence, it is very difficult to run Pin on a hardware simulator with
ISA extensions that control the TM hardware support.

The first hardware system, STM+, is the same as our initial STM
but uses a fast, hardware-based mechanism for register check-
pointing. Such mechanisms are generally useful for speculative
execution and are likely to be common in out-of-order proces-
sors [2]. We emulate the runtime overhead of hardware-based



CPU 4 dual-core Intel Xeon CPUs, 2.66 GHz
L2 Cache 1 MByte per dual-core CPU
Memory 20 GBytes shared memory
Operating System Linux 2.6.9 (SMP)
DBT framework Pin for IA32 (x86) Linux

Table 3. The evaluation environment.

checkpointing by substituting the call to the Pin checkpointing
function with a single load instruction. The second hardware sys-
tem, HybridTM, follows the proposals for hardware acceleration
of software transaction conflict detection [6, 31, 36]. Specifically,
we target the SigTM system that uses hardware signatures for fast
conflict detection [6]. We emulate HybridTM by substituting the
read and write barrier code in Figure 7 with the proper number of
arithmetic and load/store instructions needed to control the SigTM
signatures. HybridTM uses a hardware checkpoint as well but
maintains the undo-log in software just like STM. At commit time,
it does not need to traverse the read-set or write-set for conflict de-
tection. The final hardware system, HTM, represents a full hard-
ware TM system [14, 21]. We emulate it by eliminating the read
and write barriers as HTM systems perform transactional book-
keeping transparently in hardware. Register checkpointing takes
a single cycle and a successful transaction commit takes 2 cycles
(one for validation and one to clear the cache metadata).

When executing a program using STM+, HybridTM, or HTM,
we cannot roll back a transaction, as we simply emulate the run-
time overhead of transactional bookkeeping without implementing
the corresponding functionality. This did not cause any correctness
problems during our experiments as we did not launch a security
attack against our DIFT tool at the same time. In terms of accu-
racy, our results for the hardware TM systems do not include the
overhead of aborted transactions. As shown in Section 6, the abort
ratio for DBT transactions is extremely low (less than 0.03% on
average). We also do not account for the overhead of false con-
flicts in hardware signatures or overflows of TM metadata from
hardware caches. Since DBT transactions are fairly small, such
events are also rare. Hence, we believe that the performance re-
sults obtained through HW emulation are indicative of the results
that would be obtained if detailed simulation were an option.

6. Evaluation

Table 3 describes our evaluation environment, which is based
on an 8-way SMP x86 server. Our DIFT tool is implemented us-
ing the Pin DBT framework [19]. Pin runs on top of Linux 2.6.9
and GCC 3.4.6. We used nine multithreaded applications: barnes,
fmm, radix, radiosity, water, and water-spatial from SPLASH-
2 [40]; equake, swim, and tomcatv from SPEComp [37]. These ap-
plications are compute-bound and achieve large speedups on SMP
systems. They are well-suited for our performance experiments, as
the overhead of introducing transactions cannot be hidden behind
I/O operations. All applications make use of the Pthreads API.

Table 4 presents the basic characteristics of the transactions in-
troduced by our DBT tool when using one transaction per DBT
trace. Transactions are relatively short, with the average length
varying between 50 and 250 instructions, including those needed
for DIFT. The SPEComp benchmarks have longer transactions be-
cause Pin extracts longer traces from loop-based computations.
When using an STM system without the optimizations in Sec-
tion 4.2, our tool introduces transactions with 10 read barriers and
5 write barriers on average. Transactions rarely abort (less than
0.03% on average). This is expected as these are highly parallel
applications with little sharing between parallel threads.
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Figure 9. The overhead of STM transactions as a
function of the maximum number of basic blocks
per transaction.

6.1 Baseline Overhead of Software Transactions

Figure 8 presents the baseline overhead for our DBT tool when
using software (STM) transactions without any hardware support
for TM. These results are indicative of the performance achievable
on existing multiprocessor systems. We measure the overhead by
comparing the execution time of the DIFT tool with STM transac-
tions (thread-safe) to the execution time of the DIFT tool without
transactions (not thread-safe). Lower overheads are better. The
DBT uses one transaction per trace in this case.

The average runtime overhead for software transactions is 41%.
The cost of transactions is relatively low, considering that they
make the DBT thread-safe and allow speedups of 4x to 8x on
the measured system systems. The STM overhead varies between
26% (radix) and 56% (fmm). This variance is significantly lower
than that observed in previous STM systems. This is because the
tool introduces transactions at the level of DBT traces (a few ba-
sic blocks) where the influence of the algorithmic difference be-
tween applications is diluted to some extent. The exact value of
the overhead does not always follow the transaction length and
number of read/write barriers presented in Table 4 for two reasons.
First, STM transactions have a higher impact on cache-bound ap-
plications, particularly when the STM barriers have low locality.
Second, the averages in Table 4 hide significant differences in the
exact distribution of the statistics.

6.2 Effect of Transaction Length

The results in Figure 8 assume one transaction per DBT trace,
the largest transactions our DBT environment can support without
significant modifications. Figure 9 illustrates the importance of
transaction length. It shows the overhead of STM transactions in
the DBT-based DIFT tool as a function of the maximum number
of basic blocks per transaction (1 to 8). If the DBT trace includes
fewer basic blocks than the maximum allowed per transaction, the
transaction covers the whole trace. Otherwise, the trace includes
multiple transactions.

As expected, the overhead of using one basic block per transac-
tion is excessive, more than 70%, for the majority of applications.
The computation in one basic block is not long enough to amor-
tize the overhead of STM transactions. As the maximum num-
ber of basic blocks per transaction grows, the overhead decreases,
as the cost of starting and ending transactions is better amortized.
Moreover, larger transactions increase the scope of DBT optimiza-
tions and benefit more from locality. At up to 8 basic blocks per
transaction, several applications reach the low overheads reported
in Figure 8 because most of their traces include less than 8 ba-
sic blocks, or 8 blocks include sufficient computation to amortize



# Instr. # LD # ST # RD Barriers # WR Barriers Abort
Application per Tx per Tx per Tx per Tx per Tx Ratio (%)
Barnes 81.21 9.07 5.49 5.61 3.60 0.01
Equake 118.68 15.42 4.90 9.93 3.35 0.02
Fmm 111.42 14.60 8.28 8.77 5.68 0.03
Radiosity 61.85 7.27 5.44 4.02 3.18 0.00
Radix 118.70 18.89 12.30 11.00 l7.29 0.02
Swim 249.76 34.20 6.79 20.81 4.92 0.03
Tomcatv 118.77 13.19 6.13 8.78 4.13 0.00
Water 55.25 7.31 3.09 4.33 2.07 0.00
Water-spatial 60.93 8.03 3.79 4.81 2.53 0.00

Table 4. The characteristics of software (STM) transactions introduced by our DBT tool.
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Figure 8. Normalized execution time overhead due to the introduction of software (STM) transactions.

transactional overheads. This is not the case for Barnes, Radios-
ity, Water, and Water-spatial which have longer traces and benefit
from longer transactions.

As the results for STM+ suggest in Section 6.4, most applica-
tions would also benefit from transactions that span across trace
boundaries. To support multi-trace transactions, we would need
dynamic support for transaction merging as traces execute (see
Section 4.1).

6.3 Effect of Access Categorization

The baseline STM transactions in Figure 8 use read and write
barriers to protect all accesses to data and metadata. In Section 4.2,
we discussed how, in certain cases, we can use additional analysis
of access types in order to reduce the overhead of STM instru-
mentation. To measure the effectiveness of these optimizations,
we implemented two simple analysis modules in our DBT sys-
tem that identify Stack and Benign race accesses respectively. We
classify all accesses that are relative to the stack pointer, as Stack.
To identify Benign race accesses, we use the DBT to add a per-
thread counter that is incremented on pthread mutex lock() and
decremented on pthread mutex unlock(), the only synchronization
primitives used in our applications. A memory access is classified
as a Benign race if it occurs when the counter is zero. This anal-
ysis requires a priori knowledge of the synchronization functions
used by the application. Note that in both analyses, we optimize
the STM overhead for data accesses. All metadata accesses are
fully instrumented to ensure correctness.

Figure 10 shows the impact of the two optimizations on the run-
time overhead of STM transactions. The left-most bar (unopti-
mized) represents the results with full STM instrumentation from
Section 6.1. Figure 10 shows that optimizing STM barriers for
Stack accesses reduces the overhead of transactions by as much as
15% (radix) and 7% on the average. Optimizing the STM barri-
ers for Benign race accesses reduces the overhead by 5% on the
average. Overall, the results indicate that software optimizations
based on access-type classification can play a role in reducing the
overhead of transaction use in DBT-based tools.

6.4 Effect of Hardware Support for Transactions

Finally, Figure 11 shows the reduction in the overhead as the
amount of hardware support for hardware execution increases. As
explained in Section 5.3, we emulate three hardware schemes:
STM+, which provides hardware support for register checkpoint-
ing in STM transactions; HybridTM, which uses hardware sig-
natures to accelerate conflict detection for STM transactions; and
HTM, a fully-featured hardware TM scheme that supports trans-
actional execution without the need for read or write barriers. For
reference, we also include the original results with software-only
transactions.

STM+ reduces the average overhead from 41% to 28%. Hard-
ware checkpointing is particularly useful for small traces for which
a software checkpoint of registers dominate execution time. Hy-
bridTM reduces the average overhead to 12% as it reduces the
overhead of conflict detection in the read and write barriers (read-
set and write-set tracking). The full HTM support reduces the
overhead of using transactions in the DBT-based DIFT tool down
to 6% by eliminating read and write barriers within the traces.
Overall, Figure 5.3 shows that hardware support is important in
reducing the overhead of transactions in DBT tools. Nevertheless,
it is not clear if a fully-featured HTM is the most cost-effective
approach. The biggest performance benefits come from hardware
register checkpointing and hardware support for conflict detection
in software transactions.

7. Related Work

There have been significant efforts to develop general-purpose
DBT systems, such as Dynamo [3], DynamoRIO [5], Valgrind [24],
Pin [19], StarDBT [4], and HDtrans [38]. Apart from DIFT-based
security tools, these frameworks have been used for performance
optimizations [3, 38], profiling [19], memory corruption protec-
tion [18], and software bug detection [23, 34]. To the best of our
knowledge, no existing DBT framework supports a functionally-
correct, low-overhead method for handling metadata consistency
issues in multithreaded programs. They require explicit locking by
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the tool developer, thread serialization, or disallow multithreaded
programs altogether. This work provides the first in-depth analysis
of the issue and proposes a practical solution.

Significant effort has also been made to develop DIFT as a gen-
eral purpose technique for protecting against security vulnerabili-
ties. DIFT has been implemented using static compilers [41], dy-
namic interpreters [26, 27], DBTs [4, 28, 8], and hardware [10,
11]. The advantage of the DBT-based approach is that it renders
DIFT applicable to legacy binaries without requiring hardware
modifications. The LIFT system proposed a series of optimiza-
tions that drastically reduce the runtime overhead of DBT-based
DIFT [28]. Our work complements LIFT by proposing a practical
method to extend DBT-based DIFT to multithreaded programs.

The popularity of multi-core chips has motivated several TM
research efforts. HTM systems use hardware caches and the co-
herence protocol to support conflict detection and data versioning
during transactional execution [14, 21]. HTMs have low book-
keeping overheads and require minimal changes to user software.
STM systems implement all bookkeeping in software by instru-
menting read and write accesses within transactions [12, 15, 30].
STMs run on existing hardware and provide full flexibility in terms
of features and semantics. To address the overhead of STM instru-
mentation, researchers have proposed compiler optimizations [1]
and hybrid TM systems that provide some hardware support for
conflict detection in STM code [6, 31, 36]. More recently, there
have also been efforts to use TM mechanisms beyond concurrency
control. In [22], TM supports complex compiler optimizations by
simplifying compensation code.

8. Conclusions

This paper presented a practical solution for correct execution of
multithreaded programs within dynamic binary translation frame-
works. To eliminate races on metadata accesses, we proposed the
use of transactional memory techniques. The DBT uses transac-
tions to encapsulate all data and metadata accesses within a trace
into one atomic block. This approach guarantees correct execution
as TM mechanisms detect and correct races on data and metadata

updates. It also maintains the high performance of multithreaded
execution as DBT transactions can execute concurrently.

To evaluate this approach, we implemented a DBT-based tool
for secure execution of x86 binaries using dynamic information
flow tracking. This is the first such tool that correctly handles
multithreaded binaries without serialization. We showed that the
use of software transactions in the DBT leads to runtime over-
head of 40%. We also demonstrated that software optimizations
in the DBT and hardware support for transactions can reduce the
runtime overhead to 6%. Overall, we showed that TM allows
metadata-based DBT tools to practically support multithreaded ap-
plications.
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