
Trends in Middleware for Mobile Ad Hoc
Networks

Salem Hadim, Jameela Al-Jaroodi and Nader Mohamed
Department of Electrical and Computer Engineering

Stevens Institute of Technology, Hoboken, NJ 07030, USA
 {shadim, Jaljaroo, nmohamed}@stevens.edu

Abstract— The use of middleware has extended from simply
facilitating applications’ communication to a broad set of
services supporting a huge spectrum of networked and
distributed computing environments. At the same time
mobile wireless ad hoc networks (MANET) have become a
popular distributed environment and its application domain
is expanding rapidly. However, like all distributed
environments several issues must be considered and many
problems have to be addressed to have efficient and useful
applications. Current researchers moved towards using
middleware to provide solutions to these issues and simplify
application development for MANETs. In this paper we
cover the latest trends and developments in middleware for
MANETs and survey these approaches to identify their
qualities and limitations. We then classify these approaches
into six categories that group them based on the
communication models and the programming paradigm
used. The paper also evaluates these approaches in terms of
the identified categories such as support for mobility,
openness and heterogeneity, and the ease of use. Finally, we
try to identify the open issues and the possible research
directions that would provide better middleware solutions
for MANETs.

Index Terms— Middleware, Mobile Ad Hoc Networks,
Pervasive Computing, Programming Paradigms

I. INTRODUCTION

In our future living environments information will be
the most important commodity and exchanging via
electronic devises (wired and wireless) and across
networks will be a very important factor. It is foreseeable
that the interaction of computing and communication will
increase drastically and devices (e.g. home appliances
and computing devices embedded in cars) incorporating
microprocessors with communications capabilities will
be very common. This will extend the communication
field to a fully pervasive computing environment relying
heavily on wireless ad hoc networks. Unlike a fixed

wireless network, wireless ad-hoc or on-the-fly networks
(MANET) are characterized by the lack of infrastructure
and centralized authority. Nodes in a MANET are free to
move and organize themselves in an arbitrary fashion.
MANETs are very dynamic in terms of available
communication partners, network resources, connectivity
and bandwidth. Furthermore, end-user devices are very
heterogeneous, ranging from high-end laptops to low-end
PDAs and mobile phones. In addition, the resources are
limited in terms of available memory, CPU speed and
battery power. Furthermore, the available bandwidth is
much smaller compared to wired networks.

There is a broad spectrum of potentially useful
applications for MANET, but application development in
this domain is not easy. Obviously, solving the same
issues in every new application from scratch is not
feasible. Instead, middleware services that support
development of applications for mobile ad-hoc networks
is a novel approach that will offer information access and
sharing, and considerable flexibility for MANET. Due to
the unique characteristics of MANETs, traditional
middleware solutions that assume a relatively fixed
network infrastructure are not suitable. Most traditional
paradigms adopt synchronous models of communication
and generally are not resource aware. In recent years,
interest has grown in designing a middleware layer that
fully meets the needs of MANET applications. Here we
investigate some representative middleware solutions for
MANETs, evaluate and compare them. Furthermore, we
propose a classification based on the programming
approach used and the model of communication. This
will allow the reader to get a clearer insight and basic
understanding of the current and proven effective ways to
tackle issues on the design of middleware for MANETs.
The selection of the approaches is based on how
innovative they are in supplying new concepts and
solutions to cope with ad hoc scenarios requirements.

The remainder of the paper is structured as follows.
Section II surveys some related work carried out in the
field then section III outlines the most relevant challenges
faced in middleware design for MANETs. In Section IV
we describe the research projects and approaches. In
Section V we propose a state of the art classification, then

Based on “Middleware Issues and Approaches for Mobile Ad Hoc
Networks”, a preliminary version published in the proceedings of the
third IEEE International Conference on CCNC 2006, Las Vegas,
Nevada, January 2006. Authored by Salem Hadim, Jameela Al-Jaroodi,
and Nader Mohamed..

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006 11

© 2006 ACADEMY PUBLISHER

an evaluation framework is provided on which the
projects are then evaluated and compared. In section VI
we discuss some of the open issues, and then we
conclude the paper in Section VII.

II. DISCUSSION AND RELATED WORK

Here we discuss some existing work and aspects
related to our research in middleware for mobile ad hoc
networks. First it is important to mention that limited
work has been done on surveying middleware for mobile
distributed systems in general and MANETs in particular
due to the complexity and the non obvious taxonomy of
the available middleware solutions. The survey [13]
constitutes a thorough study of middleware for
distributed systems whether fixed, nomadic or mobile.
However, to some extent, the paper failed to survey many
relevant approaches with proven results in an ad hoc
environment. Our work focuses only on pure ad hoc
environments and provides a selection of well suited
models and approaches in the field. Several middleware
solutions have been proposed for distributed systems,
generally with heavy computational load often adapting
synchronous communication style. These approaches are
more suited for fixed distributed systems since devices
are resources-rich and high steady bandwidth is assured
by the wired links. Examples of such approaches are:
Object Oriented middleware such as CORBA [21],
Microsoft COM [24] and Sun Java/RMI [19], Message
Oriented Middleware such as IBM queries [22], Sun’s
java message queue [15], and Transaction Oriented
Middleware such as BEA”S Tuxedo [11]. In mobile
distributed systems, the middleware should be
computationally lightweight due to the scarce resources
of the mobile devices and asynchronous since low
bandwidth and disconnections are a norm. Another
important issue is awareness of the dynamic context of
the environment that should be provided using
middleware techniques and application adaptation to
come up with the optimal solution. An attempt of
adapting traditional middleware solution on nomadic and
mobile environments has been carried out such as IIOP
[10] (Internet Inter ORB Protocol) which is a part of
CORBA. Mobiware [2], Alice [10] and DOLMAN [23]
also cover relevant work for nomadic or semi fixed
distributed systems. Alternative and totally new
approaches have been investigated for mobile distributed
systems. The most relevant ones are: Odyssey [26],
coda[27], bayou [28] Tspaces [29], salutation[25] and
Jini [3]. Even though these approaches moved a step
forward in adapting to a mobile environment, they failed
to address pure ad hoc environments since most of them
rely on a semi fixed architecture (i.e. cellular networks),
and more resource-rich devices. In section IV we survey
middleware solutions that have been demonstrated to
better fit in a pure ad hoc scenario.

III MIDDLEWARE CHALLENGES FOR MANETS

The design and development of a successful
middleware layer for MANETs is not trivial. It has to
deal with many challenges dictated by the MANET
characteristics on one hand and the applications
requirements on the other:

HETEROGENEITY: The middleware should provide low
level programming models to meet the major challenge of
bridging the gap between hardware’s raw potential and
the needed activities. It should establish system-level
mechanisms interfacing to the various types of hardware
and network systems, only supported by basic distributed
primitive operating system abstractions. This will support
a wide range of applications and hardware platforms.

MOBILITY AND NETWORK TOPOLOGY: Due to the dynamic
nature of a MANET, it exhibits frequent and
unpredictable topology changes. The mobile nodes
dynamically establish routes among themselves as they
move; moreover a user in a MANET may not only
operate within the ad-hoc network, but may also require
access to a public fixed network. MANETs therefore,
should be able to adapt the traffic and propagation
conditions to the nodes’ mobility patterns.

SCALABILITY: If an application gets bigger, the network
should be flexible enough to allow the addition of more
nodes anywhere any time without affecting the network
performance. Efficient middleware services must be
capable of maintaining acceptable levels of performance,
as the network grows larger.

LIMITED RESOURCES: Middleware should provide
mechanisms for efficient use of processing, memory and
communication resources, while maintaining low power
consumption. A node should accomplish its basic
operations [20] without resources exhaustion. As an
example of energy aware middleware, most of the
device’s components including the transceivers should be
automatically turned on and off based on the application
requirements.

QUALITY OF SERVICE: An important and unique property
of middleware for MANETS is dictated by the design
principles of application knowledge [13]. However
middleware has to include mechanisms for injecting
application knowledge in the infrastructure of the
network. This allows mapping application
communication requirements to network parameters for
fine-tuning the network monitoring process. Most ad hoc
network applications dictate minimum quality of service
(QoS) requirements sustained over an extended period of
time. Middleware should be able to support QoS and
dynamically adjust to changes in QoS requirements.

CONTEXT AWARENESS: It is a general term used to
encapsulate almost all characteristics of mobile ad hoc
applications. Context means every aspect that can impact
the behavior of an application; therefore the middleware

12 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006

© 2006 ACADEMY PUBLISHER

should be context aware [14]. We can distinguish two
types of awareness: device awareness and environment
awareness. Device awareness relates to the internal
resources of the device: battery power, processing power,
and memory. Environment awareness relates to external
resources around the device such as network
connectivity, bandwidth, location, and other hosts in
range.

SECURITY: Providing communication among hosts in a
hostile environment is a primary concern. Unique
characteristics of MANETs pose various challenges to
the security design such as open peer-to-peer (P2P)
network architecture, a shared wireless medium and a
highly dynamic topology. These challenges raised the
requirement of developing secure solutions that achieve
wider protection, while maintaining desirable network
performance. There is no standard security mechanism in
a MANET from the security design perspective to
address this issue.

IV MIDDLEWARE APPROACHES FOR MANETS

In this section some design principles and research
projects that have already been proposed will be
presented. We will argue that middleware for MANETs
are tightly coupled with applications and there is no
single general middleware that resolves all problems. The
surveyed middleware approaches are purely and
specifically designed for an ad hoc environment. We
exclude those designed for fixed, nomadic or semi ad hoc
infrastructures which is beyond the scope of this paper.

A. STEAM [16]: It introduces the concept of Event
Based Middleware in a mobile Ad hoc environment. It
addresses some specific constraints related to MANETs.
One of the constraints is that some middleware
components of the event services cannot be located on
independent physical machines. In addition, such
components may not be co-located with mobile entities
and pose problems regarding availability, consistency,
coverage and computational resources. STEAM utilizes
the implicit publish/subscribe model thus does not require
separate dedicated fixed cluster of event servers for to
operate as the case in P2P and mediator-based models.
Significantly the implicit publish subscribe model allows
the consumers to subscribe to particular event types and
the publishing entities to publish events. The entities are
therefore fully anonymous. STEAM uses the proximity
(geographical and functional) group communication
model. The geographical aspects specify the area where
the information is valid and the mobile devices within the
propagation range. The functional aspects represent the
common interest of produces and consumers based on the
type of information propagated among them. Using these
two aspects the mobile devices discover each other and
therefore communicate. STEAM supports three different
types of event filters: Subject filters, Proximity filters and
Content filters. The usage of content filters enables
subscribing entities to express sophisticated queries,

which enable fine grain filtering of events. The subject
and proximity filters are utilized to address the scalability
of the system. In STEAM subject and proximity filters
are applied on the publisher’s side. Events are only routed
to subscribers if both filters match. On the other hand
content filters are deployed at the subscriber’s side and
utilized when an instance of an event is received to
determine whether or not to deliver the event to the
application.

B. EMMA [18]: As discussed in earlier sections, one
solution for designing middleware for MANETs is to find
a way to adapt a well known middleware technique used
in traditional systems. This has a clear advantage in
allowing application developers to adopt the same
standards on mobile and dynamic devices. Also it allows
interoperability between the wired and the ad hoc
infrastructures. Therefore using paradigms based on
asynchronous mechanisms constitute an adequate
solution for an ad hoc environment where frequent
disconnection and bandwidth fluctuation are the norm.
Message Oriented Middleware (MOM) is a popular
paradigm. EMMA is a MOM based middleware that
exploits the Java Message Service (JMS) originally
deigned for semi mobile distributed systems. EMMA is
an attempt to adapt the JMS to fit MANETs by providing
a slight modification of the message passing used in JMS
and adding an epidemic routing mechanism [18] that
facilitate delivery of messages in a MANET environment.
As in JMS, EMMA applications can use the point to
point or the publish-subscribe communications style. In
point to point, applications use queues for asynchronous
message exchange between the producer and possible
consumers. The optimal location of the queues is
determined by a negotiation process that is application
dependant, which makes the middleware context aware.
To allow the hosts that are not within range to receive
messages, the asynchronous epidemic routing protocol is
used. Each host maintains a buffer of messages created
and messages received and messages are dropped if the
buffer overflows. As a result the reliability of this
protocol a best effort one and it does not grantee that all
messages are delivered. In the publish-subscribe model
some hosts contain topics and subscriptions of hosts
interested in the topic. Topics are exchanged through
subscribed group members using a synchronous protocol
or an epidemic protocol. This model also provides
mechanisms for maintaining subscription and
unsubscription messages.

C. Expeerience [4] among the key objectives of an ad
hoc environment is information sharing, access and
communication. On one hand this makes P2P
communication an adequate approach to tackle many
issues since it shares some key characteristics with
MANETs. On the other hand they also have some key
differences such as the dynamic topology and the lack of
guaranteed connectivity. In addition, scalability in P2P is
limited in terms of data rates, whereas in MANETs it is
conditioned by low bandwidth and low processing power.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006 13

© 2006 ACADEMY PUBLISHER

From this stems the design of Expeerience. It takes
advantage of services provided by a P2P environment and
adds various modules needed for MANET. The P2P
framework chosen is JXTA [4] which offers key
advantages such as interoperability, platform
independence and ubiquity. JXTA tries to create a
common platform for developing distributed P2P services
and applications. Expeerience enhances some of the
services in JXTA and adds another software layer that
meets the requirement of MANET that is not met by
JXTA. Thus introducing new features like: management
of the intermittent connections and multiple interfaces,
more efficient resource discovery mechanisms and code
mobility. It is important to mention another concept used
by Expeerience which is code mobility. This new
paradigm allows the download and installation of new
services dynamically. This feature allows the middleware
to dynamically adapt to situations that were not
considered during the design and that only take place at
run-time.

D. SELMA[19]: A middleware platform that uses
mobile agents communicating through the
“marketplaces” pattern, in which mobile applications
send and forward agents to specific geographic locations
called marketplaces. In these well-defined locations, the
probability of finding the required information is very
high since they are characterized by a high presence of
mobile hosts. This communication pattern is suitable for
a large number of ad hoc applications such as online
auctions and electronic billboards. SELMA middleware
fits well in an ad hoc scenario by being self-configurable
and power aware. It supports hop-to-hop communication
and multi-hop communication as well. The user specifies
the application agent in a mobile host and then the agent
moves toward a specified target marketplace using the
agent transport protocol to provide any service to the
mobile host originator. After finishing its task in the
marketplace, the mobile agent moves either to another
marketplace to do another task or moves back to its
originator using homezones. A homezone is defined as a
geographical area with a high sejourn probability of the
originator. The proposed middleware architecture is
composed of three parts, communication abstraction,
agent platform and the set of application and service
agents. The communication abstraction layer provides
different services such as mobile hosts positioning,
wireless communication and neighbor discovery. The
wireless communication model uses both local unicast
and local broadcast to all one hop neighbors. The current
implementation of SELMA is based on the ad-hoc mode
of the IEEE 802.11. The agent platform layer provides
mechanisms for reliable agent transport using agent
duplication, map computation by dividing the area
surrounding the mobile device into small rectangles, hot
spot detection allowing the device to detect where the
marketplaces are, geographic routing, marketplace
communication enabling agents to communicate between
each other in a specific marketplace, and localization
services. Finally, the upper layer contains application

agents for user-defined application, and service agents
that are not assigned to any user and used to provide
location based services such as duplicate elimination and
load balancing.

E. Mobile Gaia [32]: To address pervasive and ad hoc
computing environments, Mobile Gaia middleware
adopts a component based approach. That is, application
services are decomposed into smaller components that
can run on a cluster of different heterogonous devices.
This yields to considerable memory and power savings,
since the middleware allows only the required component
to be loaded and unloaded to a device depending on its
role. The mobile ad hoc network is divided into active
spaces or clusters, where each personal active space has a
device coordinator or a cluster head, and a set of client
devices. Mobile Gaia divides services into two main
categories, when the services are provided by the cluster
coordinator; the services are referred to as coordinator
services, and when the services are provided by the client
device, the services are referred to as client services. It is
important to mention, that in a coordinator role, the
device has additional responsibilities such as managing
all services in the devices belonging to its cluster,
integrating data collected from the client devices and
maintaining their locations. As a communication model,
Mobile Gaia adopts the traditional event based model,
namely, publish-subscribe. When an application wants to
send an event, it creates an event channel in the host
device, and then the device notifies its cluster coordinator
with the nature event using the event service. The cluster
coordinator maintains a repository of events, and when an
application is interested in any event, it subscribes to it by
notifying the local event service which in its turn queries
the event service in the cluster coordinator for that
specific event. Mobile Gaia architecture is comprises a
main Kernel and an application framework. The kernel
contains a set of services and a service deployment
framework responsible for installing new services,
loading and unloading services when they are no longer
needed. The frame is based on the “What You Need Is
What You Get” model [34]. The application framework
eases the development of the distributed application by
supplementing a common interface offering context
awareness and adaptation.

F. LIME [17]: is information sharing middleware. It
adopts the tuple space based approach that stems from
Linda [30], which provides tuple space data structure for
fixed distributed systems. The tuple space systems have
been demonstrated to provide many useful features for
wireless environments. LIME extends the model adopted
in Linda and makes it suitable for highly dynamic mobile
environments. LIME defines a tuple space for each
mobile host and permanently associates it with it. When a
mobile host connects to other hosts, rules for transient
sharing of the individual tuple spaces are defined. This is
effective for a fast and accurate information exchange
between mobile hosts when a connection is established.
Each mobile host maintains an interface tuple (ITS) that

14 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006

© 2006 ACADEMY PUBLISHER

is permanently and exclusively attached to that unit and
transferred with it when movement occurs (like in the
data tree of Xmiddle). Each ITS contains tuples that the
unit wishes to share with others and it represents the only
context accessible to the unit when it is alone. However,
the content of the ITS is dynamically recomputed so it
looks like the result of the merging of the ITSs of other
mobile units currently connected. Upon the arrival of a
new mobile unit, the content perceived by each mobile
unit through its ITS is recomputed taking the content of
the new mobile unit into account. This operation is called
engagement of tuple spaces; the opposite operation,
performed on departure of a mobile unit, is called
disengagement. Information about the system
configuration is made available through a read-only
transiently shared tuple space called Lime System,
containing details about the mobile components present
in the community and their relationship. Moreover,
reactions can be set on the tuple space, to enable actions
to be taken in response to a change in the configuration of
the system. An important aspect of Lime is tuple access
and movement; events are used to notify users when a
new tuple is available. It is worth noting that the tuple
space approach is widely used by other middleware to
support mobility such as TSpaces [29] of IBM and
L2imbo [6].

G. LIMONE [8]: An enhancement of LIME middleware
is investigated and implemented in Limone. One
limitation of LIME is that it assumes that the network is
not highly dynamic and can sustain a permanent
connection during a group transaction. This symmetric
approach enforced by group membership presents
limitation in case of a highly mobile environment where
permanent connections are not guaranteed. To cope with
this issue, Limone accommodate a high degree of
uncertainty in the state of a network by providing more
robust interaction model between agents residing in hosts.
The model is based on individual agents having full
control on the distributed transaction it participates with.
This is done by making each host maintain an
acquaintance list that provides a global view of the
operating context and is customizable using admission
policies depending on the network dynamics and the
application requirements. Limone’s main features are
context management, explicit data access, reactive
programming and code mobility or agent migration. In
respect to context management, an efficient discovery
mechanism is provided to allow the agents to discover
neighbors and to selectively decide on their relevance
depending on the application requirements and network
settings. This approach copes better with scalability,
limited hardware resources and security issues.

H. MESHMdl [33]: Context awareness and self
organization are the main design principles of the
MESHMdl middleware to cope with mobile ad hoc
scenarios. It is based on two well known approaches:
autonomous mobile agents for logical mobility and tuple
spaces [36] allowing decoupling applications components

in time and space which is necessary to cope with the
high dynamics of an ad hoc environment such as mobility
and frequent disconnections. This asynchronous mode of
communication allows different peers and mobile nodes
to communicate without having to set up a “rendezvous”.
Applications in MESHMdl are expressed as groups of
mobile agents that collaborate via spaces. The MESHMdl
architecture is comprised of: a generic connection layer,
an interaction layer, Space layer, agent runtime or
Engine, and agent applications. The generic connection
layer encapsulates different network technologies and
supplements the upper layers with neighbor discovery
mechanisms and a way to interact with them. This layer
makes the middleware independent from the underlying
network. The role of the space layer is to define the way
spaces are managed and defined. It uses an object
oriented implementation of the tuple space paradigm as
adopted in JavaSpaces [37]. The space is considered as a
shared communication medium whose role is twofold:
inter-agent communication and agent Engine
communication. The agent runtime or Engine serves as a
runtime environment for agents and runs on every node
hosting an agent. The agent applications are responsible
for managing the creation of agent and the way they are
cooperating to form an application. MESHMdl is
mobility aware since spaces are not federated when two
nodes meet as in LIME [18]. Instead they appear separate
to the applications. An engagement protocol is used for
communication when hosts are within communicating
range. Furthermore, and information diffusion is
supported, namely, the Xector model which is a
mechanism used to propagate information through the
network under certain constraints.

I. XMIDDLE [14]: Considered as data-sharing-oriented
middleware, it provides mechanisms to deal with frequent
disconnected operations in an ad hoc environment.
Xmiddle moves a step forward by providing a robust data
structure to deal with ad hoc scenarios and no assumption
is made about the existence of fixed provider or
privileged nodes as in the case in nomadic ones. Using a
tree like data structure, mobile hosts can establish
efficient communication with each other. Each mobile
host maintains a private tree data structure with access
points to allow communication with other hosts.
XMIDDLE therefore provides an approach to sharing
that allows on-line collaboration, off-line data
manipulation, synchronization and application dependent
data reconciliation. As long as two hosts are connected,
they can share and modify the information on each
other’s linked data trees. When disconnections occur, the
disconnected hosts retain replicas of the trees they were
sharing while connected, and continue to be able to
access and modify the data. When the two hosts
reconnect, the reconciliation is accomplished using the
replicas of the tree previously stored. This allows
restoring only a small specific part of the tree rather than
the whole tree. This turns to be a critical issue since not
all devices has sufficient resources to update the whole
tree at all times. The tree data structure is implemented

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006 15

© 2006 ACADEMY PUBLISHER

using XML [14] and related technologies. Data is stored
in XML documents, which can be semantically
associated to trees. Nodes, address branches and
references in the XML documents are then manipulated
using technologies such as Document Object model,
Xpath and Xlink. It is worth noting that representing
mobile data structures in XML enables seamless
integration of Xmiddle applications with the various
systems and Micro Browsers.

J. Mate [12]: Mate is among the middleware for
wireless sensor networks (WSN) that uses a virtual
machine (VM) approach as an abstraction layer to
implement its operations and to tackle the different
challenges of WSN, which carry great similarities to
MANETs. Mate focuses on the need for new
programming paradigms to overcome constraints such as
limited bandwidth and the large energy draw from
network activity. Mate proposes a spectrum of
reprogrammability from simple parameters adjustments
to uploading complete program updates using a VM
approach. The energy cost of sending a single bit of data
can consume the same energy used to execute thousands
of instructions. A content specific routing and
reprogramming model can be used and supported by the
VM. Mate is a byte code interpreter built on TinyOS [12]
operating system designed specifically for sensor
networks that run on motes (small devices with a small
CPU and limited storage resources) to implement the
middleware operations. It uses codes that are broken into
capsules of 24 instructions, each of which is a single byte
long. This gives the advantage to large programs to be
decomposed to multiple capsules, thus easy to inject into
the network. The key components are the VM (Mate),
Network, Logger, Hardware and Boot/Scheduler. Using a
synchronous model that begins execution in response to
an event such as packet transmission or timer signal, it
avoids message buffering and large storage. The
synchronous model makes application-level
programming simpler and less prone to bugs than
asynchronous event notifications. Another key
functionality of Mate is infection or network updates
done by using version numbers, so comparison could be
made at the neighbors and the newest version is installed.

V. CLASSIFICATION , EVALUATION AND COMPARISON

In the previous section we surveyed different existing
middleware approaches, based on the programming
models used. In this section, we will classify the available
approaches. Then we will define an evaluation
framework, which we will use to evaluate the different
systems under consideration.

A. Classification

Based on the information gathered we may classify the
approaches into six main categories: Event based and
Message Oriented Middleware (MOM), component based
and Mobile agents middleware, Peer to peer based
middleware, tuple spaces based middleware, data sharing

based middleware, and virtual machine based
middleware. It is important to mention that while all
categories differ in their objectives and the way they deal
with programming a mobile ad hoc network as whole;
they may have some common features, which make them
seem to be non mutually exclusive. This is because
research is still maturing and some desired features are
sometimes common between some categories.

 Event Based and Message Oriented Middleware
(MOM): Used in distributed systems exhibiting Event-
based architectural style. Event based systems are
particularly adequate for distributed environments
without central control such as mobile ad hoc networks to
support applications that must monitor or react to changes
in the environment and information interest. One sub area
of interest is MOM, which is a communication model in a
distributed mobile ad hoc network. It facilitates message
exchange between mobile nodes using the publish-
subscribe mechanism. The strength of this paradigm lies
in that it supports asynchronous communication very
naturally allowing loose coupling between the sender and
the receiver. This turns to be very suitable in pervasive
environments such as MANETs

 Peer-to-Peer (P2P) Middleware: P2P is an interaction
model between end points and allow them to share
information or accomplish a common task. In P2P
architecture, no single host is permanently seen as a
server, but each single host is able to play both the role of
server and client according to the user’s and application’s
needs. This decentralized architecture makes it a suitable
backbone for ad hoc environments. Hence appropriate
middleware is needed to provide abstractions to the upper
applicative layers and cope with high dynamics such as
mobility and resource discovery.

 Component-based and Mobile Agents Middleware: The
key in this approach is that applications are as modular as
possible then injected and distributed through the
network using mobile agents’ migration or diffusion
protocols. This yields to considerable energy savings
since transmitting small modules will require less energy
consumption than a whole application. For example,
Mobile Gaia provides a component architecture where
components can be installed or loaded/unloaded to
dynamic applications. Its autonomic behavior increases
its fault tolerance and self-organization of the network.

 Tuple Spaces Based Middleware: as mentioned earlier,
ad hoc environments are characterized by low and
variable bandwidth, frequent disconnections…etc. Thus a
decoupled and opportunistic style of communication is
required. Decoupled means that communication happens
even in the presence of disconnections, and opportunistic
as it exploits connectivity whenever available. One
solution offering this possibilities is Tuple Spaces
introduced in the Linda[30] coordination language.

16 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006

© 2006 ACADEMY PUBLISHER

 Data Sharing Based Middleware: This approach deals
with frequent disconnections and data sharing by
providing robust mechanisms and data structures to
maximize the availability of the data, providing the users
with data replicas. The main goal is to tackle issues such
as detecting and resolving conflicts that occur in ad hoc
systems by ensuring the integrity and consistency of
those replicas. The drawback of this approach is that it is
only suitable for small scale networks since only a subset
of hosts are able to access a small amount of networked
data.

 Virtual Machine Based Middleware: It is a flexible
system containing virtual machines (VMs), interpreters
and mobile agents. It allows applications to be written in
separate small modules that get injected and distributed
through the network using tailored algorithms such as
overall energy consumption and resource use are
minimized. The modules then get interpreted by the
virtual machine. The approach however, suffers form the
overhead introduced by the instructions.

B. Evaluation

Before evaluating each middleware, we first define a
framework for the evaluation based on the following
criteria: heterogeneity, scalability, power awareness,
Mobility, openness and ease of use. The first four criteria
are already defined in the third section; likewise we
define openness and ease of use, which are very
important in the notion of middleware.

EASE OF USE: Refers to the level of abstraction of
the middleware. In other terms, how its interface relieves
the user from dealing with the complex low level APIs of
heterogeneous resources by providing an easy to use
“single entity” of the whole system. Large-scale ad hoc
network applications usually involve various resource
types; this increases the complexity of the code and the
programming implementation to manage all these
heterogeneous resources. For example environment
monitoring and multimedia involves a number of
heterogeneous resources, including network bandwidth,
CPU Cycles, memory buffers, and storage. Dealing with
this heterogeneity will require abstract resource models
to alleviate the complexity of coordinating and adapting
these diverse resources. Such models should be uniform
and easy to use offering a user-friendly interface.

OPENNESS: Is the possibility to extend and modify
the system easily, as a consequence of changed functional
requirements. The system should support both
environment awareness and device awareness.
Traditional approaches encapsulating and hiding the
implementation details result in a “black box” that is
difficult to inspect and modify. This should be avoided in
middleware design for Manets where dynamic topology
and frequent resource changes are a norm rather than an
exception. For example in devices such as PDA and
sensors, which have limited battery life, CPU power and

memory capacity, the system resources should conform
to the constraints dictated by the deployment platform
and network topology. Designing an open middleware
prevents stagnation. Resource management in
middleware should dynamically adapt to resource
availability and other contextual changes. Standards are
essential for open systems and must be continually
updated as the environment evolves. Developers must
introduce open resource configuration and
reconfiguration to achieve the resource management
adaptation that the middleware requires.

Following, we evaluate each considered middleware
by concentrating on how well they meet the criteria
defined in the framework and focusing on the advantages
and disadvantages of each approach.

STEAM provides an event service communication
middleware suitable in an ad hoc scenario. However, its
publish/subscribe mechanism is limited by proximity of
nodes and that they must be within reach of each other. It
does not provide efficient resource discovery mechanisms
to support high nodes mobility. In STEAM each device
must be able to perform complex content filtering and
this may not be possible for resources constrained
devices. It addresses scalability when the mobile hosts
are within a proximity communication group; however
scalability problems can arise when it comes to
distributed applications using entities which are not in
close proximity. This significantly limits the usefulness
of STEAM in terms of application heterogeneity. Indeed,
STEAM has been designed with the traffic management
application in mind. Openness and context awareness of
the middleware is limited since no mechanisms have been
provided to handle failed and temporary unavailable
entities. Finally, applications are expressed in terms of
events, which is a well know paradigm and easy to use.

EXPEERIENCE is a middleware layer over JXTA that
addresses issues with regard to intermittent connections
in ad hoc environments. Expeerience moves a step
forward by containing efficient features to cope with ad
hoc scenarios. It supports code mobility and service
migration, including support for mobile agent systems
allowing scalability. The new enhanced resource
discovery service component allows better disconnection
management and the discovery of distributed agents
hence the mobility is addressed. This also enables power
and hardware resources awareness, such as the life time
of mobile nodes is increased. The code mobility concept
makes the middleware adaptive where new services could
be added at run time, hence openness is supported.
Expeerience does not, however, address the component
models issue with JXTA nor protocol exchangeability. In
its present state Expeerience uses some libraries written
in J2SE and C, a light weight version using J2ME or
lighter version of the JXTA middleware would be needed
to support heterogeneity and to include devices such as
PDAs. This layer is also needed to supplement the

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006 17

© 2006 ACADEMY PUBLISHER

application developer with an easy to use single interface
and programming primitives.

EMMA uses an adapted Java Message Service (JMS)
armed with two communication styles: point-to-point and
publish-subscribe to cope with ad hoc scenarios such as
intermittent connectivity and partial mobility. An
epidemic routing mechanism is added to support message
delivery to mobile hosts that are not in reach. However,
the poorly performing epidemic algorithm in terms of the
number of replicas that are spread across the network
dictates that a tradeoff between application level routing
and resource such as power and bandwidth usage should
be investigated. This also poses scalability and openness
issues for dynamic network adaptation since the
middleware doesn’t provide other resource discovery
mechanisms beside the epidemic routing protocol.
Another limitation is that the reliability offered is a best
effort one, which results in the loss of some messages. A
prototype of EMMA has been implemented using J2ME -
a virtual machine implementation-, which is suitable for
heterogeneous devices such as PDAs and laptops. The
combination of the MOM paradigm and J2ME offer high
level abstractions and an easy to use interface.

SELMA: Using mobile agents under the marketplace
and homzones patterns, SELMA addresses well mobility.
Self organization, scalability and adaptation are the main
design principles of the middleware. This is done by
incorporating a set of services such as neighbor
discovery, map computation, load balancing and
geographic routing. The communication abstraction
provides generic methods for positioning, wireless
communication and device discovery, thus the
middleware is portable across different communication
hardware and addresses heterogeneity. The neighbor
discovery service allows considerable power and
resource savings by collecting information on the devices
capacities in hosting additional agents and
communicating it to the middleware. The programming
abstraction used by SELMA is quite easy to use, however
one limitation of the middleware is that dynamic creation
of new marketplaces is till under investigation, thus its
openness is partial. Furthermore, SELMA was evaluated
only on application following the marketplace pattern
making the middleware not general purpose.

MOBILE-GAIA combines three main design pillars,
decomposing application into components to run on
different device, thus saving some power and hardware
resources, event based service, namely publish-subscribe
very suitable for mobility supported with the discovery
and cluster management service, active spaces supporting
scalability with novel coordinator-client roles. The
service deployment framework allows news services to
be installed, components to be loaded and unloaded
depending on application needs making the middleware
context aware and open. Muti-device support and
environment independence is addressed in Mobile Gaia
by offering common programming patterns and by using

the “WYNIWYG” model, thus supporting heterogeneity
and making it easy to use. However, it is important to
mention that some mechanisms are under investigation to
allow locating services depending on devices memory
capacity, bandwidth and power.

LIME introduces a new approach in designing
middleware services for ad hoc environments which is
data sharing based on tuples spaces. However, LIME
mobile hosts are connected only when the distance
between them allows direct communication using events
notification. Mobile agents are connected when they are
co-located on the same host, or they reside on hosts that
are connected. This turns to be a serious limitation for ad
hoc applications where efficient multi hop
communication mechanisms should be provided to
support high mobility. That is, in its present state LIME is
only supports partial physical mobility between host and
logical mobility between agents. Furthermore, Lime
provides some context awareness but the overhead cost is
very high; the blocking behavior of its primitives adds to
the overhead. There is no support for behavior adaptation
.It doesn’t constitute a full middleware package designed
to meet all MANETs requirements.

MESHMdl is built on two models, mobile agents and
tuple spaces. To adapt to physical mobility, MESHMdl
uses logical mobility by agent migrations. Applications
components are decoupled in time and space, therefore an
asynchronous model of communication is used which is
suitable for saving some power and network resources
such as bandwidth. So application can migrate logically
in case of failure or mobile device going out of range.
This confers to the middleware some openness and
context awareness. Unlike Lime the tuple spaces are
scalable since the node-level spaces are not federated
when two nodes meet. The tuple spaces are object
oriented therefore easy to use. The middleware supports
heterogeneity is compliant with java2 Micro Edition
specification and the Connected Limited Device
Configuration from Sun [35], and can run on PDAs ,
laptops and desktops.

XMIDDLE provides an enhancement for information
sharing mechanisms between mobile hosts. Using an
enhanced data structure based on trees implemented in
XML and other technologies. It moves a step forward in
addressing mobile computing issues such as scarce
device resources and frequent disconnection. Partial
mobility is supported using a tree like data structure
allowing better information sharing between connected
hosts. Frequent disconnections are handled using
different protocols such as link and reconciliation
protocols. The replication protocol enables keeping a
copy of the communication data structure when
disconnections occur so that no updates are needed when
the connection is reestablished. This enables considerable
energy savings and fast synchronization. XMIDDLE is
implemented in Java and relies on the virtual machine,
which makes it platform independent and easily supports

18 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006

© 2006 ACADEMY PUBLISHER

heterogeneity. However, XMIDDLE suffers some
limitations that require further investigation: the
communication paradigm (i.e., sharing of trees) is basic
and needs to be enhanced to model more complex ad hoc
mobile interactions making its openness very limited.
Also a key limitation of XMIDDLE like LIME is that
multi-hop scenarios are not considered where routing
through mobile nodes is required. Also resource
discovery mechanisms should be provided to meet
requirements such as scalability. Finally, XMIDDLE uses
very easy to use programming abstraction and XML and
java are considered very high level languages.

MATE with its virtual machine approach supports
scalability and openness by the use of active messages to
update the network protocols and parameters by injecting
new capsules. This makes the network dynamic, flexible
and easily reconfigurable.. Mate gives a user–land

supplemented by the VM, hence supports heterogeneity
and provides efficient network and sensor access.
Mobility is addressed by using various ad hoc routing
protocols and protocol updates. However, In terms of
energy -power awareness-, Mate is only suitable for
sleepy applications that are in low duty cycle most of the
time, for complex applications, it is wasteful because of
the interpretation overhead of its instructions. Also in its
current state, Mate is only architecture and byte codes;
making it not easy to use; a higher-level language and
programming model for application development are
needed.

Table 1 summarizes the evaluation of the different
approaches based on the proposed framework. (F
indicates full support; P, partial support; and X, little or
no support)

Table. 1. Approaches of Mobile Ad Hoc Networks Middleware.

Project Name Main Features
Power

Awareness
Openness Scalability Mobility Heterogeneity Ease of use

Event Based and Message Oriented Middleware
STEAM[16] Event based, Proximity Group Communication,

Filters, Publish-Subscribe Mechanism
P X P P P F

EMMA[18] Message Oriented Middleware, JMS, Point to Point
Communication, Publish, Epidemic Routing P X P P F F

Peer to Peer Based Middleware

Expeerience [4] JXTA, P2P Framework, Mobile Code, Resource
Discovery Mechanisms, management services

P F F F P F

Component and Mobile Agents Based Middleware

SELMA [31]
Marketplace pattern, Mobile Agents, Homzones,
Neighbor discovery, IEEE 802.11, duplication.

P P F F F F

Mobile-Gaia
[32]

Small Components, Active Spaces, Clusters,
Publish-Subscribe, “WYNIWYG”, Coordination

P F F F F F

Tuple Space based Middleware

LIME [17]
Data Sharing Middleware, Shared Tuple Spaces
System, Extends Linda, Interface Tuple (ITS)

P X P P P F

MESHMdl[33]
Object Orineted Tuple Spaces, Mobile Agents,
J2ME, Asynchronous, Xector model. P P F F F F

Information sharing Based Middleware
XMIDDLE[14] Data Sharing Middleware, Robust Tree-like Data

Structure, XML, Management of Disconnections
F X P P F F

Virtual Machine Based Middleware

Mate [12]
Uses TinyOS, Synchronous, Byte code interpreter,
Mobile active capsules.

F F F P P X

VI. DISCUSSION AND OPEN ISSUES

The middleware approaches and projects surveyed in
this paper all provide different mechanisms and
techniques to tackle different challenges and impediments
of the design and development of a middleware for
MANETs. However, a close examination based on our
evaluation in the previous section reveals that the
approaches are tightly coupled with specific applications
and none fully meets the challenges presented in section

IV, more specifically context awareness, QoS,
heterogeneity and efficient resource discovery.

We believe that a complete and effective middleware
should combine more than one approach and mechanism
to cover a wide range of ad hoc requirements.
Middleware implementation using virtual machines and
using mobile code techniques adopting an asynchronous
model of interaction between hosts such as the message
oriented style would offer many potential solutions and
drastically enhance middleware possibilities in ad hoc
environments. In addition, keeping the middleware

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006 19

© 2006 ACADEMY PUBLISHER

lightweight and taking the context awareness as a
functional requirement throughout the design and
development of the middleware is also essential for
success. Indeed, mobile code techniques allow creating
new services and migrating services at run time and deal
with issues that could not be predicted in the design
phase. Furthermore, efficient adaptable resource
discovery mechanisms specifically adequate for a mobile
ad hoc environment should be provided to give the
middleware more robustness and flexibility in handling
the frequent changes in the network components and the
topology.

Security requirements pose another major challenge to
address in MANETs. The security mechanisms used and
proven in traditional networks are not suitable for
Manet’s [1]. The absence of centralized authority,
dynamic network topology and mobility cause serious
problems. In addition, the limited resources and device
independence dictate the need for new sophisticated
solutions that should be incorporated in the design of
middleware for MANETs. These techniques must be
capable of functioning efficiently on the independent
devices, while keeping resource consumption as low as
possible.

VII. CONCLUSION

In this paper, we surveyed different middleware
approaches specifically adopted for wireless mobile ad
hoc networks. We studies some of the issues involved
and tried to clarify some of the ambiguities of
middleware definitions. Then we identified the major
challenges that the design and development of
middleware for MANETs faces. Furthermore, we
investigated many of the relevant existing projects carried
out towards this perspective. We provided a thorough
evaluation and comparison by concentrating on
similarities and differences between the approaches. In
addition, we tried to provide an overview of the positive
features and advantages along with the shortcomings and
disadvantages of the approaches studied. We were able to
identify the following distinct approaches: event based
and message oriented (MOM), P2P, component and
mobile agents based, tuple spaces and information
sharing. Some of the approaches are based on a virtual
machine and mobile code techniques. Furthermore, and
based on the results of our comparison, we discussed and
proposed potential enhancements and new research
possibilities in the field. At the end it is important to
mention that designing and implementing the middleware
that fully meets all the requirements and challenges of a
mobile ad hoc environment is to some extent not a
realistic venture. Trade-offs must be made to reach a
more realistic approach that incorporates various
techniques and methodologies to provide as many of the
required functionalities as possible, while maintaining
flexibility, efficiency, and scalability.

ACKNOWLEDGMENT

The authors wish to thank the editors of the Journal of
Communications (JCM) for their invitation to contribute
with this paper.

REFERENCES

[1] J. Al-Jaroodi, “Security issues at the network layer in
wireless mobile ad hoc networks”, in proc. international
conference on wireless networks (ICWN’05), Las Vegas,
Nevada, June 2005.

[2] O. Angin, A. Campbell, M. Kounavis and R. Liao. “The
Mobiware Toolkit: Programmable Support for Adaptive
Mobile Netwoking,” in Personal Communications
Magazine, SI on Adapting to Network and Client
Variability. IEEE Computer Society Press, August 1998.

[3] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath., “The Jini [tm] Specification.,” Addison-
Wesley, 1999.

[4] M. Bisignano, A. Calvagna, G. D. Modica, O. Tomarchio,
“Expeerience: a Jxta middleware for mobile ad hoc
networks,” in proc. third international conference on P2P
computing, 2003.

[5] L. Capra, C. Mascolo, S. Zachariadis and W. Emmerich.,
“Towards a Mobile Computing Middleware: A Synergy of
Reflection and Mobile Code Technique,” In Proc. 8th
IEEE Workshop on Future Trends in Distributed
Computing Systems, Italy 2001. pp. 148-154.

[6] N. Davies, A. Friday, S. Wade, and G. Blair,” L2imbo: A
Distributed Systems Platform for Mobile Computing,”
ACM Mobile Networks and Applications (MONET),
Special Issue on Protocols and Software Paradigms of
Mobile Networks, 1998, 3(2).

[7] W. Emmerich. “Software Engineering and Middleware: A
Roadmap”, In the Future of Software Engineering. A.
Finkelstein (ed), ACM Press, 2000, pp: 117-129.

[8] C.-L Fok, G.-C. Roman, G. Hackmann, “A Lightweight
Coordination Middleware for Mobile Computing,” in proc.
6th Intern’l Conf. on Coordination Models and Language,
De Nicola, R., Ferrari, G., and Meredith, (editors), Lecture
Notes in Computer Science 2949, Springer-Verlag, Pisa,
Italy, Feb. 2004, pp. 135-151.

[9] D. Gelernter, “ Generative Communication in Linda“,
ACM Trans. On Programming Languages and Systems,
1985,7(1), pp. 80–112.

[10] M. Haahr, R. Cunningham, V. Cahill.”Supporting CORBA
Applications in a Mobile Environment (ALICE)” in proc.
5th Int. Conf. on Mobile Computing and Networking
(MobiCom). Aug. 1999.

[11] C. Hall, “Building Client/Server Applications Using
TUXEDO.” Wiley, 1996.

[12] P. Levis, D. Culler, “Mate: A Tiny Virtual Machine for
Sensor Networks,” in proc. Inter. Conf. on Architectural
Support for Programming Languages and Operating
Systems, Oct. 2002.

[13] C. Mascolo, L. Capra, W. Emmerich, “Middleware for
Mobile Computing”, Adv. Lectures on Networking, E.
Gregori, G. Anastasi and S. Basagni (ed.), Lecture Notes in
Computer Science, Springer Verlag, 2002. vol 2497, pp.
20-58.

[14] C. Mascolo, L. Capra, S. Zachariadis, W. Emmerich,
“XMIDDLE: A Data-Sharing Middleware for Mobile
Computing,” in Wireless Personal Com., Kluwer. 2002.
21. pp. 77-103.

20 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006

© 2006 ACADEMY PUBLISHER

[15] R Monson-Haefel, D. A. Chappell, M. Loukides, “Java
Message Service », O’Reilly & Associates, Dec. 2000.

[16] R. Meier, V. Cahill, “STEAM: Event-based middleware
for wireless ad hoc networks," in the 22nd Intern. Conf.
On Distributed Computing Systems Workshops (ICDCSW
'02), Austria, July 2002.

[17] A. L. Murphy, G. P. Picco, G.-C. Roman. “Lime: A
Middleware for Physical and Logical Mobility,” in proc. of
the 21st Intern. Conf. On Distributed Computing Systems
(ICDCS-21), May 2001.

[18] M. Musolesi, C. Mascolo and S. Hailes, “EMMA:
Epidemic Messaging Middleware for Ad Hoc Networks,”
in Personal and Ubiquitous Computing. 2005.

[19] E Pitt, K. McNiff, “Java rmi: The Remote Method
Invocation Guide,” Addison Wesley, June 2001.

[20] T Plagemann, ET. al., “Towards Middleware Services for
Mobile Ad-Hoc Network Applications,” in proc. of the
IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS’03), 2003.

[21] A Pope., “The Corba Ref. Guide: Understanding the
Common Object Request Broker Architecture”, Addison-
Wesley, Jan. 1998.

[22] I. Redbooks, “MQSeries Version 5.1 Administration and
Programming Examples, “IBM Corporation, 1999.

[23] P Reynolds and R. Brangeon, “Service Machine
Development for an Open Longterm Mobile and Fixed
Network Environment”, http://www.fub.it/dolmen/, 1996.

[24] D. Rogerson. “Inside COM,” Microsoft Press, 1997
[25] Salutation Consortium. , http://www.salutation.org/,96
[26] M. Satyanarayanan., “Mobile Information Access”, in

IEEE Personal Communications, Feb. 1996. 3(1):26–33.
[27] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E.

Siegel, D. Steere, “Coda: A Highly Available File System
for a Distributed Workstation Environment”, in IEEE
Trans. on Computers, Apr. 1990, 39(4), pp. 447–459.

[28] D. Terry, M. Theimer, K. Petersen, A. Demers, M.
Spreitzer, C. Hauser, “Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System.”,
In proc. of the 15th ACM Symp. On Operating Systems
Principles, Colorado, Aug. 1995, pp. 172–183.

[29] P. Wyckoff, S. W. McLaughry, T. J. Lehman, D. A. Ford,
“T Spaces,” IBM Systems Journal, 1998, pp. 454–474

[30] D.Gelertner, “Generative Communication in Linda”, ACM
Computing Surveys, Vol 7, No 1, pp.80-112, Jan. 1985.

[31] Daniel G¨orgen and Hannes Frey and Johannes K. Lehnert
and Peter Sturm. SELMA: A Middleware Platform for
Self-Organizing Distributed Applications in Mobile
Multihop Ad-hoc Networks. In Western Simulation
MultiConference WMC ’04, 2004.

[32] Chetan Shankar, Jalal Al-Muhtadi, Roy Campbell and
M.Dennis Mickunas, "Mobile Gaia: A Middleware for Ad-
hoc Pervasive Computing", IEEE Consumer
Communications & Networking Conference (CCNC
2005), Las Vegas, Jan. 2005.

[33] K. Herrmann, “MESHMdl - A Middleware for Self-
Organization in Ad hoc Networks," in Proceedings of the
1st International Workshop on Mobile Distributed
Computing (MDC'03), May 19 2003.

[34] F. Kon, T. Yamane, C. Hess, R. Campbell, and M.
D.Mickunas, "Dynamic Resource Management and
Automatic Configuration of Distributed Component
Systems," presented at 6th USENIX Conference on
Object-Oriented Technologies and Systems
(COOTS'2001), San Antonio, Texas, 2001.

[35] Sun Microsystems, “CLDC - The Inner Plumbing of the
Java 2 Platform, Micro Edition.”
http://java.sun.com/products/cldc (official website).

[36] S. Ahuja, N. Carriero, and D. Gelertner, “Linda and
friends,” IEEE Computer, pp. 26–32, August 1986.

[37] Sun Microsystems, “JavaSpaces[tm] Service Specification,
v1.2.1.”www.sun.com/software/jini/specs/js1_2_1.pdf,
April 2002.

Salem Hadim is currently pursuing his PhD degree at The
Department of Electrical and Computer Engineering, Stevens
Institute of Technology, New Jersey, USA. His main research
interests include middleware, software systems, Security,
Networking, Autonomic Computing and Enabling
Technologies. He received the MS degree in Computer
Engineering from Stevens Institute of Technology, New Jersey,
USA, in 2003. As student member of IEEE and IEEE
Communication Society, he has authored/co-authored several
papers in international Journals and conferences.

Jameela Al-Jaroodi is a Research Assistant Professor at The
Department of Electrical and Computer Engineering, Stevens
Institute of Technology. Her research interest is in distributed
systems including middleware, distributed software for
heterogeneous systems, ad-hoc networks, sensor networks,
embedded software, and software engineering for distributed
systems. She published more than 30 articles in Journals and
Conferences. Dr. Al-Jaroodi received her doctoral degree from
The Computer Science and Engineering Department at The
University of Nebraska-Lincoln in 2004; her master degree
from Western Michigan University in 1998; and her bachelor
degree from The University of Bahrain in 1993.

Nader Mohamed is an Assistant Professor of Electrical and
Computer Engineering, Stevens Institute of Technology, New
Jersey, USA. His main research interests include middleware,
networking, real-time and embedded software, cluster and Grid
computing, and dependable systems. He obtained a Ph.D. in
Computer Science from University of Nebraska-Lincoln; 2004,
an M.Sc. in Computer Science from Western Michigan
University; 1998, and a B.Sc in Electrical Engineering from
University of Bahrain; 1992. He has also over eight years of
industry experience in systems integration and middleware.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 4, JULY 2006 21

© 2006 ACADEMY PUBLISHER

