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Abstract

In parallel to the changes in both the architecture do-
main – the move toward chip multiprocessors (CMPs) –
and the application domain – the move toward increasingly
data-intensive workloads – issues such as performance, en-
ergy efficiency and CPU availability are becoming increas-
ingly critical. The CPU availability can change dynami-
cally due to several reasons such as thermal overload, in-
crease in transient errors, or operating system scheduling.
An important question in this context is how to adapt, in a
CMP, the execution of a given application to CPU availabil-
ity change at runtime. Our paper studies this problem, tar-
geting the energy-delay product (EDP) as the main metric
to optimize. We first discuss that, in adapting the applica-
tion execution to the varying CPU availability, one needs to
consider the number of CPUs to use, the number of appli-
cation threads to accommodate and the voltage/frequency
levels to employ (if the CMP has this capability). We then
propose to use helper threads to adapt the application exe-
cution to CPU availability change in general with the goal
of minimizing the EDP. The helper thread runs parallel to
the application execution threads and tries to determine the
ideal number of CPUs, threads and voltage/frequency levels
to employ at any given point in execution. We illustrate this
idea using two applications (Fast Fourier Transform and
MultiGrid) under different execution scenarios. The results
collected through our experiments are very promising and
indicate that significant EDP reductions are possible using
helper threads. For example, we achieved up to 66.3% and
83.3% savings in EDP when adjusting all the parameters
properly in applications FFT and MG, respectively.

1 Introduction

Chip multiprocessors (CMPs) are becoming increasingly
popular as performance improvements brought by increas-
ing clock frequency alone are approaching their limits.
Other factors, such as ease of verification/validation of indi-
vidual cores (as compared to complex unicore architectures)
and the ability to exploit both thread level (coarse grain) and

instruction level (fine grain) parallelism, also boost trends
towards chip multiprocessing. Unfortunately, while several
CMPs [1, 2, 5, 23, 42] have already made their way into the
commercial market, software support for CMPs is still in
its infancy, and is expected to be the main roadblock to the
effective use of CMPs [38].

In addition to the changes in architecture domain, we are
also witnessing changes in application characteristics and
target optimization metrics. More specifically, applications
are getting increasingly complex and data intensive (par-
ticularly large codes from scientific computing, database
and embedded image/video processing domains), and op-
timization metrics other than performance are becoming in-
creasingly important. Two of these metrics are availabil-
ity and energy consumption. In many execution scenar-
ios where CMPs are involved, satisfying both these metrics
(i.e., achieving high availability and low energy consump-
tion) can be critical. One of the interesting problems in this
context is to adapt application execution to varying hard-
ware resources in a performance and energy efficient man-
ner, that is, use the available resources carefully to achieve
both good performance and low power consumption.

Motivated by these observations, this paper studies the
problem of how an execution can cope with CPU avail-
ability change. Our goal is to decide – at runtime – the
best strategy to employ when the number of CPUs available
to an application is changed, considering the energy-delay
product (EDP).1 In other words, we want to adapt the ex-
ecution to CPU availability change with the goal of mini-
mizing the EDP. The approach proposed in this paper em-
ploys a helper thread for this purpose. More specifically,
we use a helper thread whose primary job is to collect –
using performance counters information (or data) provided
by the CMP architecture and a power model – energy-delay
product statistics during the course of execution and decide
the most appropriate number of CPUs, number of threads,
and voltage/frequency levels to use when a variation on re-
source availability occurs. In making these decisions, the

1We want to emphasize that energy-delay product (EDP) [22] is an im-
portant metric as it captures our desire of both achieving high performance
and reducing energy consumption, both of which are critical in data inten-
sive computing.



helper thread uses curve fitting and data interpolation meth-
ods [44]. Assuming long application execution time, us-
ing such a helper thread, our approach can collect a suffi-
cient number of data points (CPU count, thread count, volt-
age/frequency level, and EDP value) at runtime. Based on
these data points, it can accurately predict the behavior of
the application and can then select the CPU count, thread
count and voltage level to use when the number of CPUs
available to it dynamically changes at runtime.

We implemented our approach using a full system sim-
ulator [6] and conducted experiments using two data-
intensive applications: Fast Fourier Transform (FFT) and
MultiGrid (MG). In our experimental evaluation of the pro-
posed approach, we tested its three variants: (1) using
a fixed number of threads and a fixed voltage/frequency
level (i.e., adapting only the number of CPUs); (2) adapt-
ing both CPU count and thread count (under a fixed volt-
age/frequency level); and (3) adapting the CPU count,
thread count and voltage level together in a coordinated
fashion. The experimental results we collected indicate
that our proposed helper thread based dynamic adapta-
tion scheme is very successful in practice even if all the
overheads brought by the helper thread are accounted for.
Specifically, we are able to reduce the EDP value in scenar-
ios (1), (2) and (3) mentioned above by as much as 21.7%,
54.6%, and 66.3% in FFT, and as much as 35.5%, 77.2%,
and 83.3% in MG. The corresponding average EDP im-
provements are 7.4%, 26.3% and 46.1% in FFT under sce-
narios (1), (2) and (3), and 15.3%, 59.7% and 70.5% in
MG. In addition, we also compared our approach to an op-
timal – but unimplementable – adaptation strategy. The col-
lected statistics with our helper thread based approach and
the optimal adaptation scheme reveal that, on average, we
are within 5.9% of the optimal. Overall, our results indicate
that, in order to minimize the EDP in a CMP based archi-
tecture, we need to select the number of CPUs, number of
threads, and voltage/frequency levels very carefully, and a
helper thread can be very useful for this purpose. Note that,
while we present our analysis using two applications, our
approach is quite general and can be used for other applica-
tion domains as well.

The rest of this paper is structured as follows. The next
section discusses the related work. Section 3 introduces the
CMP architecture targeted by our work and explains the ex-
ecution scenario considered. Our helper thread based ap-
proach to the CPU availability problem is discussed in Sec-
tion 4. Experimental setup and the results from our experi-
mental evaluation are presented in Sections 5 and 6, respec-
tively. Section 7 gives a summary of our major conclusions
and a brief outline of the planned future work.

2 Related Work

This section presents a discussion of the prior work on
CMPs, CPU adaptation, voltage scaling and other related
topics, and compares these efforts to our work.

Chip multiprocessors have been studied in the past from

the perspective of hardware [11, 30, 41] as well as soft-
ware [36, 37, 45]. In comparison to these efforts, the
work described in this paper focuses on application adapta-
tion under varying CPU availability. There have been sev-
eral prior publications on deciding the number of CPUs to
employ in different program phases. Earlier work in this
area by Hall and Martonosi [25] points out that compiler-
parallelized applications may waste various computational
resources in different program phases. To remedy this, they
propose a mechanism to dynamically adjust the number of
CPUs which in turn improves workload performance. There
are two main differences between this study and our work.
First, our main goal is to minimize the energy-delay prod-
uct, whereas they focus mainly on performance. Second, in
their work, the number of CPUs is adjusted to react program
behavior, while our approach aims to adapt the application
execution to variations in CPU availability.

Curtis-Maury et al [15] build a user-level library frame-
work for online adaptation of multi-threaded codes target-
ing low-power and high-performance, which changes the
processors/threads configuration as the program executes.
An online performance prediction model is used to pre-
dict performance, power and combined metrics based on
phases, and the model is evaluated on a server composed of
four processors. In comparison, our work focuses more on
adapting application execution to the dynamic CPU avail-
ability. Also, we use a full system CMP simulator and use
a power model based on program characteristics, which is
not the case in their work. In addition, we employ volt-
age/frequency scaling. This paper builds upon our previous
work [18] which looks at optimal savings that are possible
when adapting program at runtime.

Dynamic Voltage-Frequency Scaling (DVFS) has been
discussed in the past to reduce power consumption of
CMPs. Wu et al [45] study the effectiveness of a dynamic
compiler-driven voltage scaling scheme. In comparison,
our work considers multiple techniques in adapting applica-
tion execution. Li et al [33] explore a multi-dimensional de-
sign space for CMPs, which includes the CPU count and op-
erating voltage/frequencies. However, they do not consider
dynamic adaptation at runtime. Li and Martinez [32] dis-
cuss the viability of changing the number of concurrent pro-
cessors/threads at run-time to accommodate changes in the
execution environment. Their work studies several heuris-
tics to prune the search space for determining the optimum
number of CPUs to employ and the voltage/frequency lev-
els to use. They assume at most one application thread
is executed on each CPU, which restricts potential search
space. As a result, they do not consider modifying the
thread structure of the application. Also, their main target
metric is power consumption, whereas we consider energy-
delay product, which we believe is a more suitable metric
for many data-intensive computing environments.

Thread migration in the context of CMP has been stud-
ied in the past [13, 21, 26, 27, 35, 39]. Constantinou et
al [13] investigate the performance implications of single
thread migration on CMPs. The experimental results they
provide show that the performance loss due to activity mi-



gration can be kept at minimum when several techniques
are used. Thread migration has also been applied in several
studies [21, 26] to manage power density. The main differ-
ence between most of these prior efforts and ours is that we
focus on adapting application behavior to CPU availability
change and target the energy-delay product.

Recently, there have been several efforts on dynamic re-
source partitioning in the context of CMPs. Guo et al [24]
focus on microarchitecture and software support in order
to provide a guarantee of a certain level of performance.
They propose optimization techniques to improve through-
put when applications with diverse requirements exercise
the same CMP. Chu et al [12] propose a profile-guided
method for partitioning memory accesses across distributed
data caches. Such a data partitioning reduces stall cy-
cles for memory accesses and achieves overall performance
speedup. In comparison, our work focuses on how to utilize
the resources with both good performance and low power
consumption.

Our work is also different from the classical fault toler-
ance oriented research [7]. Specifically, our focus is not
on the techniques for failure recovery or load balancing.
Rather, we try to minimize the EDP at runtime through
careful selection of CPU count, thread count and volt-
age/frequency levels in a CMP based architecture.

3 CMP Architecture and Target Scenario

Figure 1. CMP architecture considered in our
work. L1 instruction and data caches are pri-
vate, whereas the unified L2 cache is shared
across all CPUs.

In this section, we introduce the CMP architecture as-
sumed by our work and explain the CPU availability prob-
lem. Our solution to this problem is detailed in the next
section. The CMP architecture considered in this work is of
the type shown in Figure 1. There are n CPUs in total. Each
CPU has its own private instruction and data L1 caches, and
all CPUs share a unified on-chip L2 cache. Note that sev-
eral commercial and academic CMP architectures discussed
in literature fit into this template [1, 2, 42], although future
CMPs are likely to have a distributed and banked L2 cache
accessed through an interconnection network. We assume
that, if the application is not using a CPU, that CPU and
its associated L1 caches can be turned off to save power.

As leakage power is becoming an increasingly important
component of the overall power budget [8], turning off a
CPU and its L1 caches can reduce the chip-wide power
consumption dramatically. Several architectural techniques
[20, 46] can be used for turning off L1 caches. We further
assume that the CPUs in our CMP can be voltage/frequency
scaled. Scaling down the frequency of a CPU increases
the length of its clock period (which in turn increases ap-
plication execution latency), and scaling down its voltage
reduces power consumption. Therefore, interesting power-
performance tradeoffs can be studied by playing with the
voltages/frequencies of CPUs in a CMP environment. In
this CMP architecture, multiple applications can execute at
the same time, but we assume that different applications
do not share any CPU. That is, a given CPU can only run
threads from a single application at any time in execution.

Figure 2(a) illustrates the execution scenario we focus in
this paper. In this scenario, an application executing on a
CMP (say, for simplicity, n threads running on n CPUs) is
informed during its execution that one or more of the CPUs
it currently uses are about to be taken away from it. This
can be due to several reasons such as a pending thermal
emergency, increase in transient errors, or as a result of an
operating system (OS) decision. The approach described
in this paper is applicable to all these scenarios; in fact,
the actual reason behind such unavailability is orthogonal
to the main focus of this paper. Note that the CPU avail-
ability can change in the other direction as well (i.e., the
number of available CPUs to an application can increase at
runtime). Our approach handles the increased or reduced
CPU availability with a general scheme. Therefore, without
loss of generality, we assume that the OS decides (based
on its global resource management policies) to take away
some of the CPUs on which the application is running. In
this case the execution should somehow adapt to this new
condition. As our focus is not on techniques for failure re-
covery, issues of thread imaging and restart after CPU fail-
ure is beyond the scope of this paper. In the rest of this
section, we discuss the different adaptation options that can
be considered:
• The first, and the most intuitive option, is to let the OS

re-map (migrate) the threads that were originally running
on the CPUs to be taken away to available CPUs. For ex-
ample, if m of the original n CPUs become unavailable, the
threads on these m CPUs can be migrated to the remaining
n−m available CPUs. While many types of migration (re-
mapping) schemes can be employed for this purpose, the
different re-mappings can lead to dramatically different re-
sults. Figure 2(a) depicts a specific migration scheme with
n = 16 and m = 2. In this migration scenario, m of the
n −m available CPUs take the m orphan threads, and this
leads to an increase in their workload.
• While trying to use all available (n − m) CPUs may

be reasonable from the performance perspective alone, it
may not be the best option when we consider the EDP.
More specifically, is it possible to use fewer CPUs than
n − m and achieve a lower energy-delay product? This
may be possible as the unused CPUs (and their L1 caches)



Figure 2. Illustration of reduced CPU availability. (a) When the two (rightmost) CPU become unavail-
able, their threads are migrated (re-mapped) to available CPUs. (b) When using fewer CPUs, unused
ones can be turned off, potentially leading to a lower EDP value.
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Figure 3. Example delay and EDP curves.

can be turned off, as explained earlier, to save leakage en-
ergy. Meanwhile, such a reduction in the number of CPUs
and L1 caches used does not always significantly affect the
performance. As a potential scenario, based on the thread
migration scheme given in Figure 2(a) and omitting the po-
tential changes in cache behavior due to CPU/L1 turnoff,
one can expect the execution delay and EDP curves to be as
shown in Figure 3 (assuming n is 16). The main observa-
tion from this plot is that the large drops in latency (due to
parallelization) occur only in certain CPU counts. This is
a typical characteristic of many multi-threaded applications
[19] because load balance changes along with the number
of available CPUs. In fact, the execution delay curve drawn
in Figure 3 follows d 16

number of CPUse. Therefore, as an
example, if n = 16 and two CPUs become unavailable
(i.e., m = 2), we may work with q = 8 CPUs (instead
of n −m = 14 CPUs) as the latencies with these two con-
figurations are expected to be similar (see Figure 2(b)), save
for the cache behavior. In addition, since 14 CPUs will have
higher power consumption than 8 CPUs, EDP with 8 CPUs
will be lower than that with 14 CPUs, as also illustrated in
Figure 3 (in fact, as we increase the CPU count from 8 to
14, the EDP value continuously increases without consider-

ing cache impacts). Note however that 14 CPUs have more
aggregate on-chip L1 cache capacity, and as a result, in re-
ality using 14 CPUs may result in lower execution latency
than using 8 CPUs. On the other hand, the operating sys-
tem support for systems with different number of CPUs can
bring different performance overheads. Therefore, in prac-
tice, the minimum EDP value could be caught with a CPU
count of q, where 8 ≤ q ≤ 14, as also depicted in Figure 3.

• So far, we implicitly assumed that, when m CPUs be-
come unavailable, we still try to continue execution with n
threads. Now, supposing that we are also able to obtain a
version of the application that can use a different number
of threads, we may want to use an r-thread version such
that the total EDP value is further minimized. The impor-
tant point here is the question of how such a version (re-
threading) can be obtained. One option is dynamic code
modification which can generate any desired version at run-
time. However, this may be costly in some cases as com-
pilation time required for re-threading contributes to the
overall execution latency. We are investigating the possible
overheads and benefits of this option using the Microsoft
Phoenix framework [3]. Note that, for applications using
OpenMP [16], the cost of re-threading can be much less
since the number of threads can be set at runtime using an
environment variable [31]. Another option would be to pre-
pare, for each function of the application, a different ver-
sion (that uses a different number of threads) beforehand at
compile time and use (link) the appropriate (multi-threaded)
version at runtime when the CPU unavailability takes place.
This option, also called static versioning, is possible in gen-
eral since we can expect the same set of functions to ex-
ecute for many times in a large and long-running applica-
tion. In practice, we may not need all possible versions of
each function with all possible thread counts. Instead, we
can do a reasonably good job with only a small set of ver-
sions (e.g., 2, 4, 8, and 16 thread versions) and switch to the
appropriate (multi-threaded) version at runtime. An impor-
tant issue at this point is the place in the code at which the
new version will be invoked. Obviously, such an invocation
cannot take place at any arbitrary point since this would re-



quire us to prepare versions considering all possible points
where CPU unavailability can occur. Instead, one can adopt
the following strategy: when the unavailability occurs, we
select a suitable number of CPUs and continue executing
the application without changing the number of threads un-
til a function boundary is reached. When this boundary is
reached, we change the number of threads as well. This
approach is illustrated in Figure 4. In this example, if the
CPU unavailability occurs in function f2 at iteration i, (i.e.,
during the ith visit of the function), we can continue to use
n = 16 threads on q CPUs (where q is the number of CPUs
we select considering the EDP) until the return of f2. When
this happens, we start to use r threads (r ≤ 16) and execute
them on p CPUs (again r and p are selected based on the
EDP). In this paper, we use the notation of (a, b) to repre-
sent an execution of the application using a threads running
on b CPUs.

Figure 4. Illustration of how we change the
number of CPUs and threads to cope with re-
duced CPU availability.

• The results may be even better, from an EDP perspec-
tive, if voltage/frequency scaling is employed. Suppose
that, based on the analysis outlined above, we decided to
use p CPUs and r threads. It may be possible to reduce the
EDP further by using p′ (p′ > p) CPUs and r′ (r′ > r)
threads with the voltages and frequencies scaled down. In
this work, we assume that all the CPUs use the same volt-
age/frequency level. That is, when voltage/frequency scal-
ing is applied, their voltages/frequencies are scaled to the
same value.

Clearly, one can expect the best (minimum) EDP value
when the number of threads, number of CPUs and volt-
age/frequency level to use are selected carefully, consider-
ing the interactions among them. In the rest of the paper, we
explain and experimentally evaluate a helper thread based
approach to this dynamic adaptation problem.

4 Helper Thread Based Approach to CPU
Availability Problem

In this section, we explain our helper thread based ap-
proach to the CPU availability problem. The motivation
for helper threads comes from the observation that future
CMPs will include a large number of CPUs and will ex-
ecute applications that involve a large number of threads
[9]. In such an execution environment, it is entirely fea-
sible to allocate some of the CPUs and threads to various
tasks that enable better application execution. For exam-

ple, one can use helper threads to collect valuable statistics
about application execution and execution environment, us-
ing performance counters and sensors. As another example,
several recent efforts [29, 34] employed helper threads for
prefetching data in cache memories. In a scenario with a
large number of CPUs and threads, one can expect the addi-
tional costs brought by such helper threads to be more than
compensated by the EDP benefits they bring.

In our context, we use a single helper thread which
collects performance counter information and implements
curve fitting to predict the ideal number of CPUs, threads,
and voltage/frequency level to use when a variation in CPU
availability occurs. In the following paragraphs, we explain
the use of the helper thread under three different scenarios,
each of them being more complex than the previous ones.

In the first scenario, we assume that the only control pa-
rameter we have is the number of CPUs. That is, in reacting
to a variation in CPU availability at runtime, we can only
change the number of CPUs; the number of threads and
voltage/frequency levels are not changed (we use the cur-
rent number of threads and the maximum voltage/frequency
level). As explained earlier in Section 3, when m of the
original n CPUs become unavailable to an application, it
may not always be the best choice to use all n − m avail-
able CPUs when considering the EDP as the primary metric
of optimization. In this scenario, the functionality of the
helper thread can be explained as follows. As the execu-
tion progresses, the helper thread collects statistics, with the
help of performance counters and a power model, that keep
track of the EDP values obtained under various number of
CPUs experienced so far. When a variation on CPU avail-
ability occurs, the helper thread uses the data collected so
far (which is essentially a set of [Number of CPUs, EDP
Value] pairs observed thus far in execution), and makes use
of curve fitting to predict the ideal number of CPUs to use
to achieve the lowest EDP value. While our current imple-
mentation uses a particular curve fitting scheme (piecewise
cubic spline interpolation [44]), the selection of the curve
fitting scheme to employ is really orthogonal to the main
focus of our approach. Note that, when an adaptation takes
place, the helper thread continues to record the EDP value
observed and updates its database to achieve better predic-
tions in the future. It is important to point out that some
of the [Number of CPUs, EDP Value] pairs can also be ob-
tained using profiling or from prior executions of the same
application. These pairs can then be reused in the current
execution for predictions. To summarize, our helper thread
implements two functionalities. First, it maintains the appli-
cations EDP values observed under different CPU counts.
Second, it decides the next configuration to use through
curve fitting.

Figure 5 gives an example of the curve fitting in such
scenario, assuming two CPUs out of the original 16 CPUs
become unavailable to our application at some point during
the course of execution. If we have initial points of EDP at
CPU counts of 2, 8 and 16, we can predict that the optimal
point to operate is with 14 CPUs as illustrated by the dotted
curve in Figure 5. After the execution of current function



Figure 5. One-dimensional (curve) fitting.
Both curves capture the predicted EDP val-
ues. As more data points are collected at
runtime, the curve fitting becomes more ac-
curate.

call, the energy-delay product can be calculated (using the
performance counters supported by the underlying CMP ar-
chitecture) and used as another data point (at CPU count of
14) for future curve fittings. This is captured by the solid
curve in Figure 5, and as a result, 9 CPUs are chosen to
continue the execution. That is, as more data points are col-
lected, our curve fitting becomes more accurate. We explain
the further details of this adaptation scheme in our experi-
mental evaluation.

In the second scenario, the control parameters we have
are the number of CPUs and the number of threads. That
is, in reacting to a variation in CPU availability, the helper
thread selects a new CPU count and a new thread count.
However, as explained earlier in Section 3, thread count
changes can only be performed at function boundaries (our
current implementation postpones the thread count change
to the next function boundary). As in the case of first sce-
nario, the helper thread makes its prediction using curve
fitting. Clearly, the curve fitting in this case is a two di-
mensional one (i.e., it is actually surface fitting) as it in-
volves predicting both thread and CPU counts, and our cur-
rent implementation uses triangle-based linear interpolation
for this purpose [44].

Figure 6 illustrates the two-dimensional space for the
number of CPUs and the number of threads, assuming both
of them are no more than 16. It is clear that using more
CPUs than the number of threads can bring no additional
performance gains but only wastes extra power. Therefore,
the exploration space in Figure 6 is actually only the lower
triangle portion. Ideally, we want to find the optimal point
in the triangle (i.e., the best (a, b) configuration), when re-
threading is possible. Note that, if the number of threads is
fixed as in the first scenario, the exploration translates into
finding the optimal point in a certain vertical line in Figure
6. Therefore, the first scenario is just a special (and simpler)
case of the second one.

Figure 6. Two-dimensional (surface) fitting.
Data points in the lower triangle can be used
to predict the next configuration to minimize
the EDP.

In the third scenario, the control parameters we use in-
clude CPU count, thread count and voltage/frequency lev-
els. That is, we also predict the new voltage/frequency
level to use over the second scenario explained above. As
stated earlier, in this study, all the CPUs use the same volt-
age/frequency level, but it is possible to extend our approach
to cover cases where we have the flexibility of changing
the voltage/frequency level of each CPU independent of the
other CPUs. As in the pervious two scenarios, we use curve
fitting (in this case it is three dimensional) to predict the best
operating point. The particular curve fitting scheme used in
this work is triangle-based linear interpolation [44].

5 Experimental Setup

5.1 Applications

In this section, we briefly describe the two applications
used in this paper: Fast Fourier Transform (FFT) and Multi-
Grid (MG). Both of these programs are from the NAS Par-
allel Benchmark Suite [4]. We used their OpenMP imple-
mentations in version 3.2 with the class W inputs [28]. Both
these codes represent computations that are used in a large
variety of modeling and simulation applications based on
finite element, finite difference and spectral methods.

Fourier Transforms are important in many domains such
as digital signal processing and solving partial differential
equations. Fast Fourier Transform (FFT) is an efficient al-
gorithm to compute the discrete Fourier transform (DFT)
and its inverse. A Discrete Fourier Transform (DFT) of
length N can be represented as a sum of two DFTs of length
N/2, and this process can be repeated recursively to obtain
a divide and conquer algorithm. This partitioning signif-
icantly reduces the computational cost of the DFT, hence
the term Fast Fourier Transform (FFT). The FFT imple-



mentation we use has six major iterations, which altogether
take 90% of the serial execution time. Each iteration per-
forms the kernel of a three-dimensional FFT in function fft.
This three-dimensional FFT kernel implements three one-
dimensional FFT’s, corresponding to three function calls
within each iteration (cffts1, cffts2 and cffts3). The behavior
of these three functions are not the same but very similar.

The MultiGrid (MG) method is typically used for solv-
ing elliptic partial differential equations on a discretized
physical domain. The main idea behind MG is to repre-
sent the physical domain with a hierarchy of discretiza-
tion from fine grain to coarse grain. The solution for the
physical domain is obtained with extrapolation between
coarser and finer grids. The MG implementation we use
has four major iterations, which consume 70% of the to-
tal serial execution time. It computes the solution of the
three-dimensional scalar Poisson Equation. Each loop it-
eration consists of the multigrid operation (function mg3P)
and the residual calculation (function resid). The multigrid
operation is performed with a sequence of different com-
putations, implemented in functions such as rprj3, psinv,
interp and resid. Since there are a large number of func-
tion invocations within one iteration, we divide them into
7 function groups separately by each function call of resid.
This partition makes our experiments easier.

5.2 Simulation Setup

We used the Simics toolset [6] to perform our experi-
ments. Simics is a multiprocessor simulator that can be
used to perform full system simulation. The abstraction
of the CMP architecture used in this study is given ear-
lier in Figure 1. In our simulator, each CPU runs unmod-
ified Solaris 9 operating system with Sun Studio compil-
ers and tools to support OpenMP [14]. Table 1 gives the
major simulation parameters used in this study with their
default values. In this work, (16, 16) corresponds to our
default configuration, before the CPU unavailability occurs
(i.e., 16 threads running on 16 CPUs). If no re-threading
is used, after the unavailability, we use the configuration
(16, x), where x < 16. If re-threading is also an option,
other configurations are also possible. We assume that, in
both FFT and MG, the CPU unavailability takes place after
the kernel computation starts (i.e., when entering the ma-
jor loops). If m CPUs become unavailable, configuration
(16, 16 − m) is used as default to continue the execution.
Our baseline (against which we compare our approach) is
the case when the thread count and the CPU count do not
change, and the remaining computations are executed using
the default configuration of (16, 16−m).

Accurate estimation of the EDP values is critical in eval-
uating our work as we target at reducing the EDP. We rely
on the various performance counters in Simics for this pur-
pose, along with existing support from proper power mod-
els. To calculate the EDP value, we need to calculate the
energy consumption and the application execution latency.
The execution latency can be easily calculated using the
number of cycles spent in execution (which can be obtained

Table 1. Our major simulation parameters and
their default values.

Parameter Value
Number of CPUs (n) 16
Number of Threads 16

Highest CPU Frequency 2GHz
Highest Voltage Level 1.1V

Number of Voltage/Frequency Levels 5
CPU Issue Width 1
L1 Data Cache 64K, 2-way, 2 banks

L1 Instruction Cache 64K, 2-way, 2 banks
Unified L2 Cache 4MB, 16-way, 2 banks

Process Technology 70nm

from performance counters) and the clock frequency used.
The energy consumption we calculate include both leak-
age energy and dynamic energy components for CPUs, L1
caches, and shared L2 cache. We obtain the leakage power
and dynamic power for the cache reads and writes from
CACTI 5.0 tool [43] for both L1 and L2 caches. Together
with the number of cache accesses (hits/misses) from per-
formance counters in the full system simulator, we can es-
timate the energy consumption for caches. As for energy
consumption for CPUs, we employ a power model similar
to the one used in Wattch [10] and scale it appropriately to
get dynamic and leakage power numbers separately.

Figure 7 presents the EDP values for the FFT and MG
benchmarks over different execution steps under the (16, x)
configurations. Each curve shows the normalized EDP val-
ues for one application step (a function or a function group)
when executed with different number of CPUs. All the
results are normalized with respect to the maximum EDP
value observed. An important point to note from these re-
sults is that, the curves of EDP results over different steps
are similar in FFT, but they differ more in the case of MG.
This is because the functions in FFT behave similarly (one-
dimensional FFT). In contrast, as mentioned earlier, we di-
vide the functions in MG into different groups. As a result,
the curves that belong to the steps in the same group are
similar, but they exhibit a different trend from those falling
into the different function groups.

This difference between the FFT and MG applications
allows us to test the effectiveness of our helper thread based
approach with two general types of applications. First, for
applications that operate over similar tasks iteratively, a sin-
gle model can be used to apply our curve fitting method and
predict the next configuration to choose. Second, for ap-
plications with complex iterations (i.e., each iteration calls
different functions and executes for long periods of time),
we can divide the complex iteration into several phases and
build different models for different phases. There exists sev-
eral studies [17, 40] that can be used to identify application
phases based on dynamic runtime characteristics. For sim-
plicity, we partition a complex iteration in MG based on the
static code structure in our study. Overall, the trends ex-
hibited by the curves in Figures 7 indicate that curve fitting
can be successful in predicting the next (most appropriate)
configuration to go.
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Figure 7. EDP values for different steps in the FFT and MG benchmarks. Each curve captures the
normalized EDP values for one application step when executed with different number of CPUs. Steps
in FFT exhibit similar behavior, whereas the steps in MG fall into several groups.

6 Experimental Results

In our experiments with FFT and MG, we start curve fit-
ting with initial data points collected before the current ex-
ecution. For example, in the FFT application, we can mea-
sure the EDP of the first function call under different num-
ber of CPUs and different number of threads. Note that, we
do not need a complete set of data points to start curve fit-
ting. As we will show in the next section, a few data points
spread across the exploration space are sufficient in most
cases. Once the CPU availability changes, we predict the
next configuration based on the initial data points to mini-
mize the EDP. After each function call, the EDP value for
the function execution is calculated, which is subsequently
used to add or update the reference data points for future
curve fittings. The application continues to execute with the
best predictable setting. This section discusses the results
we obtain under several execution scenarios.

6.1 Results without re-threading

We first examine the results with one-dimensional curve
fitting (i.e., to adapt to a variation in CPU availability, we
change only the CPU count). Figure 8 shows the EDP
values for different approaches, when using 16 threads
throughout the program execution of FFT and MG applica-
tions. All the results are normalized with respect to the EDP
value when no change is made to the number of CPUs (i.e.,
when all the available CPUs are used); this baseline result
is captured by the first bar in each group of bars. In both of
these plots, we present the results of curve fitting (denoted
1-D fitting) under the different number of initial data points
to start exploration. We also show the minimum EDP value
(the last bar in each group of bars) that can be achieved if the
EDP of each step with any setting is known beforehand (so
that we can select the best alternative). This minimum value
is also the optimal result that we can possibly achieve using
the one-dimensional curve fitting case. The specific selec-
tion of initial data points used in these experiments is as

follows. When the number of initial data points is 3, 4, 5, 8
and 15, the corresponding sets of CPU counts with available
EDP values are {2, 8, 16}, {2, 4, 8, 16}, {2, 4, 8, 12, 16},
{2, 4, 6, 8, 10, 12, 14, 16}, and {2...16} respectively; i.e.,
we start execution with these EDP values ready as our initial
data points.

As we can see from these plots, when the CPU availabil-
ity becomes low (e.g., less than 8), there is not much room
for improvement. In contrast, the EDP savings are signifi-
cant when the CPU availability remains relatively high (e.g.,
larger than 10). We also see that the EDP benefits achieved
using curve-fitting guided configurations are not as good as
the optimal but much better than the baseline case. Note
that, the results with our curve fitting based approach can
sometimes be worse than the baseline case. The reason
for this is that the EDP curves are in general not smooth.
Figure 9 provides a snapshot of the one-dimensional curve
fitting for EDP values in FFT. We observe that the curve fit-
ting results closely follow the trend in actual EDP values.
However, due to several factors (such as on-chip cache be-
havior), the EDP value at some point may not be predicted
precisely by the curve fitting method (see the data point at
15 CPUs in Figure 9 for an example).

In summary, although the specific EDP savings vary with
the number of available CPUs and the number of initial
data points we have, our helper thread based method clearly
brings benefits in most cases. For example, as shown in Fig-
ure 8, for the FFT application, the EDP savings are 7.4% on
average and can go up to 21.7% in the best curve fitting case
with 15 initial data points. Even in the worst curve fitting
case with 8 initial data points, the savings we achieve are
about 4.8% on average and can be as much as 17.1%.

6.2 Results with re-threading

Figure 10 provides a snapshot of the two-dimensional
curve fitting for FFT. The circles in the curve fitting surface
are the data points used in the triangle-based linear inter-
polation. Note that the curve fitting results are shifted by
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Figure 8. One-dimensional fitting results for FFT and MG. A bar corresponding to a value of p on the
x-axis, gives the normalized EDP value when the number of CPUs drops from 16 to p. For our curve
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10 to make both surfaces visible and comparable. Taking
this into account, we see that the curve fitting results are
close to the actual EDP values. Even in this example with
few data points, the fitting method still captures the trends
in most parts of the surface. The EDP results for FFT and
MG applications using two-dimensional curve fitting meth-
ods are shown in Figure 11. All the results are normalized
with respect to the optimal value that can be obtained under
the one-dimensional curve fitting method, namely, the min-
imum EDP value if the number of threads does not change.
As expected, when we consider re-threading, the search
space becomes much larger. The two-dimensional curve fit-
ting in these figures starts with 20 data points. These points
are chosen randomly from the 120 data points in the lower
triangle portion of the space shown in Figure 6. Due to the
randomness, the plots present the minimum (Min), maxi-
mum (Max) and average (Avg) EDP results among 1, 000
experiments with random data points in the set. For com-
parison, the minimum EDP value is also shown (marked as
2-D optimal in the figures), which represents the optimal
result that can be achieved if the EDP value for any config-
uration at any step is known beforehand.

Our first observation from the results in Figure 11 is that

changing the number of threads along with the number of
CPUs can reduce the EDP much further. In fact, the mini-
mum EDP values of two-dimensional fitting (2-D optimal)
are 31.1% and 62.5% less for FFT and MG, respectively,
than the optimal results if we can only change the number
of CPUs. This is due to the much larger search space con-
sidered. For instance, when CPU availability reduces, the
number of CPUs that can be chosen without re-threading is
usually less than the current number of threads. This may
sometimes exacerbate the load imbalance and waste com-
puting resources. In such cases, changing the number of
threads to be the same as the number of CPUs can possi-
bly give better results. Another observation to note is that
two-dimensional fitting also benefits from scenarios where
the number of threads is greater than the number of CPUs.
For example, our experimental results indicate that using
4 threads on 2 CPUs generates lower EDP than using 2
threads on 2 CPUs for some functions of both FFT and MG
applications.

The difference between the minimum EDP (2-D opti-
mal) and the best results with our two-dimensional curve
fitting approach is minimal in most cases and on average
within 5.9%. Across our experiments with 20 random initial
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Figure 11. Two-dimensional fitting results for FFT and MG with 20 initial data points. All bars are
normalized to the first bar in each group of bars. The initial data points are randomly selected and
results shown here are based on 1, 000 experiments.

data points, the two-dimensional curve fitting on average
reduces the EDP values to be much lower than the optimal
of one-dimensional curve fitting (14.9% for FFT and 52.5%
for MG). These savings translate into 26.3% and 59.7% less
than the baseline case. Note that the difference between the
best case and the worst case for two-dimensional curve fit-
ting is significant. We found that the higher EDP value in
some cases results from the poor distribution of initial data
points which has few data points around the diagonal in Fig-
ure 6. The data points on the diagonal represent the scenar-
ios where equal number of CPUs and threads are running,
these points are often close to the optimal settings for most
function calls. Therefore, in practice, a careful selection of
initial data points can avoid the worse cases and achieve at
least the average benefits.

6.3 Results with DVFS

In this set of experiments, we assumed five levels for dy-
namic voltage/frequency scaling, with the supply voltage
(Vdd) ranging from 0.7V to 1.1V using steps of 0.1V . Un-
der these Vdd values, we obtain the scaling factors for fre-
quency, dynamic power and leakage power from HSPICE
simulations. We use these scaling factors in calculating the
EDP values when the CPUs are running at different volt-
age/frequency levels. Note that the curve fitting in this case
becomes three-dimensional as we control the number of
CPUs, number of threads, and voltage levels. The exper-
imental results we collected indicate that additional EDP
savings are possible over the two-dimensional curve fitting
case. Specifically, in comparison to the baseline case, the
EDP in FFT can be reduced by 46.1% on average and by as
much as 66.3% in some cases. Similarly in MG, the EDP
saving is 70.5% on average and can go up to 83.3%. De-
tailed voltage scaling results are omitted due to space con-
cerns.

6.4 Sensitivity Analysis

As technology scales, it is expected that more proces-
sor cores will become available in a CMP [9]. Therefore,
it is important to study the effectiveness of our approach
when the number of CPUs and the number of threads in
the system are larger. We performed experiments with the
one-dimensional curve fitting approach on a system with
24 CPUs. We observed that our approach is very effective
in most cases, especially when the CPU availability is not
too low. Another set of experiments investigated the EDP
trends under 32 threads running on a CMP system of 16
CPUs. Recall from Figure 8, that little room is there to re-
duce EDP when the CPU availability is very low (e.g., less
than half of the thread count). However, we observed that,
with 32 threads, even if the CPU availability is low, it is
still possible to achieve EDP improvements using our curve
fitting based approach. This tells us that, as the number of
threads an application uses increases, there is more room to
make better tradeoffs between performance and power con-
sumption.

The number of data points used in curve fitting is im-
portant in our approach. It affects the accuracy of the es-
timations and relates to the goodness of final results. We
performed a sensitivity study that employs different num-
ber of initial data points. Figure 12 shows the results for
the one-dimensional curve fitting case with the number of
initial data points varying from 3 to 15, when the num-
ber of available CPUs drops from 16 to 14, and the num-
ber of threads is fixed at 16. Figure 13 shows the results
for two-dimensional curve fitting with the number of ini-
tial data points ranging from 5 to 120, also assuming that
the number of available CPUs drops from 16 to 14. One
would expect better results when more initial data points
are used to start curve fitting. The results with MG in the
one-dimensional and two-dimensional cases indicate such
a trend clearly. However, the curves become flat beyond



Figure 12. One-dimensional fitting with the
different number of initial data points. We
assume that the number of available CPUs
drops from 16 to 14 and the thread count
remains at 16.

Figure 13. Two-dimensional fitting with the
different number of initial data points. We
assume that the number of available CPUs
drops from 16 to 14.

a certain number of initial data points. This is because by
then the accuracy has already become good enough. The
important point is that, for both the one-dimensional curve
fitting and two-dimensional curve fitting cases, the number
of initial data points needed to reach close-to-best results
is small compared to the whole search space. On the other
hand, the sensitivity study with FFT shows less clear trends.
We also observe that in some cases using a larger number of
initial data points may even cut the EDP savings. There are
two reasons for this behavior. First, as long as some data
points close to the optimal settings are chosen, the overall
results can be generally good. Second, there might be some
unpredictable points in the curve fitting due to unpredicted
changes in EDP caused by on-chip cache behavior or other
runtime factors.

6.5 Limited Number of Configurations

So far in our study, we assume that a function can be
executed with any arbitrary number of threads after re-
threading. This may not always be the case in practice. We
now assume that only a few multi-threaded versions exist
for the functions in our applications. For example, suppose
that only (pre-compiled) 2, 4, 8 and 16 threaded versions
of a function (instead of all potential versions for all threads
from 1 to 16) are available to choose from at runtime. In this
case, if the number of the available CPUs drops from 16 to
14, the version with 8 threads is chosen by our scheme. As a
result, the EDP saving we achieve without applying DVFS
is 36.8% over the baseline case. This saving is not as much
as the corresponding average EDP saving (42.8%) if any
number of threads is allowed, but is still larger than the op-
timal EDP saving that can be achieved without re-threading
(33.2%).

6.6 More General Variations

In all the experiments discussed above, we have assumed
that the number of available CPUs drops from 16 to a lower

number, and this CPU availability change occurs only once.
As stated earlier, our helper thread based application adap-
tation scheme can adapt to the availability variations in the
other direction as well, i.e., when the number of CPUs avail-
able to an application increases. In fact, as our scheme is a
dynamic one, the number of availability changes that may
occur has no effect on its applicability. That is, the num-
ber of CPUs available to an application may change in any
direction in any number of times during the course of execu-
tion. We now use an example scenario to illustrate the ben-
efits in a more general case of CPU availability variation.
We assume that the FFT application starts execution with
16 CPUs, and the number of available CPUs changes in the
sequence of 10, 13, 9, 14, 11, 15 at boundaries of the six
main iterations of the application. Using our helper thread
based adaptation scheme, the EDP can be reduced by about
22% without re-threading and about 30% with re-threading.
In addition, the EDP savings can jump to 48.4% when volt-
age/frequency scaling is also employed. For this availability
variation pattern, Figure 14 gives the different configura-
tions selected at runtime by three different schemes when
the thread count is fixed. The first one is to use all the CPUs
available; the second one is our one-dimensional curve fit-
ting with 4 initial data points (at CPU counts of 2, 4, 8, 16);
and the last one is the optimal one that can be achieved if
the EDP values for all potential configurations are known
a priori. It can easily be observed that the configurations
selected by the one-dimensional curve fitting strategy are
close to the optimal selections in most cases. Exceptions
may occur when certain unpredictable data points are wit-
nessed as explained in Section 6.1. Compared to the opti-
mal adaptation, changes among different configurations are
also less when using curve fitting due to the nature of curve
fitting method used.

Figure 15 gives the results for two-dimensional curve fit-
ting with 20 initial data points. At each step of the FFT ap-
plication, the configuration ([Number of Threads, Number
of CPUs]) chosen by our two-dimensional fitting scheme
and the optimal configuration are shown as the points on
the corresponding curves. Again, configuration changes



Figure 14. One-dimensional fitting for a general
CPU availability variation pattern.
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Figure 15. Two-dimensional fitting results for a
general CPU availability variation pattern.
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Figure 16. Difference in the configura-
tions chosen by our two-dimensional fit-
ting scheme and the optimal scheme.
Each group of bars indicate the differ-
ence in thread count, CPU count, and
EDP value achieved. The EDP value
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mal values, whereas the differences in
thread/CPU count are in absolute terms.

happen less frequently when use curve fitting in contrast to
the optimal configuration selections. Figure 16 presents the
difference between the configurations chosen by our two-
dimensional fitting scheme and the optimal scheme. We
observe that the difference in CPU count is usually low,
but the difference in thread count can be large between the
two scenarios. However, even in the cases where the thread
count chosen by our approach is largely different from the
optimal configuration, the resulting EDP values are very
similar in most cases. The EDP differences in some cases
are relatively large due to the continuity of fitting and the
lack of data points around the unpredictable optimal con-
figurations. For example, as shown in Figure 15, in mov-
ing from step 16 to step 18, the configurations chosen by
two-dimensional fitting remain at (14, 14), while the opti-
mal configurations in this case would be (15, 15), (12, 12)
and (11, 11).

6.7 Quantifying of the Helper Thread
Overheads

Although our helper thread based application adaptation
scheme brings significant improvements in EDP as demon-
strated by our experimental evaluation presented so far, it is
also important to capture and quantify its overheads. Re-
call that our helper thread collects performance counter
statistics, calculates EDP, implements different curve fit-
ting schemes, and changes the number of CPUs, number of

threads and voltage/frequency levels at runtime. We quan-
tified the performance and power overheads of our helper
thread and found that its energy overhead (even in the worst
case scenario) is about 1% of the total application energy
consumption. Since its performance overhead is almost
completely hidden in parallel execution, we conclude that
the contribution of helper thread overheads to the overall
EDP is negligible in practice (note that thread count changes
take place in function boundaries in our implementation and
this limits the potential overheads significantly). We also
observed during our analysis of the helper thread behavior
that most of the overheads it brings are due to implement-
ing the curve fitting strategy. In addition, one can expect the
overhead contribution of helper threads to be even lower in
the future CMPs where the number of CPUs and the number
of threads will be much higher than the current values we
assume in our experiments. To summarize, we can conclude
that our helper thread based adaptation approach brings sig-
nificant EDP benefits even if all the overheads brought by it
are accounted for.

7 Conclusions and Future Work

The main contribution of this paper is the discussion
of an adaptive approach targeting varying CPU availabil-
ity in a CMP based environment. The proposed approach
makes use of the helper thread concept and reacts to CPU



availability change by selecting the number of CPUs, num-
ber of threads, and voltage/frequency levels to use through
curve fitting. We implemented three different variants of
our helper thread based approach and performed experi-
ments using two application codes. The experimental re-
sults we collected clearly show the success of the proposed
approach. For example, when we adapt application execu-
tion by changing all control parameters (i.e., thread count,
CPU count, voltage/frequency level), we achieved on aver-
age 46.1% and 70.5% EDP savings in applications FFT and
MG, respectively. We also conducted a set of sensitivity
experiments where we changed the default values of some
of our simulation parameters, and observed that our EDP
improvements are consistent across a wide range of experi-
ments. As our future work, we plan to explore other poten-
tial uses of helper threads in the context of CMP architec-
tures. Work is also underway in retargeting our approach to
other optimization metrics such as chip temperature and re-
liability. Also, we are in the process of implementing curve
fitting based models that account for program phases.
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