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Abstract

In utility-driven cluster computing, cluster systems needto know the specific needs of different users so as to allocate
resources according to their needs. They are also vital in supporting service-oriented Grid computing that harness resources
distributed worldwide based on users’ objectives. Market-based resource management systems make use of real-world market
concepts and behavior to assign resources to users. This paper outlines a taxonomy that describes how market-based resource
management systems can support utility-driven cluster computing. The taxonomy is used to survey existing market-based resource
management systems to better understand how they can be utilized.

I. I NTRODUCTION

The next-generation scientific research involves solving Grand Challenge Applications (GCAs) that demand ever increasing
amount of computing power. Recently, a new type of High Performance Computing (HPC) paradigm calledcluster computing
[1][2][3] has become a more viable choice for executing these GCAs since cluster systems are able to offer equally high
performance with a lower price compared to traditional supercomputing systems. A cluster system comprises of independent
machines that are connected by high-speed networks and usesmiddlewares that create an illusion of single system [4] and
hide the complexities of underlying cluster architecture from the users. For example, thecluster Resource Management System
(RMS)is a middleware that manages the resources and seamless execution of jobs in a cluster of computers.

Existing cluster RMSs still adopt system-centric resourceallocation approaches that maximizes overall job performance
and system usage. These system-centric approaches assume that all job requests are of equal importance and thus neglect
actual levels of service required by different users.Market-based RMSs[5][6][7][8][9] have a greater emphasis on user QoS
requirements as opposed to traditional RMSs that focus on maximizing system usage. Market concepts can be used to prioritize
competing jobs and assign resources to jobs according to users’ valuation for QoS requirements and cluster resources.

Market-based cluster RMSs need to support three requirements in order to enableutility-driven cluster computing[7]: (i)
provide means for users to specify their Quality of Service (QoS) needs and valuations, (ii) utilize policies to translate the
valuations into resource allocations, and (iii) support mechanisms to enforce the resource allocations in order to achieve each
individual user’s perceived value or utility. The first requirement allows the market-based cluster RMS to be aware of user-
centric service requirements so that competing service requests can be prioritized more accurately. The second requirement
then determines how the cluster RMS can allocate resources appropriately and effectively to different requests by considering
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the solicited service requirements. The third requirementfinally needs the underlying cluster operating system mechanisms to
recognize and enforce the assigned resource allocations.

The advent of Grid computing [10] further reinforces the necessity for utility-driven cluster computing. In service-oriented
Grid computing [11], users can submit jobs with specific QoS requirements to Grid schedulers such as Grid brokers [12][13] and
Grid workflow engines [14] that discover suitable Grid resources to execute their jobs. Since most Grid resources are cluster
systems, the cluster RMS needs to support service level agreement based resource allocations. This means that the cluster
RMS has to not only balance competing user needs, but also enhance the profitability of the cluster owner while delivering
the expected level of service performance. In addition, market concepts and mechanisms incorporated at the cluster computing
level facilitates easy extensions to support Grid economy [15] and enforce service level agreements in service-oriented Grids.

Market-based RMSs have been utilized in many different computing platforms: agents [16][17][18], clusters [19][7][9], Grids
[8][20][21], networks [22][23][24][25] and world wide web[26][27][28] (see Fig. 1). In this paper, we focus on developing a
taxonomy that classifies market-based RMSs in the context ofutility-driven cluster computing. The taxonomy consists of five
sub-taxonomies, namelymarket model, resource model, job model, resource allocation model, and performance model(see
Fig. 1). Researchers can use this taxonomy to gain a better understanding of key design factors and issues that are crucial
in developing effective market-based cluster RMSs to support utility-driven cluster environment. We also present an abstract
model to conceptualize the essential functions of a market-based cluster RMS and include a survey to demonstrate how the
taxonomy can be applied.

II. RELATED WORK

There are several proposed taxonomies for scheduling in distributed and heterogeneous computing. However, none of these
taxonomies focus on market-based cluster computing environments. The taxonomy in [29] classifies scheduling strategies
for general-purpose distributed systems. In [30], two taxonomies for state estimation and decision making are proposed to
characterize dynamic scheduling for distributed systems.The EM3 taxonomy in [31] utilizes the number of different execution
modes and machine models to identify and classify heterogeneous systems. In [32], a modified version of the scheduling
taxonomy in [31] is proposed to describe the resource allocation of heterogeneous systems. The taxonomy in [33] considers
three characteristics of heterogeneous systems: application model, platform model and mapping strategy to define resource
matching and scheduling. A taxonomy on Grid resource management system [34] includes a scheduling sub-taxonomy that
examines four scheduling characteristics: scheduler organization, state estimation, rescheduling and scheduling policy. But,
our taxonomy focuses on market-based RMSs for utility-driven cluster computing where cluster systems have a number of
significant differences compared to Grid systems. One key difference is that a cluster system is distributed within a single
administrative domain, whereas a Grid system is distributed across multiple administrative domains.

III. D EFINITIONS AND REQUIREMENTS FORUTILITY -DRIVEN CLUSTER COMPUTING

In cluster computing, theproducer is the owner of the cluster system that provides resources toaccomplish users’ service
requests. Examples of resources that can be utilized in a cluster system are processor power, memory storage and data storage.
Theconsumeris the user of the resources provided by the cluster system and can be either a physical human user or a software
agent that represents a human user and acts on his behalf. A cluster system has multiple consumers submitting job requests
that need to be executed.

The cluster RMScreates the Single System Image (SSI) [4] for a cluster system by providing a uniform interface for user-
level sequential and parallel applications to be executed on the cluster system to hide the existence of multiple cluster nodes
from users. It supports four main functionalities: resource management, job queuing, job scheduling, and job execution. The
cluster RMS manages and maintains status information of theresources such as processors and disk storage in the cluster. Jobs
submitted into the cluster system are initially placed intoqueues until there are available resources to execute the jobs. The
cluster RMS then invokes a scheduler to determine how resources are assigned to jobs. After that, the cluster RMS dispatches
the jobs to the assigned nodes and manages the job execution processes before returning the results to the users upon job
completion.

Existing cluster RMSs such as Condor [35], LoadLeveler [36], Load Sharing Facility (LSF) [37], Portable Batch System
(PBS) [38], and Sun Grid Engine (SGE) [39] are not viable to support utility-driven cluster computing since they still adopt
system-centric resource allocation approaches that focuson optimizing overall cluster performance. For example, these cluster
RMSs aim to maximize processor throughput and utilization for the cluster, and minimize average waiting time and response
time for the jobs. They neglect the need to use utility modelsfor allocation and management of resources that would otherwise
consider and thus achieve the desired utility for cluster users and owners. Therefore, these existing cluster RMSs needto be
extended to support utility-driven cluster computing.

In utility-driven cluster computing, consumers have different requirements and needs for various jobs and thus can assign
value or utility to their job requests. During job submission to the cluster RMS, consumers can specify their requirements
and preferences for each respective job using QoS parameters. The cluster RMS then considers these QoS parameters when



making resource allocation decisions. This provides a user-centric approach with better user personalization since consumers
can potentially affect the resource allocation outcomes, based on their assigned utility.

However, the producer has the final control over the resourceallocation decision since he owns the cluster system and thus
implements the resource allocation policies. Depending onhis objective, the producer may want to maximize utility forhimself
or the consumers. For instance, a producer wants to maximizeoverall social welfare and consumers’ utility satisfaction. The
cluster system can probably achieve this objective from either the job perspective where it maximizes the number of jobs
whose QoS is satisfied or the consumer perspective where it maximize the aggregate utility perceived by individual consumers.
On the other hand, the producer may want to maximize his own personal benefit, such as maximizing monetary profits when
consumers provide different monetary offers for satisfying their job requests.

Next-generation service-oriented Grid computing allows Grid users to specify various level of service required for processing
their jobs on a Grid. Grid schedulers then make use of this user-specific information to discover available Grid resources and
determine the most suitable Grid resource to submit the jobsto. Currently, cluster systems dominate the majority of Grid
resources whereby Grid schedulers can submit and monitor their jobs being executed on the cluster systems through interaction
with their cluster RMS. Examples of large-scale Grid systems that are composed of cluster systems includes the TeraGrid[40]
in United States, LHC Computing Grid [41] in Europe, NAREGI [42] in Japan, and APAC Grid [43] in Australia.

In addition, commercial vendors are progressing aggressively towards providing a service market through Grid computing.
For instance, IBM’s E-Business On Demand [44], HP’s Adaptive Enterprise [45] and Sun Microsystem’s pay-as-you-go [46]
are using Grid technologies to provide dynamic service delivery where users only pay for what they use and thus save from
investing heavily on computing facilities. Vendors and respective users have to agree on service level agreements thatserve as
contracts outlining the expected level of service performance such that vendors are liable to compensate users for any service
under-performance. This further reinforces the significance of using market-based mechanisms to enable utility-driven cluster
computing so that user-specific service requests across service-oriented Grids can be fulfilled successfully to enforce service
level agreements.

IV. A BSTRACT MODEL FORMARKET-BASED CLUSTER RESOURCEMANAGEMENT SYSTEM

Fig. 2 outlines an abstract model for the market-based cluster RMS. The purpose of the abstract model is to identify generic
components that are fundamental and essential in a market-based cluster RMS and portray the interactions between these
components. Thus, the abstract model can be used to study howexisting cluster RMS architectures can be leveraged and
extended to incorporate market-based mechanisms to support utility-driven cluster computing.

The market-based cluster RMS consists of two primary entities: cluster manager and cluster node. For implementations
within cluster systems, the machine that operates as the cluster manager can be known as the manager, server or master node
and the machine that operates as the cluster node can be knownas the worker or execution node. The actual number of cluster
manager and cluster nodes depends on the implemented management control. For instance, a simple and common configuration
for cluster systems is to support centralized management control where a single cluster manager collates multiple cluster nodes
into a pool of resources as shown in Fig. 2.

The cluster manager serves as the front-end for users and provides the scheduling engine responsible for allocating cluster
resources to user applications. Thus, it supports two interfaces: the manager-consumer interface to accept requests from
consumers and the manager-worker interface to execute requests on selected cluster nodes. The consumers can be actual
user applications, service brokers that act on the behalf ofuser applications or other cluster RMSs such as those operating
in multi-clustering or Grid federation environments whererequests that cannot be fulfilled locally are forwarded to other
cooperative clusters.

When a service request is first submitted, the request examiner interprets the submitted request for QoS requirements such as
deadline and budget. The admission control then determineswhether to accept or reject the request in order to ensure that the
cluster system is not overloaded where many requests will not be fulfilled successfully. The scheduler selects suitableworker
nodes to satisfy the request and the dispatcher starts the execution on the selected worker nodes. The node status/load monitor
keeps track of the availability of the nodes and their workload, while the job monitor maintains the execution progress of
requests.

It is vital for a market-based cluster RMS to support pricingand accounting mechanisms. The pricing mechanism decides
how requests are charged. For instance, requests can be charged based on submission time (peak/off-peak), pricing rates
(fixed/changing) or availability of resources (supply/demand). Pricing serves as a basis for managing the supply and demand
of cluster resources and facilitates in prioritizing resource allocations effectively. The accounting mechanism maintains the
actual usage of resources by requests so that the final cost can be computed and charged to the consumers. In addition, the
maintained historical usage information can be utilized bythe scheduler to improve resource allocation decisions.

The cluster nodes provide the resources for the cluster system to execute service requests via the worker-manager interface.
The job control ensures that requests are fulfilled by monitoring execution progress and enforcing resource assignmentfor
executing requests.
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Fig. 2. Abstract Model for market-based cluster RMS.

V. TAXONOMY

The taxonomy classifies market-based RMSs based on various perspectives in order to identify key factors and issues relevant
to the context of utility-driven cluster computing.

A. Market Model Taxonomy

The market modeltaxonomy examines how market concepts present in real-world human economies are incorporated into
market-based RMSs. This allows developers to understand what market-related attributes need to be considered, in particular
to deliver utility. The market model taxonomy comprises of four sub-taxonomies: economic model, participant focus, trading
environment, and QoS attributes (see Fig. 3).

1) Economic Model:The economic modelderived from [47] establishes how resources are allocated in a market-driven
computing environment. Selection of a suitable economic model primarily depends on the market interaction required between
the consumers and producers.

For commodity market, producers specify prices and consumers pay for the amount of resources they consume. Pricing of
resources can be determined using various parameters, suchas usage time and usage quantity. There can be flat or variant
pricing rates. A flat rate means that pricing is fixed for a certain time period, whereas, a variant rate means that pricing changes
over time, often based on the current supply and demand at that point of time. A higher demand results in a higher variant
rate.
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Posted priceoperates similarly as the commodity market. However, special offers are advertised openly so that consumers
are aware of discounted prices and can thus utilize the offers. Bargainingenables both producers and consumers to negotiate
for a mutually agreeable price. Producers typically start with higher prices to maximize profits, but consumers start with lower
prices to minimize costs. Negotiation stops when the producer or consumer does not wish to negotiate further or a mutually
agreeable price has been reached. Bargaining is often used when supply and demand prices cannot be easily defined.

In tendering/contract-net, the consumer first announces its requirements to invite bids from potential producers. Producers
then evaluate the requirements and can respond with bids if they are interested and capable of the service or ignore the
announcement if they are not interested or too busy. The consumer consolidates bids from potential producers, select the most
suitable producer, and send a tender to the selected producer. The tender serves as a contract and specifies conditions that the
producer has to accept and conform to. Penalties may be imposed on producers if the conditions are not met. The selected
producer accepts the tender and delivers the required service. The consumer then notifies other producers of the unsuccessful
outcome. Tendering/contract-net allows a consumer to locate the most suitable producer to meet its service request. However,
it does not always guarantee locating the best producer eachtime since potential producers can choose not to respond or are
too busy.

Auction allows multiple consumers to negotiate with a single producer by submitting bids through an auctioneer. The
auctioneer acts as the coordinator and sets the rules of the auction. Negotiation continues until a single clearing price is
reached and accepted or rejected by the producer. Thus, auction regulates supply and demand based on the number of bidders,
bidding price and offer price. There are basically five primary types of auctions, namely english, first-price, vickrey,dutch and
double [47].

Bid-based proportional resource sharingassigns resources proportionally based on the bids given bythe consumers. So,
each consumer will be allocated a proportion of the resources as compared to a typical auction model where only one consumer
with the winning bid is entitled to the resource. This is ideal for managing a large shared resource where multiple consumers
are equally entitled to the resource.Community/coalition/barteringsupports a group of community producers/consumers who
shares each others’ resources to create a cooperative sharing environment. This model is typically adopted in computing
environments where consumers are also producers and thus both contribute and use resources. Mechanisms are required to
regulate that participants act equally in both roles of producers and consumers for fairness.Monopoly/oligopolydepicts a
non-competitive market where only a single producer (monopoly) or a number of producers (oligopoly) determines the market
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price. Consumers are not able to negotiate or affect the stated price from the producers.
Some market-based RMSs may use hybrids or adopt modified variants of the above mentioned economic models in order

to harness the strengths of different models and provide improved customizations based on user-specific application criteria.
2) Participant Focus:The participant focusidentifies the party for whom the market-based RMS aims to achieve benefit

or utility. Having aconsumerparticipant focus implies that a market-based RMS aims to meet the requirements specified by
cluster users, and possibly optimize their perceived utility. For instance, the consumer may want to spend minimal budget
for a particular job. Similarly, aproducerparticipant focus results in resource owners fulfilling their desired utility. It is also
possible to have afacilitator participant focus whereby the facilitator acts like an exchange and gains profit by coordinating
and negotiating resource allocations between consumers and producers.

Utility-driven cluster computing should focus primarily on achieving utility for the consumers as the key purpose of the
cluster systems is to satisfy end-users’ demand for resources to execute their supercomputing applications. However,producers
and facilitators may have specific requirements that also need to be taken into consideration and not neglected totally.

3) Trading Environment:The trading environmentgeneralizes the motive of trading between the parties or participants that
is supported via the market-based RMS. It is established based on the needs and aims of various parties and will determine
the trading relationships between them. Acooperativetrading environment promotes collective sharing of resources where
producers may create a federation of resources to speed up execution of jobs. On the other hand, acompetitivetrading
environment supports individualistic resource usage where consumers have to contend with other consumers to obtain any
available resources. A market-based RMS can only support either a cooperative or competitive trading environment, butnot
both.

4) QoS Attributes: QoS attributesdescribe service requirements which consumers require theproducer to provide in a service
market. Thetime QoS attribute identifies the time required for various operations. Some examples of time QoS attributes are
job execution time, data transfer time and deadline required by the consumer for the job to be completed. Thecost QoS
attribute depicts the cost involved for satisfying the job request of the consumer. A cost QoS attribute can be monetary such
as the budget that a consumer is willing to pay for the job to becompleted, or non-monetary in other measurement units such
as the data storage (in bytes) required for the job to be executed.

The reliability QoS attribute represents the level of service guarantee that is expected by the consumer. For instance, jobs
that require high reliability will require the market-based cluster RMS to be highly fault-tolerant whereby check-pointing and
backup facilities, with fast recovery after service failure are incorporated. Thetrust/securityQoS attribute determines the level
of security needed for executing applications on resources. For example, jobs with highly sensitive and confidential information
will require a resource with high trust/security to process.

Market-based RMSs should support time, cost and reliability QoS attributes since they are critical in enabling a service
market for utility-driven cluster computing. The trust/security QoS attribute is also critical if the user applications require
secure access to resources. Satisfying QoS attributes is highly critical in a service market as consumers pay based on the
different levels of service required. The market-based RMSshould be able to manage service demands without sacrificing
existing service requests and resulting in service failures. Failure to meet QoS attributes will only require the producer to
compensate consumers, but also have a bad reputation on the producer that affects future credibility.



B. Resource Model Taxonomy

The resource modeltaxonomy describes architectural characteristics of cluster systems. It is important to design market-
based resource management systems that conform to the clusters’ underlying system architectures and operating environments
since there may be certain cluster system attributes that can be exploited. The resource model taxonomy comprises of five
sub-taxonomies: management control, resource composition, execution service, execution support, and accounting mechanism
(see Fig. 4).

1) Management Control:The management controldepicts how the resources are managed and controlled in the cluster
systems. A cluster withcentralizedmanagement control has a single centralized resource manager that administers all the
resources and jobs in the cluster. On the contrary, a clusterwith decentralizedmanagement control has more than one
decentralized resource managers managing subsets of resources within a cluster. Decentralized resource managers need to
communicate with one another in order to be informed of localinformation of other managers.

A centralized resource manager collects and stores all local resource and job information within the cluster at a single
location. Since a centralized resource manager has the global knowledge of the entire state of the cluster system, it is easier
and faster for a market-based RMS to communicate and coordinate with a centralized resource manager, as opposed to several
decentralized resource managers. A centralized resource manager also allows a large change to be incorporated in the cluster
environment as the change needs to be updated at a single location only. However, a centralized management control is
more susceptible to bottlenecks and failures due to the overloading and malfunction of the single resource manager. A simple
solution is to have backup resource managers that can be activated when the current centralized resource manager fails.In
addition, centralized control architectures are less scalable compared to decentralized control architectures. Since centralized
and decentralized management have various strengths and weaknesses, they perform better for different environments.

Centralized management control is mostly implemented in cluster systems since they are often owned by a single organization
and modeled as a single unified resource. Therefore, a market-based RMS should be designed to support centralized management
control, but may also support decentralized management control for portability reasons.

2) Resource Composition:Theresource compositiondefines the combination of resources that make up the clustersystem. A
cluster system withhomogeneousresource composition consists of all worker nodes having the same resource components and
configurations, whereasheterogeneousresource composition consists of worker nodes having different resource components
and configurations. A homogeneous resource composition enables faster and more efficient execution, while a heterogeneous
resource composition can support execution of distinct applications based on different resource demands. Thus, it maybe
beneficial for cluster systems with heterogeneous resourcecomposition to have different sets of worker nodes with homogeneous
resource composition within each set.

Market-based RMSs should be able to function uniformly for both homogeneous and heterogeneous resource compositions.
For heterogeneous resource composition, market-based RMSs must have effective means of translating user-defined requirements
to equivalent measures on each specific execution node to ensure accuracy of QoS requirements. In addition, market-based
RMSs also need to translate load measures correctly across heterogeneous cluster nodes to support load balancing.

3) Execution Service:The execution servicereflects the service availability of the cluster system. A cluster system with
dedicatedexecution service enables users to have full dedicated access at all times and submitted jobs can be executed instantly
if there are free resources available. On the other hand, a cluster system withnon-dedicatedexecution service is not always
available for users to submit and execute jobs. A cluster system may consist of separate sets of worker nodes that provide
dedicated and non-dedicated execution services. It is possible for cluster systems to have execution service that is dynamic
and switches between dedicated and non-dedicated modes alternately. Examples of RMSs that support such service are Condor
[35] and Alchemi [48].

Market-based RMSs should be able to operate in both dedicated and non-dedicated execution services. It will be ideal to
design market-based RMSs that can automatically detect andself-adapt to changing execution services.

4) Execution Support:Theexecution supportdetermines the type of processing that is supported by the cluster’s underlying
operating system. Thespace-sharedexecution support enables only a single job to be executed atany one time on a processor,
whereas thetime-sharedexecution support allows multiple jobs to be executed at anyone time on a processor.

This implies that time-shared execution support can lead toa higher throughput of jobs over a period of time. However,
space-shared execution support finishes a job faster as a single job is executed using the full processing power of the processor.
In addition, time-shared execution support allows idle processing time to be reallocated to other jobs if a job is not using
the allocated processing power such as when reading or writing data. On the other hand, such preemption is not permitted in
space-shared execution support since the processor is dedicated to a single job only, thus wasting the unused processing time.
Market-based RMSs should provide both space-shared and time-shared execution supports.

5) Accounting mechanism:The accounting mechanismmaintains and stores information about job executions in the cluster
system. The stored accounting information may then be used for charging purposes or planning future resource allocation
decisions. Acentralizedaccounting mechanism denotes that information for the entire cluster system is maintained by a single
centralized accounting manager and stored on a single node.A decentralizedaccounting mechanism indicates that multiple
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decentralized accounting managers monitor and store separate sets of information on multiple nodes. Examples of accounting
mechanisms that supports charging are GridBank [49] and QBank [50].

In GridBank, each Grid resource uses a Grid Resource Meter tomonitor the usage information and a GridBank Charging
Module to compute the cost. The centralized GridBank serverthen transfers the payment from the users’ bank accounts to the
Grid resource’s account. On the other hand, QBank supports both centralized and decentralized configurations. For instance,
the simplest and most tightly-coupled centralized QBank configuration is having a central scheduler, bank server and database
for all resources which is suitable for a cluster environment. QBank also allows multiple schedulers, bank servers and databases
for each separate resource in different administrative domains to support a highly decentralized P2P or Grid environment.

Similar to the management control taxonomy, it is easier formarket-based RMSs to access information based on the
centralized accounting mechanism. But, the centralized accounting mechanism is less reliable and scalable compared to the
decentralized accounting mechanism. Market-based RMSs should be designed to support both centralized and decentralized
accounting mechanisms.

C. Job Model Taxonomy

Thejob modeltaxonomy categorizes attributes of jobs that are to be executed on the cluster systems. Market-based RMSs need
to take into account of job attributes to ensure that different job types with distinct requirements can be fulfilled successfully.
The job model taxonomy comprises of five sub-taxonomies: jobexecution, job dependency, job composition, QoS specification,
and QoS update (see Fig. 5).

1) Job Execution:The job executiondescribes the processing that is required by the job. Market-based RMSs can then
determine how to assign suitable nodes that are able to support the type of processing required.

For sequentialjob execution, the job executes on one processor independently. For parallel job execution, the parallel job has
to be distributed to multiple processors before executing these multiple processes simultaneously. Thus, parallel job execution
speeds up processing and is often used for solving complex problems. One common type of parallel job execution is called
message-passing where multiple processes of a parallel program on different processors interact with one another via sending
and receiving messages.

Market-based RMSs should support both sequential and parallel job executions. When supporting parallel job execution,
market-based RMSs need to determine that the required number of processors is available before executing the job, whichis
more complex compared to supporting sequential job executions.

2) Job Dependency:The job dependencyidentifies any dependencies that jobs have to rely on before they can be executed.
The data job dependency has jobs requiring input data in order to be executed. These input data may be available at remote
locations and need to be transferred to the execution node orare not available yet as some jobs waiting to be executed will
generate the data. Thesequencejob dependency has jobs that need to be executed in a pre-defined order. For instance, the job
which performs initiations needs to be executed first beforeother jobs can be executed. Currently, only higher-level schedulers
such as Condor DAGMan [35] and Gridbus workflow engine [14] support execution of dependent jobs expressed in Directed
Acyclic Graphs (DAG).

Market-based RMSs need to consider both data and sequence job dependencies, so that overall user requirements for a
set of dependent jobs can still be met successfully. There isa need to prioritize dependencies between dependent jobs. For
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example, a parent job with more dependent child jobs has a higher priority than a parent job with fewer child jobs. To speed
up processing, it is possible to execute independent sets ofdependable jobs in parallel since jobs are only dependent onone
another within a set and not across sets.

3) Job Composition:The job compositionportrays the collection of tasks within a job that is defined by the user. The
single-taskjob composition refers to a job having a single task, while the multiple-taskjob composition refers to a job being
composed of multiple tasks. For instance, a parameter sweepjob is composed of multiple independent tasks, each with a
different parameter so that the multiple tasks can be executed in parallel to reduce the overall processing time of the parameter
sweep job.

Market-based RMSs should able to support both single-task and multiple-task job compositions. With multiple-task job
composition, the market-based RMS needs to schedule and monitor tasks to ensure that the overall job requirements will be
satisfied. It may be possible that a multiple-task job composition has task dependencies similar to job dependencies described
in the job dependency sub-taxonomy described above, but task dependencies are restricted to within a job as opposed to job
dependencies that span across multiple jobs.

4) QoS Specification:The QoS specificationdescribes how users can specify their QoS requirements for ajob to indicate
their perceived level of utility. This provides cluster users with the capability to influence the resource allocation outcome in
the cluster.

Users can defineconstraint-basedQoS specifications that use bounded value or range of values for a particular QoS so that
the minimal QoS requirements can be fulfilled. Some examplesof constraint-based QoS specifications that users can specify
are execution deadline, execution budget, memory storage size, disk storage size and processor power. For instance, a user can
specify a deadline less than one hour (value) or deadline between one and two hours (range of values) for executing a job on
cluster nodes with available memory storage size of more than 256 MB (value) and processor speed between 200 GHz and
400 GHz (range of values).

A rate-basedQoS specification allows users to define constant or variablerates that signify the required level of service
over time. For instance, a user can specify a constant cost depreciation rate of ten credits per minute such that the user pays
less for a slower job completion time. To support a higher level of personalization, users can stateoptimization-basedQoS
specifications that identify specific QoS to optimize in order to maximize the users’ utility. An example is a user wants to
optimize the deadline of his job so that the job can be completed in the shortest possible time.

Market-based RMSs should at least provide either constraint-based or rate-based QoS specification so that the requiredutility
is considered when making resource assignment decisions and thus satisfied. It will be ideal to support optimization-based
QoS specifications so that the best combined optimal outcomecan be achieved for various users.

5) QoS Update:The QoS updatedetermines whether QoS requirements of jobs can change after jobs are submitted and
accepted. Thestatic QoS update means that the QoS requirements are fixed and do notchange once the job is submitted,
while thedynamicQoS update means that QoS requirements of the jobs can change. These dynamic changes may already be
pre-defined during job submission or modified by the user during an interactive job submission session.

Market-based RMSs need to support both static and dynamic QoS updates. For dynamic QoS update, the market-based
RMS needs to reassess the new changed QoS requirements and revise the resource assignments accordingly. This is because
the new QoS requirements may result in previous resource assignments being void and unable to meet the new requirements.
In addition, it is highly probable that other planned or executing jobs may also be affected so there is a need to reassess and
reallocate resources to minimize any possible adverse effects.

D. Resource Allocation Model Taxonomy

The resource allocation modeltaxonomy analyzes factors that can influence how the market-based RMS operates and thus
resource assignment outcome. The resource allocation model taxonomy comprises of three sub-taxonomies: resource allocation
domain, resource allocation update and QoS support (see Fig. 6).
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1) Resource Allocation Domain:The resource allocation domaindefines the scope that the market-based RMS is able to
operate in. Having aninternal resource allocation domain restricts the assignment of jobs to within the cluster system. An
externalresource allocation domain allows the market-based RMS to assign jobs externally outside the cluster system, meaning
that jobs can be executed on other remote cluster systems. Remote cluster systems may be in the same administrative domain
belonging to the same producer such as an organization whichowns several cluster systems or in different administrative
domain owned by other producers such as several organizations which individually own some cluster systems. For instance,
Sun Grid Engine (SGE) [39] enables a cluster system to allocate jobs externally to other cluster systems within the same
administrative domain by using tickets to control the quotaof jobs that users can submit.

Thus, supporting external resource allocation domain allows the market-based RMS to have access to more alternative
resources to satisfy more user requests. But, there is a needto address other issues such as data transfer times, networkdelays
and reliability of remote cluster systems. For more flexibility and scalability, market-based RMSs should support bothinternal
and external resource allocation domains.

2) Resource Allocation Update:The resource allocationupdate identifies whether the market-based RMS is able to detect
and adapt to changes to maintain effective scheduling. Someexamples of changes that can occur include availability of resources,
amount of submission workload and varying job requirements. Theadaptiveresource allocation update means that the market-
based RMS is able to adjust dynamically and automatically tosuit any new changes. On the other hand, thenon-adaptive
resource allocation update means that it is not able to adaptto changes and thus still proceed on with its original resource
assignment decision. Market-based RMSs should support adaptive resource allocation update since there is a possibility of
improving a previous resource assignment decision based onthe changed operating scenario.

3) QoS Support:The QoS supportderived from [34] determines whether QoS specified by the user can be achieved.
Admission control is essential during job submission to determine and feedback to the user whether the requested QoS can
be given. If accepted by the admission control, the job needsto be monitored to ensure that the required QoS is enforced and
fulfilled.

The soft QoS support allows user to specify QoS parameters, but do notguarantee that these service requests can be
satisfied. On the contrary, thehard QoS support is able to ensure that the specified service will definitely be achieved. To
support utility-driven cluster computing, market-based RMSs need to provide hard QoS support. This is non-trivial as ahigh
degree of coordination and monitoring is required to enforce the QoS.

E. Performance Model Taxonomy

The performance modeltaxonomy outlines how market-based RMSs need be evaluated to measure their effectiveness and
efficiency for supporting utility-driven cluster computing. The performance model taxonomy comprises of three sub-taxonomies:
evaluation focus, evaluation factors and overhead analysis (see Fig. 7).

1) Evaluation Focus:The evaluation focusidentifies the party that the market-based RMS is supposed toachieve utility
for. The evaluation focus is similar to the participant focus sub-taxonomy discussed previously since it is obvious to measure
performance based on the selected participant focus.

Theconsumerevaluation focus measures the level of utility that has beendelivered to the consumer based on its requirements.
Likewise, theproducerand facilitator evaluation focus evaluates how much value is gained by the producer and facilitator
respectively. For example, Libra [51] evaluates the utility achieved for consumers (users) via the Job QoS Satisfaction metric
and the benefits gained by the producer (cluster owner) via the Cluster Profitability metric. Market-based RMSs should beable
to achieve the required utility for the selected participant focus.

2) Evaluation Factors: Evaluation factorsare metrics defined to determine the effectiveness of different market-based
RMSs in providing utility-driven cluster computing.System-centricevaluation factors measure performance from the system
perspective and thus depict the overall operational performance of the cluster system. Examples of system-centric evaluation



factors are average waiting time, average response time, system throughput, and resource utilization. Average waiting time is
the average time that a job has to wait before commencing execution, while average response time is the average time taken
for a job to be completed. System throughput determines the amount of work completed in a period of time, whereas resource
utilization reflects the usage level of the cluster system.

User-centricevaluation factors assess performance from the participant perspective and thus portray the utility achieved by the
participants. Different user-centric evaluation factorscan be defined for assessing different participants that include consumer,
producer or facilitator (as defined in the evaluation focus sub-taxonomy). For instance, Libra defines the Job QoS Satisfaction
evaluation factor for consumer evaluation focus and the Cluster Profitability evaluation factor for producer evaluation focus.
For consumer evaluation focus, user-centric evaluation factors should consider or constitute QoS attributes that include time,
cost, reliability or trust/security (as described in the QoS attributes sub-taxonomy) in order to assess whether the QoS required
by consumers is attained.

Market-based RMSs should be evaluated using both system-centric and user-centric evaluation factors to accurately determine
its effectiveness in satisfying both system and participant needs.

3) Overhead Analysis:The overhead analysisexamines potential overheads that are incurred by the market-based RMS.
Overheads result in system slowdowns and may create bottlenecks, thus leading to poor efficiency. So, there is a need to
evaluate the overheads introduced by the market-based RMS so as to ensure that the overheads are kept to the minimum or
within manageable limits.

The communicationoverhead analysis measures the bandwidth overhead incurred due to the communications initiated by
the market-based RMS. A high communication overhead incurshigher communication time and can result in unnecessary high
network traffic that can slow down data transfers for executions. Themanagementoverhead analysis calculates the processing
overhead sustained in order to derive the resource assignment decisions. Having a high management overhead means that a
longer time is required to make resource assignment decisions and thus the market-based RMS is not efficient to support a large
number of simultaneous incoming requests. Therefore, market-based RMSs should minimize communication and management
overheads in order to be more scalable and efficient.

VI. SURVEY

Table I shows a summary listing of existing market-based RMSs categorized by different computing platforms, along with
their adopted economic models. For our survey, we use the taxonomy to analyze and examine the applicability and suitability
of existing market-based RMSs for supporting utility-driven cluster computing. However, we restrict our survey to only some
selected market-based RMSs (denoted by * in Table I) that is sufficient to demonstrate how the taxonomy can be applied
effectively.

The survey using the various sub-taxonomies are summarizedin the following tables: market model (Table II), resource
model (Table III), job model (Table IV), resource allocation model (Table V), and performance model (Table VI). The “NA”
keyword in the tables denotes that a particular RMS does not address or support the described sub-taxonomy.

TABLE I: Summary of market-based resource management systems

Computing
Platform

Market-based
RMS

Economic
Model

Brief Description

Clusters Cluster-On-
Demand *
[20]

tendering/
contract-net

each cluster manager uses a heuristic to measure
and balance the future risk of profit lost for
accepting a job later against profit gained for
accepting the job now.

Enhanced
MOSIX *
[19]

commodity
market

it uses process migration to minimize the overall
execution cost of machines in the cluster.

Libra *
[9]

commodity
market

it provides incentives to encourage users to submit
job requests with longer deadlines.

REXEC *
[7]

bid-based
proportional
resource
sharing

it allocates resources proportionally to competing
jobs based on their users’ valuation.

Utility Data
Center
[52]

auction it compares two extreme auction-based resource
allocation mechanisms: a globally optimal as-
signment market mechanism with a sub-optimal
simple market mechanism.



TABLE I: Continued.

Computing
Platform

Market-based
RMS

Economic
Model

Brief Description

Agents D’Agents
[17]

bid-based
proportional
resource
sharing

the server assigns resources by computing the
clearing price based on the aggregate demand
function of all its incoming agents.

Preist et al.
[18]

auction an agent participates in mutiple auctions selling
the same goods in order to secure the lowest bid
possible to acquire suitable number of goods for
a buyer.

WALRAS
[16]

auction consumer and producer agents submit their de-
mand and supply curves respectively for a good
and the equilibrium price is determined through
an iterative auctioning process.

Distributed
Databases

Anastasiadi et al.
[53]

posted price it examines the scenario of load balancing econ-
omy where servers advertise prices at a bulletin
board and transaction requests are routed based on
three different routing algorithms that focuses on
expected completion time and required network
bandwidth.

Mariposa
[6]

tendering/
contract-net

it completes a query within its user-defined budget
by contracting portions of the query to various
processing sites for execution.

Grids Bellagio
[54]

auction a centralized auctioneer computes bid values
based on number of requested resources and their
required durations, before clearing the auctions
at fixed time periods by allocating to higher bid
values first.

CATNET
[55]

bargaining each client uses a subjective market price (com-
puting using price quotes consolidated from avail-
able servers) to negotiate until a server quotes an
acceptable price.

Faucets *
[21]

tendering/
contract-net

users specify QoS contracts for adaptive parallel
jobs and Grid resources compete for jobs via
bidding.

G-commerce
[56]

commodity
market,
auction

it compares resource allocation using either com-
modity market or auction strategy based on four
criteria: price stability, market equilibrium, con-
sumer efficiency, and producer efficiency.

Gridbus
[15]

commodity
market

it considers the data access and transfer costs
for data-oriented applications when allocating re-
sources based on time or cost optimization.

Gridmarket
[57]

auction it examines resource allocation using double auc-
tion where consumers set ceiling prices and sell-
ers set floor prices.

Grosu and Das
[58]

auction it studies resource allocation using first-price,
vickrey and double auctions.

Maheswaran et al.
[59]

auction it investigates resource allocation based on two
“co-bid” approaches that aggregate similar re-
sources: first or no preference approaches.

Nimrod/G *
[8]

commodity
market

it allocates resources to task farming applications
using either time or cost optimization with dead-
line and budget constrained algorithms.
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Computing
Platform

Market-based
RMS

Economic
Model

Brief Description

OCEAN
[60]

bargaining,
tendering/
contract-net

it first discovers potential sellers by announcing a
buyer’s trade proposal and then allows the buyer
to determine the best seller by using two pos-
sible negotiation mechanisms: yes/no and static
bargain.

Tycoon *
[61]

auction it allocates resources using “auction share” that
estimates proportional share with consideration
for latency-sensitive and risk-averse applications.

Parallel and
Distributed
Systems

Agoric Systems
[62]

auction it employs the “escalator” algorithm where users
submit bids that escalates over time based on a
rate and the server uses vickrey auction at fixed
intervals to award resources to the highest bidder
who is then charged with the second-highest bid.

Dynasty
[63]

commodity
market

it uses a hierarchical-based brokering system
where each request is distributed up the hierarchy
until the accumulated brokerage cost is limited by
the budget of the user.

Enterprise
[64]

tendering/
contract-net

clients broadcast a request for bids with task
description and select the best bid which is the
shortest estimated completion time given by avail-
able servers.

Ferguson et al.
[65]

posted price,
auction

it examines how first-price and dutch auctions
can support a load balancing economy where
each server host its independent auction and users
decide which auction to participate based on last
clearing prices advertised in bulletin boards.

Kurose and
Simha
[66]

bid-based
proportional
resource
sharing

it uses a resource-directed approach where the
current allocation of a resource is readjusted
proportionally according to the marginal values
computed by every agent using that resource
to reflect the outstanding quantity of resource
needed.

MarketNet
[67]

posted price it advertises resource request and offer prices on
a bulletin board and uses currency flow to restrict
resource usage so that potential intrusion attacks
into the information systems are controlled and
damages caused are kept to the minimum.

Spawn
[5]

auction it sub-divides each tree-based concurrent program
into nodes (sub-programs) which then hold vick-
rey auction independently to obtain resources.

Stoica et al.
[68]

auction the job with the highest bid starts execution
instantly if the required number of resources are
available; else it is scheduled to wait for more
resources to be available and has to pay for
holding on to currently available resources.

Peer-to-Peer Stanford Peers *
[69]

auction,
bartering

it uses data trading to create a replication network
of digital archives where a winning remote site
offers the lowest bid for free space on the local
site in exchange for the amount of free space
requested by the local site on the remote site.

World Wide
Web

Java Market
[70]

commodity
market

it uses a cost-benefit framework to host an
internet-wide computational market where pro-
ducers (machines) are paid for executing con-
sumers’ jobs (Java programs) as Java applets in
their web browsers.
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Computing
Platform

Market-based
RMS

Economic
Model

Brief Description

JaWS
[28]

auction it uses double auction to award a lease contract
between a client and a host that contains the fol-
lowing information: agreed price, lease duration,
compensation, performance statistics vector, and
abort ratio.

POPCORN
[27]

auction each buyer (parallel programs written using POP-
CORN paradigm) submits a price bid and the
winner is determined through one of three im-
plemented auction mechanisms: vickrey, double,
and clearinghouse double auctions.

SuperWeb
[26]

commodity
market

potential hosts register with client brokers and
receive payments for executing Java codes de-
pending on the QoS provided.

Xenoservers
[71]

commodity
market

it supports accounted execution of untrusted pro-
grams such as Java over the web where re-
sources utilized by the programs are accounted
and charged to the users.

TABLE II: Survey using market model taxonomy

Market-
based RMS

Economic
Model

Participant
Focus

Trading
Environment

QoS
Attributes

Cluster-On-
Demand

tendering/
contract-net

producer competitive cost

Enhanced
MOSIX

commodity
market

producer cooperative cost

Libra commodity
market

consumer cooperative time, cost

REXEC bid-based
proportional
resource
sharing

consumer competitive cost

Faucets tendering/
contract-net

producer competitive time, cost

Nimrod/G commodity
market

consumer competitive time, cost

Tycoon auction consumer competitive time, cost

Stanford
Peers

auction,
bartering

consumer,
producer

cooperative cost

TABLE III: Survey using resource model taxonomy

Market-
based RMS

Management
Control

Resource
Composition

Execution
Service

Execution
Support

Accounting
Mechanism

Cluster-On-
Demand

decentralized NA NA NA decentralized

Enhanced
MOSIX

decentralized heterogeneous dedicated time-shared decentralized



TABLE III: Continued.

Market-
based RMS

Management
Control

Resource
Composition

Execution
Service

Execution
Support

Accounting
Mechanism

Libra centralized heterogeneous dedicated time-shared centralized

REXEC decentralized NA non-dedicated time-shared centralized

Faucets centralized NA NA time-shared centralized

Nimrod/G decentralized heterogeneous non-dedicated NA decentralized

Tycoon decentralized heterogeneous dedicated time-shared decentralized

Stanford
Peers

decentralized NA dedicated NA NA

TABLE IV: Survey using job model taxonomy

Market-
based RMS

Job
Execution

Job
Dependency

Job
Composition

QoS
Specification

QoS Update

Cluster-On-
Demand

sequential NA single-task rate-based static

Enhanced
MOSIX

parallel NA NA NA NA

Libra sequential NA single-task constraint-
based

static

REXEC parallel,
sequential

NA single-task constraint-
based

static

Faucets parallel NA NA constraint-
based

static

Nimrod/G sequential NA mutiple-task optimization-
based

static

Tycoon NA NA NA constraint-
based

static

Stanford
Peers

NA NA NA NA NA

TABLE V: Survey using resource allocation model taxonomy

Market-
based RMS

Resource
Allocation
Domain

Resource
Allocation
Update

QoS Support

Cluster-On-
Demand

external non-adaptive soft

Enhanced
MOSIX

internal adaptive NA

Libra internal adaptive hard

REXEC internal adaptive hard

Faucets internal adaptive soft

Nimrod/G external adaptive soft

Tycoon internal adaptive soft



TABLE V: Continued.

Market-
based RMS

Resource
Allocation
Domain

Resource
Allocation
Update

QoS Support

Stanford
Peers

external non-adaptive NA

TABLE VI: Survey using performance model taxonomy

Market-
based RMS

Evaluation
Focus

Evaluation
Factors

Overhead
Analysis

Cluster-On-
Demand

producer user-centric
(cost)

NA

Enhanced
MOSIX

consumer user-centric
(time)

NA

Libra consumer,
producer

system-centric,
user-centric
(time, cost)

NA

REXEC consumer user-centric
(cost)

NA

Faucets NA NA NA

Nimrod/G NA NA NA

Tycoon consumer user-centric
(time)

communication,
management

Stanford
Peers

consumer,
producer

user-centric
(reliability)

NA

A. Cluster-On-Demand

Cluster-On-Demand (COD) [72] allows the cluster manager todynamically create independent partitions called virtual
clusters (vclusters) with specific software environments for each different user groups within a cluster system. This in turn
facilitates external policy managers and resource brokersin the Grid to control their assigned vcluster of resources.A later
work [20] examines the importance of opportunity cost in a service market where earnings for a job depreciates linearly over
increasing time delay. A falling earning can become zero andinstead become a penalty for not fulfilling the contract of task
execution. Thus, each local cluster manager needs to determine the best job mix to balance the gains and losses for selecting
a task instead of other tasks.

The task assignment among various cluster managers adopts the tendering/contract-net economic model. A user initiates an
announcement bid that reflects its valuation for the task to all the cluster managers. Each cluster manager then considers the
opportunity cost (gain or loss) for accepting the task and proposes a contract with an expected completion time and price. The
user then selects and accepts a contract from the cluster manager which responded.

A competitive trading environment with producer participant focus is supported since each cluster manager aims to maximize
its own earnings by accessing the risk and reward for biddingand scheduling a task. Earnings are paid by users to cluster
managers as costs for adhering to the conditions of the contract. All cluster managers maintain information about its committed
workload in order to evaluate whether to accept or reject a new task, hence exercising decentralized management controland
accounting mechanism.

Tasks to be executed are assumed to single and sequential. For each task, the user provides a value function containing
a constant depreciation rate to signify the importance of the task and thus the required level of service. The value function
remains static after the contract has been accepted by the user. Tasks are scheduled externally to cluster managers in different
administrative domains. Non-adaptive resource allocation update is supported as the cluster manager which is awardedthe
contract has to ensure the completion of the task. However, the completion time of a task varies as the cluster manager may
delay less costly committed tasks for more costly new tasks to maximize its profit, thus providing soft QoS support.



Performance evaluation focuses on producer by using a user-centric cost evaluation factor to determine the average yield or
earning each cluster manager achieves. Simulation resultsshows that considering and balancing the potential gain of accepting
a task instantly with the risk of future loss provides betterreturns for competing cluster managers.

B. Enhanced MOSIX

Enhanced MOSIX [19] is a modified version of MOSIX [73] cluster operating system that employs an opportunity cost
approach for load balancing to minimize the overall execution cost of the cluster. The opportunity cost approach computes
a single marginal cost of assigning a process to a cluster node based on the processor and memory usages of the process,
thus representing a commodity market economic model. The cluster node with the minimal marginal cost is then assigned the
process. This implies a cooperative trading environment with producer participant focus whereby the cost utility is measured
in terms of usage level of resources.

In Enhanced MOSIX, decentralized resource control is established where each cluster node makes its independent resource
assignment decisions. Heterogeneous resource composition is supported by translating usages of different resourcesinto a
single cost measure. Dedicated execution service is inferred as MOSIX is a cluster operating system and is aware of all active
executing processes.

Enhanced MOSIX supports a time-sharing parallel executionenvironment where a user can execute a parallel application
by first starting multiple processes on one cluster node. Each cluster node maintains accounting information about processes
on its node and exchange information with other nodes periodically to determine which processes can be migrated based on
the opportunity cost approach. Process migration is utilized internally within the cluster to assign or reassign processes to less
loaded nodes, hence supporting adaptive resource allocation update.

Enhanced MOSIX does not address how QoS can be supported for users. For performance evaluation, it measures the
slowdown of user processes, hence using a user-centric timeevaluation factor. Simulation results show that using the opportunity
cost approach returns a lower average slowdown of processes, thus benefiting the consumers.

C. Libra

Libra [9] is designed to be a pluggable market-based scheduler that can be integrated into existing cluster RMS architectures
to support allocation of resources based on users’ QoS requirements. Libra adopts the commodity market economic model that
charges users using a pricing function. A later work [51] proposes an enhanced pricing function that supports four essential
requirements for pricing of utility-driven cluster resources: flexible, fair, dynamic, and adaptive.

The pricing function is flexible to allow easy configuration of the cluster owner to determine the level of sharing. It is also
fair as resources are priced based on actual usage; jobs thatuse more resources are charged more. The price of resources is
dynamic and is not based on a static rate. In addition, the price of resources adapts to the changing supply and demand of
resources. For instance, high cluster workload results in increased pricing to discourage users from submitting infinitely and
thus not overloading the cluster. This is crucial in providing QoS support since an overloaded cluster will not be able tofulfill
QoS requirements. In addition, incentive is given to promote users to submit jobs with longer deadlines; a job with longer
deadline is charged less compared to a job with shorter deadline.

The main objective of Libra is to maximize the number of jobs whose QoS requirements can be met, thus enabling a
consumer participant focus. The enhanced pricing function[51] also improves utility for the producer (cluster owner)as only
jobs with higher budgets are accepted with increasing cluster workload. Libra also considers both time and cost QoS attributes
by allocating resources based on the deadline and budget QoSparameters for each job. A cooperative trading environmentis
implied as users are encouraged to provide a more relaxed deadline through incentives so that more jobs can be accommodated.

Libra communicates with the centralized resource manager in the underlying cluster RMS that collects information about
resources in the cluster. For heterogeneous resource composition, measures such as estimated execution time are translated to
their equivalent on different worker nodes. The cluster RMSalso provides dedicated execution service as it is the only gateway
for users to submit jobs into the cluster and thus is aware of all jobs active in the cluster. The cluster RMS needs to support
time-shared execution given that Libra allocates resources to multiple executing jobs based on their required deadline. This
ensures that a more urgent job with shorter remaining time toits deadline is allocated a larger processor time partitionon a
worker node as compared to a less urgent job. Libra uses a centralized accounting mechanism to monitor resource usage of
active jobs so as to periodically reallocate the time partitions for each active job to ensure all jobs still complete within their
required deadline.

Libra currently assumes that submitted jobs are sequentialand single-task. Users can express two QoS constraints: deadline
which the job needs to be completed and budget which the user is willing to pay. The QoS constraints cannot be updated after
the job has been accepted for execution. Libra only schedules jobs to internal worker nodes within the cluster system. Each
worker node has a job control component that reassigns processor time partitions periodically based on the actual execution
and required deadline of each active job, thus enforcing hard QoS support.



Libra uses average waiting time and average response time assystem-centric evaluation factors to evaluate overall system
performance. In addition, Libra defines two user-centric evaluation factors [51]: Job QoS Satisfaction and Cluster Profitability
to measure the level of utility achieved for the consumers (users) and producer (cluster owner) respectively. The Job QoS
Satisfaction determines the percentage of jobs whose deadline and budget QoS is satisfied and thus examines the time and cost
utility of the consumers. On the other hand, the Cluster Profitability calculates the proportion of profit obtained by thecluster
owner and thus studies the cost utility of the producer. Simulation results show that Libra performs better than traditional
First-Come-First-Served scheduling approach for both system-centric and user-centric evaluation factors.

D. REXEC

REXEC [7] implements bid-based proportional resource sharing where users compete for shared resources in a cluster. It
has a consumer participant focus since resources are allocated proportionally based on costs that competing users are willing
to pay for a resource. Costs are defined as rates, such as credits per minute to reflect the maximum amount that a user wants
to pay for using the resource.

Decentralized management control is achieved by having multiple daemons to separately discover and determine the best
node to execute a job and then allowing each REXEC client to directly manage the execution of its jobs on the selected cluster
nodes. The cluster nodes can be non-dedicated as nodes are discovered dynamically during scheduling and supports time-shared
execution support so that multiple jobs share resources at the same time. A centralized accounting service maintains credit
usage for each user in the cluster. REXEC does not consider the resource composition since it determines the proportion of
resource assignment for a job purely on its user’s valuation.

REXEC supports the execution of both sequential and parallel programs. Users specify constraint-based cost limits that
they are willing to spend and remains static after job submission. The discovery and selection of nodes internal in the cluster
system is designed to be independent so that users have the flexibility to determine the node selection policy through their own
REXEC client. Existing resource assignments are recomputed whenever a new job starts or finishes on a node, thus enabling
adaptive resource allocation update. REXEC only considersa single QoS where the cost of job execution is limited to the
users’ specified rate. For a parallel program, the total credit required by all its processes is enforced not to exceed thecost
specified by the user.

A later work [74] uses a user-centric evaluation factor: aggregate utility that adds up all the users’ costs for completing jobs
on the cluster. The cost charged to the user depends on the completion time of his job and decreases linearly over time until
it reaches zero. Therefore, this presents a consumer evaluation focus where cost is the evaluation factor.

E. Faucets

Faucets [21] aims to provide efficient resource allocation on the computational Grid for parallel jobs by improving its
usability and utilization. For better usability, users will not need to manually discover the best resources to executetheir jobs
or monitor the progress of executing jobs. To improve utilization, the parallel jobs are made adaptive using Charm++ [75] or
adaptive MPI [76] frameworks so that they can be executed on changing number of allocated processors during runtime on
demand [77]. This allows more jobs to be executed at any one time and no processors are left unused.

Market economy is implemented to promote utilization of thecomputational Grid where each individual Grid resource
maximizes its profit through maximum resource utilization.For each parallel job submitted, the user has to specify its QoS
contract that includes requirements such as the software environment, number of processors (can be a single number, a set of
numbers or range of numbers), expected completion time (andhow this changes with number of processors), and the payoff
that the user will pay to the Grid resource (and how this changes with actual job completion time). With this QoS contract,a
parallel job completed by Faucets will have three possible economic outcomes: payoff at soft deadline, a decreased payoff at
hard deadline (after soft deadline) and penalty after hard deadline.

Faucets uses the tendering/contract-net market economic model. First, it determines the list of Grid resources that are able
to satisfy the job’s execution requirements. Then, requests are sent out to each of these Grid resources to inform them about
this new job. Grid resources can choose to decline or reply with a bid. The user then chooses the Grid resource when all the
bids are collected.

Faucets has a producer participant focus and competitive trading environment as each Grid resource aims to maximize its
own profit and resource utilization and thus compete with other resources. Faucets considers the time QoS attribute since each
Grid resource that receives a new job request first checks that it can satisfy the job’s QoS contract before replying with a
bid. The cost QoS attribute is decided by the user who then chooses the resource to execute based on the bids of the Grid
resources.

Faucets currently uses a centralized management control where the Faucets Central Server (FS) maintains the list of resources
and applications that user can execute. However, the ultimate aim of Faucets is to have a distributed management controlto
improve scalability. Time-shared execution support is employed in Faucets where adaptive jobs executes simultaneously but
on different proportion of allocated processors. A centralized accounting mechanism at the FS keeps track of participating



Grid resources so that owners of these Grid resources can earn credits to execute jobs on other Grid resources. Faucets is
primarily designed to support parallel job execution only where the constraint-based QoS contract of a parallel job is given at
job submission and remains static throughout the execution.

In Faucets, the resource allocation domain operates in an internal manner where each Grid resource is only aware of jobs
submitted via the FS and not other remote Grid resources. To maximize system utilization at each Grid resource, Faucets
allocates proportional number of processors to jobs based on their QoS priorities since jobs are adaptive to changing number
of processors. A new job with higher priority is allocated a larger proportion of processors, thus resulting in existingjobs
entitled to shrinking proportion of processors. This results in soft QoS support. Faucets does not describe how utility-driven
performance can be evaluated.

F. Nimrod/G

Nimrod/G [8] is the grid-enabled version of Nimrod [78] thatallows user to create and execute parameter sweep applications
on the Grid. Its design is based on a commodity market economic model where each Nimrod/G broker associated with a user
obtains service prices from Grid traders at each different Grid resource location. Nimrod/G supports a consumer participant
focus that considers deadline (time) and budget (cost) QoS constraints specified by the user for running his application. Prices
of resources thus vary between different executing applications depending on the time and selection of Grid resources that
suits the QoS constraints. This means that users have to compete with one another in order to maximize their own personal
benefits, thus establishing a competitive trading environment.

Each Nimrod/G broker acts on behalf of its user to discover the best resources for his application and does not communicate
with other brokers, thus implementing a decentralized management control. It also has its own decentralized accounting
mechanism to ensure that the multiple tasks within the parameter sweep application will not violate the overall constraints. In
addition, the Nimrod/G broker is able to operate in a highly dynamic Grid environment where resources are heterogeneousand
non-dedicated since they are managed by different owners, each having their own operating policies. The broker does notneed
to know the execution support of each Grid resource as each resource will feedback to the broker their estimated completion
time for a task.

A parameter sweep application generates multiple independent tasks with different parameter values that can execute
sequentially on a processor. For each parameter sweep application, the Nimrod/G broker creates a plan to assign tasks to
resources that either optimizes time or cost within deadline and budget constraints or only satisfies the constraints without any
optimization [79]. The QoS constraints for a parameter sweep application can only be specified before the creation of theplan
and remains static when the resource broker discovers and schedules suitable resources.

The Nimrod/G broker discovers external Grid resources across multiple administrative domains. Resources are discovered
and assigned progressively for the multiple tasks within anapplication depending on current resource availability that is beyond
the control of the broker. Therefore, Nimrod/G is only able to provide soft QoS support as it tries its best to fulfill the QoS
constraints. It supports some level of adaptive resource allocation update as it attempts to discover resources for remaining
tasks yet to be scheduled based on the remaining budget from scheduled tasks so that the overall budget is not exceeded. It
will also attempt to reschedule tasks to other resources if existing scheduled tasks fails to start execution. However,Nimrod/G
will stop assigning remaining tasks once the deadline or budget QoS constraint is violated, thus wasting budget and timespent
on already completed tasks. Nimrod/G does not describe how utility-driven performance can be evaluated.

G. Tycoon

Tycoon [61] examines resource allocation in Grid environments where users are self-interested with unpredictable demands
and service hosts are unreliable with changing availability. It implements a two-tier resource allocation architecture that
differentiates between user strategy and allocation mechanism. The user strategy captures high-level preferences that are
application-dependent and vary across users, while the allocation mechanism provides means to solicit true user valuations for
more efficient execution. The separation of user strategy and allocation mechanism therefore allows both requirementsnot to
be limited and dependent of one another.

Each service host utilizes an auction share scheduler that holds first-price auctions to determine resource allocation. The
request with the highest bid is then allocated the processortime slice. The bid is computed as the pricing rate that the user
will pay for the required processor time, hence both time andcost QoS attributes are considered. Consumer participant focus
is supported as users can indicate whether the service requests are latency-sensitive or throughput-driven. Based on these
preferences, consumers have to compete with one another forGrid sites that can satisfy their service requests.

A host self-manages its local selection of applications, thus maintaining decentralized resource management. Hosts are
heterogeneous since they are installed in various administrative domains and owned by different owners. The hosts provide
dedicated execution service by accepting service requestssubmitted via the Tycoon interface. Applications are assigned
processor time slices so that multiple requests can be concurrently executed. Each host also keeps accounting information



of its local applications to calculate the usage-based service cost to be paid by the user and determine prices of future resource
reservation for risk-averse applications.

Tycoon is assumed to handle general service applications that include web and database services. Service execution requests
are specified in terms of constraints such as the amount of cost he plans to spend and the deadline for completion. These
constraints do not change after initial specification. Eachauction share scheduler performs resource assignment internally
within the service host. It also enables adaptive resource allocation update as new service requests will modify and reduce the
current resource entitlements of existing executing requests. This results in soft QoS support that can have a negativeimpact
for risk-averse and latency-sensitive applications. To minimize this, Tycoon allows users to reserve resources in advance to
ensure sufficient entitlements.

The performance evaluation concentrates on consumer usinga user-centric time evaluation factor. A metric called scheduling
error assesses whether users get their specified amount of resources and also justifies the overall fairness for all users. The
mean latency is also measured for latency-sensitive applications to examine whether their requests are fulfilled. Simulation
results show that the Tycoon is able to achieve high fairnessand low latency compared to simple proportional-share strategy.
Tycoon has addressed how communication and management overheads are designed to be minimal. For instance, auctions held
internally within each service host reduce communication across hosts.

H. Stanford Peers

Stanford Peers [69] employs a peer-to-peer data trading framework to create a digital archiving system. It utilizes a bid
trading auction mechanism where a local site that wants to replicate its collection holds an auction to solicit bids fromremote
sites by first announcing its request for storage space. Eachinterested remote site then returns a bid that reflects the amount of
disk storage space to request from the local site in return for providing the requested storage space. The local site thenselects
the remote site with the lowest bid for maximum benefit.

An overall cooperative trading environment with both producer and consumer participant focus is supported as a bartering
system is built whereby sites exchange free storage spaces to benefit both themselves and others. Each site minimizes thecost
of trading which is the amount of disk storage space it has to provide to the remote site for the requested data exchange.
Stanford Peers implements decentralized management control as each site makes its own decision to select the most suitable
remote sites to replicate its data collection.

Sites are dedicated to protect the replicated data in order to ensure that data are preserved and accessible. Each site is
external of one another and can belong to different owners. Once a remote site is selected, the specified amount of storage
space remains fixed, hence implying non-adaptive resource allocation update. The job model taxonomy does not apply to
Stanford Peers because the allocation of resources is expressed in terms of data exchange and not jobs.

Stanford Peers evaluates performance based on reliabilityagainst failures since the focus of a archiving system is to preserve
data as long as possible. Reliability is measured using the mean time to failure (MTTF) for each local site that is both a
producer and consumer. Simulation results show that sites that uses bid trading achieves higher reliability than sitesthat trade
equal amounts of space without bidding.

VII. D ISCUSSION ANDCONCLUSION

There are a few market-based RMSs implemented for cluster computing such as Cluster-On-Demand [20], Enhanced MOSIX
[19], Libra [9], REXEC [7] and Utility Data Center [52]. Libra and REXEC provide a consumer participant focus that is crucial
for satisfying QoS-based requests in service-oriented cluster and Grid computing. However, none of these market-based RMSs
supports other important QoS attributes such as reliability and trust/security that should be realized in a utility-driven service
market where consumers pay for usage and expect good qualityservice.

These market-based RMSs for cluster systems only support fairly simple job models with sequential job execution, single-task
job composition and static QoS update. They do not allow moreadvanced job models with data/sequence dependencies such as
in workflow-based applications, multiple-task composition in parameter sweep applications and parallel execution inmessage-
passing applications. Users may also need to modify their initial QoS specifications after job submission and thus require the
support of dynamic QoS update. In addition, the scope of resource allocation is often restricted to internally within the cluster
systems. They can be extended to discover and utilize external resources in other cluster systems or Grids so that a larger
pool of resources is available for usage. For performance evaluation, both system-centric and user-centric evaluation factors
should be defined to measure the effectiveness of market-based cluster RMSs in achieving overall system performance and
actual benefits for both consumers and producers. Metrics should also be defined to measure communication and management
overheads incurred by the market-based RMSs.

Market-based RMSs proposed for other computing platforms encompass strengths that can be leveraged for the context of
cluster computing. For instance, the tendering/contract-net economic model in Faucets [21] may be applied in a clustersystem
with decentralized management control where the consumer determines the resource selection by choosing the best node
based on bids from competing cluster nodes. Optimization-based QoS specification in Nimrod/G [8] and the “auction share”



scheduling algorithm in Tycoon [61] can improve utility forconsumers, in particular those with latency-sensitive applications.
Bartering concepts in Stanford Peers [69] can augment the level of sharing across internal and external resource allocation
domains.

In this paper, we have described how market-based RMSs can achieve the requirements of utility-driven cluster computing. We
have outlined an abstract model capturing essential functionalities of a market-based cluster RMS and developed a taxonomy
classifying market-based RMSs to support utility in cluster systems. We have also applied the taxonomy to survey some
recent market-based RMSs proposed for both cluster computing and other computing platforms to identify possible future
enhancements.
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[52] A. Byde, M. Sallé, and C. Bartolini, “Market-Based Resource Allocation for Utility Data Centers,” HP Lab, Bristol, Technical Report HPL-2003-188,
Sept. 2003.

[53] A. Anastasiadi, S. Kapidakis, C. Nikolaou, and J. Sairamesh, “A Computational Economy for Dynamic Load Balancing and Data Replication,” in
Proceedings of the 1st International Conference on Information and Computation Economies (ICE ’98). Charleston, SC: ACM Press: New York, NY,
Oct. 1998, pp. 166–180.

[54] A. AuYoung, B. N. Chun, A. C. Snoeren, and A. Vahdat, “Resource Allocation in Federated Distributed Computing Infrastructures,” inProceedings of
the 1st Workshop on Operating System and Architectural Support for the on demand IT InfraStructure (OASIS 2004), Boston, MA, Oct. 2004.

[55] T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, F. Freitag, and L. Navarro, “Decentralized Resource Allocation in Application Layer Networks,” in
Proceedings of the 3rd International Symposium on Cluster Computing and the Grid (CCGrid 2003). Tokyo, Japan: IEEE Computer Society Press:
Los Alamitos, CA, May 2003, pp. 645–650.

[56] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “Analyzing Market-Based Resource Allocation Strategies for the Computational Grid,” International
Journal of High Performance Computing Applications, vol. 15, no. 3, pp. 258–281, Fall 2001.

[57] M. Chen, G. Yang, and X. Liu, “Gridmarket: A Practical, Efficient Market Balancing Resource for Grid and P2P Computing,” in Proceedings of the 2nd
International Workshop on Grid and Cooperative Computing (GCC 2003), ser. Lecture Notes in Computer Science (LNCS), vol. 3033/2004. Shanghai,
China: Springer Verlag: Heidelberg, Germany, Dec. 2003, pp. 612–619.

[58] D. Grosu and A. Das, “Auction-Based Resource Allocation Protocols in Grids,” inProceedings of the 16th International Conference on Parallel and
Distributed Computing and Systems (PDCS 2004). Cambridge, MA: ACTA Press: Calgary, Canada, Nov. 2004, pp.20–27.

[59] C. Chen, M. Maheswaran, and M. Toulouse, “Supporting Co-allocation in an Auctioning-based Resource Allocator forGrid Systems,” inProceedings
of the 11th International Heterogeneous Computing Workshop (HCW 2002). Fort Lauderdale, FL: IEEE Computer Society Press: Los Alamitos, CA,
Apr. 2002.

[60] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. P. Frank, and C. Chokkareddy, “OCEAN: The Open Computation Exchange and Arbitration Network,
A Market Approach to Meta Computing,” inProceedings of the 2nd International Symposium on Paralleland Distributed Computing (ISPDC 2003).
Ljubljana, Slovenia: IEEE Computer Society Press: Los Alamitos, CA, Oct. 2003, pp. 185–192.

[61] K. Lai, B. A. Huberman, and L. Fine, “Tycoon: A Distributed Market-based Resource Allocation System,” HP Lab, Palo Alto, Technical Report
cs.DC/0404013, Apr. 2004.

[62] M. S. Miller and K. E. Drexler, “Incentive Engineering for Computational Resource Management,” inThe Ecology of Computation, B. A. Huberman,
Ed. New York, NY: Elsevier Science Publisher, 1988, ch. 10, pp. 231–266.

[63] M. Backschat, A. Pfaffinger, and C. Zenger, “Economic-Based Dynamic Load Distribution in Large Workstation Networks,” in Proceedings of the 2nd
International Euro-Par Conference (Euro-Par 1996), ser. Lecture Notes in Computer Science (LNCS), vol. 1124/1996. Lyon, France: Springer Verlag:
Heidelberg, Germany, Aug. 1996, pp. 631–634.

[64] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard, “Enterprise: A Market-like Task Scheduler for Distributed Computing Environments,” in
The Ecology of Computation, B. A. Huberman, Ed. New York, NY: Elsevier Science Publisher, 1988, pp. 177–205.



[65] D. F. Ferguson, Y. Yemini, and C. Nikolaou, “Microeconomic Algorithms for Load Balancing in Distributed Computer Systems,” inProceedings of the
8th International Conference on Distributed Computing Systems (ICDCS ’88). San Jose, CA: IEEE Computer Society Press: Los Alamitos, CA, June
1988, pp. 491–499.

[66] J. F. Kurose and R. Simha, “A Microeconomic Approach to Optimal Resource Allocation in Distributed Computer Systems,” IEEE Trans. Comput.,
vol. 38, no. 5, pp. 705–717, May 1989.

[67] Y. Yemini, A. Dailianas, D. Florissi, and G. Huberman, “MarketNet: protecting access to information systems through financial market controls,”Decision
Support Systems, vol. 28, no. 1–2, pp. 205–216, Mar. 2000.

[68] I. Stoica, H. Abdel-Wahab, and A. Pothen, “A Microeconomic Scheduler for Parallel Computers,” inProceedings of the 1st Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP ’95), ser. Lecture Notes in Computer Science (LNCS), vol. 949/1995. Santa Barbara, CA: Springer Verlag:
Heidelberg, Germany, Apr. 1995, pp. 200–218.

[69] B. F. Cooper and H. Garcia-Molina, “Bidding for storagespace in a peer-to-peer data preservation system,” inProceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS 2002). Vienna, Austria: IEEE Computer Society Press: Los Alamitos, CA, July 2002, pp.
372–381.

[70] Y. Amir, B. Awerbuch, and R. S. Borgstrom, “A Cost-Benefit Framework for Online Management of a Metacomputing System,” in Proceedings of the
1st International Conference on Information and Computation Economies (ICE ’98). Charleston, SC: ACM Press: New York, NY, Oct. 1998, pp.
140–147.

[71] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford,“Xenoservers: Accountable Execution of Untrusted Programs,” in Proceedings of the 7th
Workshop on Hot Topics in Operating Systems (HotOS-VII). Rio Rico, AZ: IEEE Computer Society Press: Los Alamitos, CA, Mar. 1999, pp. 136–141.

[72] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle, “Dynamic Virtual Clusters in a Grid Site Manager,”in Proceedings of the 12th
International Symposium on High Performance Distributed Computing (HPDC12). Seattle, WA: IEEE Computer Society Press: Los Alamitos, CA,
June 2003, pp. 90–100.

[73] A. Barak and O. La’adan, “The MOSIX multicomputer operating system for high performance cluster computing,”Future Generation Computer Systems,
vol. 13, no. 4–5, pp. 361–372, Mar. 1998.

[74] B. N. Chun and D. E. Culler, “User-centric Performance Analysis of Market-based Cluster Batch Schedulers,” inProceedings of the 2nd International
Symposium on Cluster Computing and the Grid (CCGrid 2002). Berlin, Germany: IEEE Computer Society Press: Los Alamitos, CA, May 2002, pp.
22–30.
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