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SECTION 1
INTRODUCTION

Over the 22 years since the first publication (Ref. 1) of the

‘theory of High-Altitude Electromagnetic Pulse (HEMP), there have been
- several doubters of the correctness of that theory.' On one occasion it

was briefly claimed that the HEMP is a much larger pulse than our theory
indicates, and is a longitudinal wave rather than transverse. This c]aim
was easily shown to rest on an incorrect application of a standard formula
for the fields of a charge moving at relativistic speed. More commonly,
it has been claimed that the HEMP is a much smaller pulse than our theory
indicates and it has been implied, though not directly stated in writing,
that. the HEMP has been exaggerated by those who work on it in order to
perpétuate their own employment. It could be noted that, in some quar-
ters, the disparagement of HEMP has itseif become an occupation. While we
have found that no amount of technical reasoning suffices to quiet such
criticism, we have learned to live with it, and even to regard it as
possibly having some beneficial effects, for example in bringing the
question of the HEMP threat to electrical and electronic systems to the
attenuation of a wider circle of individuals who have responsibility for
those systems.

Thus our principal concern is to convince individuals, with
technical backgrounds and open minds, who for various reasons have not
been convinced by previously published pépers on HEMP theory, that the
theory and calculated results are at least approximately correct. One
possible difficulty with previous papers (Refs. 1, 2, 3) is that they are
based on solving Maxwell's equations. While that is the most legitimate



approach for the mathematically inclined reader, many of the individuals
we think it important to reach may not_fee1tcomf0rtab1e with that ap-
proach. We admit to being surprised at the number of people who have
wanted to understand HEMP in terms of the fields radiated by individual ‘
Compton recoil electrons. Apparently our schools do a better job in
teaching the applications of Maxwell's equations (in this case, the cyclo-
tron radiation) than they do in imparting a basic understanding of those
equations and how they work. However, the generation of the HEMP can be
understood quite well on the basis of concepts famitiar to all electrical
engineers and physicists. A derivation of the outgoing wave equation
based on these concepts is presented in Section 2. This equation, though
extremely simple, gives the HEMP to an accuracy of a few percent in
practical cases. We also show that adding the fields radiated by
individual electrons gives exactly the same answer in a simple but
relevant example. A

The confidence we have in our calculations of the HEMP rests on
two circumstances. The first of these is the basic simplicity of the
theory. The physical processes involved, e.g., Compton scattering, are
quite well known, and the physical parameters needed in the calculations,
such as electron mobility, have been measured in relevant laboratory
experiments. There is no mathematical difficulty in determining the
solution of the outgoing wave equation, or in understanding why it is an
accurate approximation, Nevertheless, to acquire a sufficient understand-
ing of HEMP to be able to say, of one's own knowledge, that our answers
are right to 10 or 20% (or wrong) is not a trivial exercise. While the
concepts we start with are familiar, in applying them we shall soon come
into new ground for many readers. One will not find our problem worked
out in textbooks. For example, the model of cyclotron radiation from
individual Compton recoil electrons is very difficult to apply with
accuracy to our problem because of the multitudinous secondary electrons,
which absorb the radiation emitted by the Compton electrons. - Readers who




have the patience to follow the development in Section 2 will see that the
outgoing wave theory provides a way to avoid unnecessary complications and
reduces the problem to its barest essentials.

The other circumstance is that there is experimental data on the
HEMP obtained by the Los Alamos Scientific Laboratory in the nuclear test
series carried out in 1962. In a classified companion report (Ref. 4) we
present calculations of the HEMP from the Kingfish and Bluegill events and
- compare them with the experimental data. These calculations were perform-
ed some years ago, but have not been widely circulated. In order to make
the calculations transparently honest, the gamma-ray output was provided
‘by Los Alamos, the HEMP calculations were performed by MRC and the compar-
ison with the experimental data was made by RDA. The degree of agreement
between calculation and experiment gives important verification of the
correctness of HEMP theory.

- -——A feature of HEMP theory that has troubled some people is that
it determines the radiated fields by integrating along the single-ray from
nuclear burst to observer. The angular derivatives in Maxwell's equations
are dropped, which amounts to neglecting diffraction in the propagation of
the HEMP. The first paper on HEMP (Ref. 1) contained a justification of
this neglection, based on the large ratio of the transverse dimension of
the radiating volume compared with the wavelengths in the HEMP. However,
we have always wondered just how large a correction diffraction would make
for Kingfish, a fairly severe geometry. In Section 3, a method for calcu-
lating the effect of diffraction is developed. The method is applied in
Reference 4 to that event and the effect is found to be less than 1%.

This calculation starts from Maxwell's equations, but we hope that many
readers will follow the not-very-complicated mathematics.



Finally, we wish to call attention to two other, unclassified
reports that, together with this one, provide a fairly complete expla-
nation of HEMP to readers who may not be experts in mathematical electro-
magnetic bhysics. Reference 5 explains details of Compton electron dy-
namics, secondary electron production and the electric conductivity they
make. Reference 6 presents HEMP environments for a Targe yield nuclear
burst at 400 km altitude, shows the wide variability of the HEMP with
ground range and azimuth of the observer, and provides analytical formulae
fitting the calculated HEMP as a function of range and azimuth. That re-
port also examines in detail the Compton current, air conductivity and
fields in the ca1cu1atioﬁ and shows that they are consistent with the
relevant physics and the outgoing wave theory. Those two reports and this
one should remove all reasonable doubt that our HEMP calculations are at
least approximately correct.




SECTION 2
THEORY OF THE GENERATION OF HEMP

2.1 GAMMA RAYS AND COMPTON SCATTERING

Nuclear bombs emit a small fraction, of the order of 0.003, of
their energy in gamma rays. Thus a 1-megaton bomb, which produces total
- energy of about 4.2x10'% J (Joules) may emit 3 kilotons or about
1.2x10'% J in gamma rays. Gamma rays are electromagnetic waves, like
radio waves or visible light, but of much higher frequency than either of
these--in the range of 102 to 102! Hz. They travel at the speed of Tight
(c = 3x108 m/sec), and so have wavelengths of the order of 10~}? cm. This
is smaller than the diameter of atoms (~-10'8 cm), and in interacting
with atoms, gamma rays act more like particles than waves. As a particle,
or quantum of electromagnetic radiation, a gamma ray has an energy of the
order

E =2 MeV = 3.2x10°13 g, - (1)

(The MeV unit of energy is a convenient one in nuclear physics; it is
equal to the energy gained by an electron in falling through a potential
drop of 105 V.) Thus the total number of gammas emitted by a 1 megaton
~bomb may be of the order

N, 4x102% gammas . o o (2)




The principal interaction of gamma rays with air atoms, or other
matter, is Compton scattering. In this process, the gamma collides with
an electron in the air atom and knocks it out of the atom. 1In so doing,
the gamma transfers part of its energy (on the average about half) to the
electron, and is scattered into a new direction, The Compton recoil
electron goes generally near the forward direction of the original gamma,
never in backward directions. Thus a directed flux of gammas produces a
directed electric current of Compton recoil electrons. This current
produces the EMP,

The mean free path for Compton scattering in sea-level air is of
the order '

A, =180 m (at sea Tevel) . ' ' (3)

At higher altitudes, where the .air density is smaller, AY is correspond- .
ingly longer. Since the total mass of air in the atmosphere is about
1000 gm/cm?, and since the mean free path can also be expressed as

A, =22 gn/cm®  (at any altitude) ‘ (4)

the total number of mean free paths in the atmosphere for gammas coming
vertically downwards is

= 1000/22 ~ 45 (5)

Only a very small fraction, exp(-N ) ~ 10'20, of the gammas reach the
ground without being scattered. Most of the gammas will suffer their
first scattering near the altitude where they have traversed one mean free
path. This is the altitude above which there are 2?2 gn/cm? of air and is
about




=30 km . (6)

Because the air density 3 falls approximately exponentially with altitude
z, '

Py = P, eXp(-2/h) (7)

where the scale height h is
h =67 km at 30 km altitude |, (8)

the local mean free path at this altitude is approximately equal to h,

Thus most of the gammas make their first scattering in a layer of air of
thickness h centered about z. This is the source region of the HEMP.
Scattered gammas make . 11tt1e further contribution to the HEMP, for reasons
to-be explained below.

We can now calculate the density of Compton electrons in the
source region. Let us put our nominal 1-megaton bomb at an altitude of
100 km, 70 km above the source region. Then the number of gammas incident
on the source region per unit area, assuming they are emitted isotropi-
cally by the bomb, is

M

= NY/41rr2 = 6.5x10'% gammas/m? . (9)
Since every gamma will make a Compton electron, the number of first-
scatter Compton electrons per unit area is also Ny. On the assumption
that the gammas are scattered in a height h, the number of birth p1aces of
first-scatter Compton electrons per unit volume is

Nbp = Ny/h = 1.0x10%! b.p.'s/m? . , (10)



The density of Compton -electrons would be the same as this number if they
did not move. Because they move in the same direction as the gammas with
an average speed of about 0.9 c, their actual density is about 10 times
this number shortly after birth, or about 10'2/m3. (This point is
explained in Section 2.2 below.)} -

An important question is whether the density of Compton elec- .
trons is large enough to justify regarding the current they make as a
continuous function. The answer to this question depends on the wave-
length of electromagnetic fields that they produce and that are of inter-
est. The duration of the HEMP (or that part of it that is of interest to
us) is at teast 108 second, so that wavelengths are a few meters. If we
wish to resolve the Compton current on the scale of one quarter of a
wavelength, or about 1 meter, we need to consider the number of Compton
electrons in a volume of 1 m®. This s about 10'2 electrons. The average
fluctuation in this number is about /102 = 10, or 1 part in 10%. Thus
-1t seems clear that, for the wavelengths of interest, the Compton current
density can be quite accurately treated as a continuous function. The
coherence of the radiated fields is discussed further in Section 2.3

below.

Note that if the Compton electrons all moved together at nearly
the speed of 1ight, they would make a current density

J. ~ 48 A/m?z . o (11)

a substantial.current density. i




2.2 - THE MOTION OF COMPTON RECOIL ELECTRONS

For 2-MeV gammas, the Compton recoil electrons have an average
kinetic energy of about 1 MeV. The most energetic electrons move in the
forward direction of the original gamma with kinetic energy 1.78 MeV. The
angular distribution of the electrons (per unit solid angle) peaks in the
forward direction, and has half of its peak value at about 10° off
forward. Thus the Compton electrons are concentrated near the forward
direction.

The velocity v of a 1-Mev electron is such that

Iz =0.94 , (12)

and the mass is about 3 times its rest mass. In the geomagnetic field
appropriate for the central U.S., ;

By = 0.56 Gauss . (13)

the gyro (or Larmor) radius. of such an electron is

L=8m . ‘ (14)

Theé mean stopping range of the 1-MeV electron, due to collisions with
electrons in air atoms, at 30 km altitude, is

=170m . | (15)

This range has been reduced from the extreme range (R = 245 m) to account
for the multiple scattering of the electron by the nucle1 of air atoms.

The energy lost by the 1-MeV electron in stopping produces about 30,000
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secondary electrons distributed along its path. The secondary electrons
have kinetic energies of the order 10 eV at birth. Because their veloci-
ties are randomly distributed, they make no significant current of their
own accord. However, if an electric field is present, they drift in the
direction of the electric force on them, forming an electric conductivity
in the air. The conductivity is discussed further in Section 2.4.

Because the mean range of the Compton electron is only about
twice its gyro radius, it turns through only about 2 radians or 115° in
the geomagnetic field before stopping. Because its mass and gyro radius
decrease as it loses energy, it actually turns through a larger angle than
this. The average trajectory of the Compton electrons at 30 km altitude
will look like that sketched in figure 1.

w—— Original Gamma

Birth Place of

Compton Electron Initial Gyro Radius

Stopping Point

Compton Electron

Figure 1. Sketch of average trajectory of Compton electrons from 2-MeV
gammas at 30 km altitude.

We can now understand the difference between the density of
birth places of Compton electrons and the density of moving Compton
electrons, Let us have an impulse function of gammas moving through air.
The trajectory of this gamma pulse, i.e., its position r as a function of
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Gamma Trajectory
Slope =1

1__&—— Tmx (1-Br)

Electron Trajectory,
Slope = By

ct

Figure 2. Explanation of motion compression of Compton electrons.

ct (t is time) is indicated in figure 2, Consider also two Compton
electrons with birthplaces lm apart in r. The trajectories of these
electrons, which start with velocity v /c z 8. slightly less than unity,
are identical except that trajectory 2 is trans]ated para11e1 to the gamma
trajectory with respect to that of trajectory 1. The curvature of the
electron trajectories is exaggerated in the figure. As indicated in the
figure, at the time when the second electron is born, the first electron
is a distance 1 m x (l-Br) away from the second. Since all electrons born
between 1 and 2 will be in this reduced interval, the relation between the
density Nce of Compton electrons and the density Nbp of birthplaces is

11



Nee = Myp/(1-8.) (16)

It is not difficult to show that this same relation holds as sr-decreases
due to geomagnetic deflection, energy loss and scattering. The factor
1/(1-Br) must, of course, be averaged over the angular distribution of the
Compton electrons. For 2-MeV gammas, this average is

av (1) = 11.2 (17)
1-8,, :

just after birth of the Compton electrons (Ref. 5). This justifies the
factor of 10 used in Section 2.1. 1In calculations of the HEMP using the
continuum Compton current, the expression for this current density is

>

+ -
= - N. ec 8
Je Nbpec av(lﬁsr] . ‘18)

where -e is the electron charge. (It is actually the average of 8./(1-8.)
that has the value given in equation (17), but 8. is only slightly Tess
than unity.) '

2.3 FIELDS RADIATED BY MOVING ELECTRONS
We have seen that the Compton current density averaged over vol-

umes of the order of 1 m® has only very small fluctuations in our nominal
HEMP problem., This averaged current density is commonly called the

macroscopic current density, and is the quantity used in almost all of the 7

applications of electrical engineering, e.g., analysis of radio broadcast-
ing and receiving, electric power generation and transmission, etc. Engi-
neers (and physicists) never try to analyze these problems in terms of

12




the fields radiated by individual electrons, but have nevertheless been
getting correct answers for over 100 years (in fact, since before elec-
trons were discovered). We therefore regard it as curious that quite a
few pedp]e have insisted that the HEMP must be derived from the radiation
of individual electrons in order to obtain reliable results. This seems
all the more curious when one recalls that the fields of moving and
accelerating electrons are derived in the textbooks by sd?ving Maxwell's
(continuum) equations for point charges and currents. Because those
equations are linear, it must be true that theAavérage or macrbscopic
fields are obtained by solving Maxwell's equations with the macroscopic
currents.

The reason for the common use of the macroscopic current is that
it is generally much easier to add up the currents of a large number of
electrons than to -add up their fields. However, with sufficient care the
Tatter can be done correctly, as the following sihple-but relevant exam-
ples will show. In this section the essential physics of the examples is
described, while the supporting mathematics is worked out in Appendix A,

Example 1. Impulse of Gammas on Thin Sheet

Let us-have a planar, impulse function of gammas propagating
through vacuum and arriving broadside on a thin insulating sheet, as indi-
cated in figure 3, We imagine that electrons are knocked out of the sheet
in the forward direction of the gammas, and that there is a magnetic field
Bo parallel to the sheet, in the y-direction. - This field deflects the
electrons in semicircles, until they restrike the sheet and are stopped.

. An observer is located at a distance zo below the sheet, which is very
large compared with the gyro-radius of the electrons, (This is for ease
of calculation,)

13



Planar Gamma Pulse

-Axis Qut of Paper - Sheet

a'aata

b, G

! Zg» Observer

Figure 3. Configuration for Example 1.
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We choose the origin of time t such that t = 0 at the instant
the gamma pulse arrives at the sheet. The observer, however, elects to
trigger his scope on the arrival of the gammas at his location. Thus the
time Ty read on his scope is related to the standard time t by

To=t-zp/c . (19)

We shall call T, the delayed time at the observer. We can define the
delayed time T at any z by

T=¢t-2/c . (20)

Thus at any z, T is the time after arrival gf;the gamma pulse.

Consider now a'single.e1ectron born at the origin of coordi- -
nates. Let the magnitude of its velocity, divided by c, be 8 and its gyro
frequency be W - The latter quantity is (in MKS units)

wy = /1-82 eBy/m = Bc/L . ' (21)

Here m is the rest mass of the electron and L is the gyro radius intro-
duced in Section 2.2. The coordinates and velocity components (again
divided by c) are then found to be, as functions of standard time

g
n

8 coswet » B B sinmet ’ (22)

X

N
]

L s1nmet s Xy L (1-coswet) . (23)

The distance R from the electron position to the observer is

15



R = /(zo-ze)2+x§ . | (24)

For z, large compared with L, R can be expanded in power series in xg as

1 e
R=z-2 +=-__¢ 4+ 25
0 ¢ 2 (z,-2,) (25)

The transit time of radiated fields from electron to observer is R/c.
Dropping the term ze in equation (25) would make an error in transit time

z
st = - S aaLbLl s . (26)
c w e .

ol

i.e;, comparable with the gyration time and the radiated pulse length.
This is too severe an error to accept. Dropping the term in xg gives an
error smaller by the ratio L/z,, and this is acceptable for large z,/L.

In this case equation (25) is approximated by

R = Z,-Zp - (27)
Therefore, fields radiated by the electron at standard time t arrive at
the observer at standard time

ty=t+ (zo-ze){c . ' | (28)

This relation can be written as

to - zolc =t - ze/c . - (29)

16



or, according to equation (20), as

T =T, . (30)

Thus fields are radiatedigl the electron and arrivelgg the observer‘gg the
same delayed time, in the Vimit of large z,/L.

What we have called the delayed time here has been called the
retarded time in previous.reports on HEMP. However, that is apt to cause
confusion with the retarded time as defined in textbooks on electrodynam-
ics. In the present example, the retarded time going with observer time
ty is the time t in equation (28). In the textbooks, R is not assumed to
be large compared with the particle displacement, so that introduction of
the delayed time would provide no advantage.

The relation between standard time and delayed time for an
electron is generally not simple, depending on the trajectory of the
electron. However, the relation between their differentials is simple.
From equation {(20). ‘ '

dTe dt - dze/c_

(1-8,)dt . ' (31)

In the present example, this relation has the integral

L .
To=t - = stnut . , | (32)

For given t, Te can be found imnediately. The inverse relation, i.e., t

as a function of Te’ is not expressible in closed form. However, for
small met we have approximately

17



- Loy,
T, = (-t =(l-8)t . (33)
c

Since for small met in our example B = B,, this equation can be written

Z!
t =T /(1-8,) - (34)

which is the same as equation (31). Either of these equations shows

that for an electron moving with 8, close to +1, the delayed time Te

advances small fraction of the rate at which the standard time t adyances.
Since

wdt = S dr, (35)

the apparent rate of turning of the electron in the magnetic field in
delayed time is much faster than in standard time.

~ In Appendix A, the electric field radiated by our single
electron, born at the origin in figure 3, is calculated. Equations (A;G)
and (A-7) express the result. It can be seen that the electric field
rises abruptly at t = 0, To = 0 to a peak value

ew B ' :
e, =lo_e 1 | - (36)

XPoo4w R (1.8)2

The abrupt rise occurs because the electron is immediately accelerated by
the magnetic force. Ex then decreases, and changes sign when

cosugt = 8, singt = /1-8%2 (37)

18



At this cross-over time, from equation (A-7),

meT0 = arcsin(/l-Bz) - g/l-8% (38)

For 1-MeV electrons, B = 0.94, and the cross-over time becomes

meT0 = 0.0275 radians = 1.58° . (39)

Note that at the cross-over time

w,t = arccos(0.94) = 20° : (40)

Since in our present example

gy = 3.3x108/sec , (41)

the cross-over time is
Ty = 0.83x10~8 sec . (42)

This result well illustrates how rapidly events occur when viewed as a
function of delayed time.

The timefdependent factor in Ex is graphed in figure 4 as a
function of Ty, i.e., as it would appear on the observer's scope. Note
the very large amplitude at-early times. The end of the electron
trajectory after one-half turn in the magnetic field corresponds with
meTolw = 1. No more field is radiated to our observer after this time.
(The radiation emitted in the starting and stopping of the electron, which
may be called bremsstrahlung, vanishes in the z-direction.)

- 19
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The time-dependent factor F(T,y) = (cosu,t -B)/(1-Bcosu,t )3,
where weTo = met - Bsinmet, in the field radiated by an
electron with 8 = 0.94 that makes one-half turn in a magnetic

_fie]d. The integral 0F(T)medT is also shown.

0
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It is also shown in Appendix A that the integral of Ex over
Ty vanishes. The time integral of any radiation field vanishes in the
Timit as the distance to the observer becomes large compared with the
dimension of the radiating system, in this case as zy/L becomes large.

We can now complete Example 1, by adding up the fields radiated
to -our observer by electrons born at different positions on the sheet. In
doing so there are several points that need to be considered. First, the
fields radiated by electrons born away from the origin in figuré 3 will be
additionally delayed in reaching the observer. Second, the unit vector #,
in the direction from electron to observer, will no Tonger be in the z- ‘
direction, and the vector products in equation (A-1) will change gradually
as we move the electron birthplace away from the origin. Third, the di-
rection of the electric field changes when #i changes.

The most important effect is the additional time delay. The
field radiated at standard time t by an electron at z and cylindricatl
radius p from the z-axis reaches the observer at standard time

tog =t + /(zo-z):+p!/c

=t + (zg-2z)/c + p%/2zpc . (43)

We have again assumed z¢ to be large compared with z and p. In terms of
the delayed time of observer and electron, this can be written

To_= Te # AT, : (44)

where T, and T, are again defined by equation (20) at the position of
observer and electron, and

AT = p%/2z¢c . (45)
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The value of p going with a given time delay is then

p = ¥2zpCAT . (46)

Let us see what p goes with a time delay equal to the cross-over time for
the field radiated by an single electron. For this case, cAT = 3 m., If
we take zgy = 3x10* m, the minimum distance from the HEMP source reg1on to -
an observer on the ground, we find

=45m . (47)

This is only about 5 L, so it might appear that we should have included
the x-displacement of the electron in our calculation for the single
electron. However, at the cross-over time the x-displacement of that
electron was only 0.06 L ~ 5 m (see equation (23)), so that calculation
was on safe ground.

For a displacement of 425 m at a distance of 3x10“, the change
in the direction of A is only about 0.014 radians = 0.81°. This is small
compared with the 20° deflection of the electron at the cross-over time
(equation (40}), so we can neglect the change in the vector products in
equation (A-1) to an accuracy of about 4%.

The change in the direction of E at the observer is also small.
Note that the small z-components of E will cancel out when the fields of
electrons on opposite sides of the origin are added. The change in Ex is
proportional to the change in cos(p/zq), which is very small.

22



Thus all we have to do is to sum the field EX given by equations
(A-6) and (A-7) over the electrons at various p, with the appropriate time
delay, given by equation (45). Let the number of electrons per m? of the
sheet by Np- The number of electrons in the differential dp is

ZwNA pdp = ﬂNAdp2

dN,

il

2rz cNpd(AT) . , (48)

The net field is then*
, 7 To
= = &0
EX(TO) Er.eBcNA £ F(T)medT (49)

where F is the function graphed in figure 4, Note that the factor zp in
_ equation (48) has cancelled the factor 1/R in equation (A-6). Thus E,
is independent of zy; it is a plane wave propagating in the z-direction.

The integral in equation (49) is also evaluated in Appendix A.
With the result given by equation (A-13), E; becomes

- Zo sinmet A
E (T,) = =2 eBcNp ooou—_ 50
x(To) 2 A 1-Bcosugt (50}

where the relation of Ty to t is again given by equation (A-7).

~ We see that E (T ) is positive for w,t < = (which according to
equation (A-6) is the same condition as ﬁeTo < n), but vanishes at w,T =.

To To
*  Note that [ F(To-AT)dAT = [ F(T)dT .
0 0
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Thus the integral of E, over T does not vanish. While E, is a radiated
wave, we have taken the sheet to have unlimited dimension, At times after
signals can arrive at the observer from the actual edge of the sheet,
there will be additional Ex, and the total time integral of Ex will
vanish., This must be so, since the time integral for each single electron
vanishes,

The time dependent factor in equation (50) is also graphed in
figure 4. It rises linearly with To at early Ty, has a maximum at the
cross-over time of the single-electron field, and goes linearly to zero at
To = n/wy. The maximum value of this factor is

- 1/41-8% = ]
lnax = 1//1-8° = 2.93 for g = 0.94 . (51)

Persons familiar with the outgoing wave theory will already see
 “that equation (50) is in exact agreement with the result that can be de-
rived very simply from that theory. Before we demonstrate this fact, it
is useful to consider two additional examples.

Example 2. Steady Flux of Gammas

Let us now have a steady flux of gammas on the thin sheet. Each
individual electron will radiate field as in Example 1. Now adding up the
fields radiated by the electrons in a small volume near the origin, we
have to add the fields due to electrons born at different times (before we
consider different p's). This addition amounts to integrating the field
E, of a single electron over Tys and we have seen that this integral
vanishes. Thus there is no radiated macroscopic field in this case.




—_—

The reason is that, while there is a macroscopic current density
in this case (in the x-direction), the time derivative of this current
density vanishes, In order to have a radiated macroscopic field, there
must exist a macroscopic current density with non-yanishing time deriva-
tive.

Note that if we first add up the fields of electrons born at the
same time but at different p, we get the'f* of Example 1. 1If we then add
up the"E_x for electrons born at different times, we do not get zero be-

cause Ex is never negative, As a lesson in the care that must be taken in
adding the fields of individual e]ectrons,'we leave it to the reader to

explain this paradox.
Example 3. Impulse of Gammas on Several Sheets

Let us now have several parallel sheets close to each other, but
imagine-that a sheet -has no effect on the electrons born in other sheets.
Let the same impulse of gammas traverse the region containing the sheets.

It is clear that the signals from all of the sheets will arrive
at the observer at the same time, since both the gammas and the signal
travel at the speed c. The observer cannot tell whether there is one
sheet or several, He can only deduce, by comparing his experimental data
with equation (50), the total areal density Ny of electrons summed over
all sheets.

This example can be extended directly to a continuous medium,
provided we keep the same electron trajectories. Then Na in equation (50)
is replaced by

NA = NprZ (52)
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for uniform electron birthplace density Nbp over a region of thickness
Az, or by

NA = f Nbp dz . (53)

if Nbp is variable, e.g., due to gamma attenuation.

In Section 2.4 we derive these same results from the outgoing
wave theory in an almost trivial way. Before taking up that task, let us
look again at the number of electrons that contribute (coherently) to the
signal seen by the observer. This number depends on the delayed time,
-According to equation (46), the number of electrons that contribute at
delayed time T is '

N = npzNA = ZnZoCTNA . | (54)

con

Choosing T = 10-° sec, 2g = 3x10"’m, and choosing NA at this time to be
1/10 of the value given by equation (9) gives

Neon = 3-6x10'° electrons. (0.58 Coulombs) (55)

The fractional fluctuation in this number is less than 1 in 10°. Thus .
adding the fields by doing integrals rather than by a discrete sum, as we
have done, is clearly -justified to very high accuracy,

2.4 THE OUTGOING WAVE EQUATION

It has been alleged on more than one occasion that our theory of
HEMP does not conserve energy. In this section we derive the outgoing
wave equation directly fromAthe conservation of energy. This is done
first in planar geometry; the equation is then applied to Example 3 of
Section 2.3, with results identical to equations (50) and (53). The out-
going wave equation is then derived in spherical geometry and the dif-
fraction problem is defined and discussed in simple but approximate terms. .
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Planar Geometry

Consider a plane electromagnetic wave propagating in the z-
direction, with the electric field in the x-direction. For such a wave,

= -z
E, »Ex(t =) (56)

i.e., Ex depends on the difference of t and z/c, not on t and z separate-
ly. This combination of t and z is what we have called the delayed time
in Section 2.3,

which, for any z, is the time after the arrival of the gamma pulse, Thus
the field

£, = E(T) (58)

is the field an observer at z would see on his scope if he triggered the
horizontal sweep on the arrival of the gamma pu1se. In this case, the
amplitude and shape of the electromagnetic wave is the same for all
(stationary) observers, independent of their z. Such propagation is
appropriate in vacuum where there are no sources or absorbers_of energy.

If we have plane-symmetric sources and absorbers of energy, then
observers at different- z may observe different Ees 1.e.,

E, = E,(T,2) . (59)

The symbol EX(T,z) means the field an observer at z would see on his
gamma-triggered scope.
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The power flow density in the wave is

P(T,z) = E;’-((T,z)/Z0 watts/m2 . (60)

where
Zo = 120m ~ 377 ohms . (61)

With sources and absorbers present, observers at different z may see
different power densities at the same T. Energy is put into or taken from
electromagnetic fields by currents flowing against or in the direction of
the electric field, If JX(T,z) is the current density in Amps/m?,

then

J.Ey watts/m3 (62)

is the power/m3 being taken out of the fields and put into the current
(electrons). This energy transfer to the electrons must decrease the
power flow density in the wave. Considering two z's a differential dz
apart, we can write the law of energy conservation as

EZ

3 x rwatts watts
AR = - . J E . 63
7 () - - ) o (63)

The partial derivative here means that T is held constant; energy taken
out of the wave near time T reduces the power flow density near that time,
and the notch in the wave so produced-propagates along with the wave. Now
‘carrying out the differentiation of EZ gives

) _ g
—a-—z- Ex - = '2— Jx - (64)
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Here Jx js the total current density. If we have both Compton current

ch and conduction current °Ex’ with o the conductivity, then

%E'EX - - %2 (3 +oE) . - (65)
This is the outgoing wave equation in planar geometry, first derived in
Reference 1. It is called outgoing because the wave propagates in the
same direction as the gammas. The Compton current, driven by the gammas,
appears therefore to move with the gammas, so that the variables T,z are
also convenient for expressing JXC(T,z). '

-Applicatibn to Example 3

In Example 3 we neglected any conductivity. Putting ¢ = 0 in
equation (65) and integrating z through the source region gives

E(T) = - %2 [a,.(T,2)dz . (66)

The macroscopic Compton current density is

Jye =~V Neg o (67)

where v, = 8,¢C is the electron velocity component and Nea is the density

of_Compton electrons, which is related to the density Nbp of Compton
electron birthplaces by equation (16). Thus

N, (z) 8 (T)
A bp X
EX(T) 50 ec [ - l-Bz(T) dz . (68)
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For Example 3, By and B, are given by equation (22), i.e.,

8, = Bcosw,t , B = Bsinmet . (69)

4 X

where t is related to T by (equation (A-7)) .

weT = wt - Bsinut . (70)

Therefore the final expression for Ey is

£ (T) = 20 ege (f n_dz) e (71)
= = eBRc n Z) —_——, .
X 2 bp l-BCOSwet

This is identical with equation (50), with equation (53) for Np. Recall
that NA is also equal to the number of gammas per m? incident on the -
atmosphere. ‘

Probably most readers will agree that the calculation of Ex here
is simpler and more reliable than that in Section 2.3 based on adding the
fields radiated by individual electrons.

The peak value of Ex occurs at c05met = g8 and is

E - ZD efic N (72)

A .

With g8 = 0.94 (1-MeV electrons) and Ny = 6.5x10‘1"/m3 (equation (9)), this
.becomes

- 7
Eyp = 1.6x10° V/m . (73)
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The HEMP is actually never this large, the chief reason being the severe
attenuation due to air conductivity. While the effect of air conductivity
is easily calculated from the outgoing wave equation, it is very d1ff1cult
to include accurately in the individual electron calculation.

Spherical Geometry

The derivation of the outgoing wave equation given above for
planar geometry is easily modified for spherical geometry. In this case
the gammas come from a source with dimensions of the order of a meter in a
time span of the order of 10® second. Thus at later times the gammas
occupy a spherical shell, centered about the burst point, and with thick-
ness of a few meters. The Compton current is produced in the part of th1s
shell that intersects the atmosphere at altitudes below .50 km or so. It
is clear that outgoing spherical waves will be generated if the Compton
current has components transverse to the radius vector from the burst
point, and the-geomagnetic field ensures that there will be such cur-
rents. The wavelengths in these waves will be of the order a few meters
to tens of meters (to fit into the shell). Because of the large radius of
the shell, from burst point to source region, variation of the wave with
transverse distances will be very slow compared with variation with radial
distance. This means that the waves propagate approximately in the radia)l
direction, since they propagate in the direction of their gradients.

If observers trigger their scopes on arrival of the gamma pulse,
then the delayed time T for them in the spherical case is related to stan-

dard time t by

T=t-2 (74)
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where r is the distance from the burst point. The transverse wave elec-
tric field Et will now be a function of T and r. In a fixed element 60 of
solid angle, the power flow is

2

E2(T,r)

P(T,r) = —— r2sQ watts . (75)
0

If there is a current J; in the direction of E., then the power flow will
vary with r according to

%F (EEE;%ZX_ r2§Q) - . Jt(T,r;?géﬂ watts ,
or
;_0% (rg,)?2 = r"thEt . . | (76)
V;arr'ying out _the derivative leads to
%F (rgy) = -2 rd,
= - ? r(JictoEy) . (77)

Here we have expressed the total transverse current as the sum of Compton
and conduction parts. This is the outgoing wave equation in spherical
geometry, and was first derived by Karzas and Latter in Reference 2.

Comparison of equations (65) and (77) shows that the only
difference is the replacement of Et by rEt in the spherical case and Jt by
rJt. This replacement coincides with the fact that, in a case without
Compton current and conductivity, E¢ is independent of z in the planar
case while rE, is independent of r in the spherical case.
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[f the burst point is very far away from the source region, then
the factor r varies 1little in the source region. In this case, the planar
equation (65) can be used in the source region, but we should remember
that the amplititude of the HEMP will fall, after it is produced, inverse-
1y proportional to the distance from the burst point, -

Equations (65) and (77) replace the full set of 6 Maxwell
equations with partial derivatives in 3 space coordinates and time. They
make it possible to understand the HEMP in quite simple terms, and to find
approximate analytical solutions. They also make it possible to find nu-
merical solutions, that are accurate to a few percent, with modest rather
than prohibitive amounts of computer time.

Effect of Conductivity: Saturation

_ It is easy to understand the effect of conductivity from either
- of equations--(65) or (77).- In the planar case, if there is no Compton
current, ch = 0, then Ex attenuates with distance according to

z
CE(Ta2) = £, (T) exp ["EE ozl . (78)

The attenuation length is 2/Zgo, which becomes shorter for larger o. Thus
two effects oppose each other in equation (65). As the wave moves along
in z, its amplitude is increased by the Compton current in the direction
of -ch. The minus sign here is an example of Lenz's law. At the same
time, the wave is attenuated by the conductivity. These two opposing
effects balance if the right-hand side of equation (65) vanishes, i.e.,
3E,/3z = 0 if

i
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Ey = = Jye/o - (79)

This field, for which the Compton current is cancelled by the conduction
current, is called the saturated field. The HEMP field approaches this

value in the source region when the attenuation length becomes small com-
pared with the thickness of the source region. Note that the saturated
field is the same in planar and spherical geometry. -

Below the source region, where the gammas have been mostly
scattered, both ch and o become small, but the saturated field changes
only a little. When ch and ¢ become sufficiently small, the HEMP _
propagates as a free wave without further buildup or attenuation. The 1/r
dependence is still present, of course.

The solution of the outgoing wave equation is discussed in detail in Ref-
erences 5 and 6.

Diffraction

In our derivation of the outgoing wave equations, we assumed
that energy flow was strictly in the z- or r- directions in the ptanar or
spherical cases, respectively. In the real, spherical case, this was
justified by the argument that the transverse variations of the wave are
small compared with the radial variations. The wave must have transverse
variations since there are no spherical waves that are independent of the
angles of spherical coordinates. The wave must be composed of spherical
harmonics'Y? (in the.standard notation) with £ 2 1. Generally, howeve},
the minimum length scale of the transverse variations is set by the
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atmospheric scale height, equation (8), since the gamma flux and Compton
current will vary significantly in this distance. For observers that are
near the horizon from a given burst point, as sketched in figure 5, the
vertical direction is not far from the 8-direction of spherical coordi-
nates. In this case, the scale length of wave variations in & is indeed
approximately the scale height h. The scale length for variations in the
azimuthal direction 4 is comparable with the radius of the source region
from the burst point, which is typically much greater than h; this vari-
ation comes from the changing angle between the newborn Compton electrons
and the geomagnetic field, Thus the principal transverse variations are
those associated with the scale height.

Burst

9

Nerver

Figure 5. For an observer near the horizon, the e-direction
is approximately vertical.
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The effect of these variations is to produce diffraction of the
wave as it propagates on outward from the source region. The theory of
diffraction of spherical EM waves is developed in detail in Section 3. At
present we use an approximate argument to show why the effect of dif-
fraction expected to be small,

Let us take the wavelength in the EMP to be
A=30m . (80)

Let us imagine that the HEMP as seen by an observer near the horizon is
produced entirely in a s1it of width h. This would seem to over-estimate
the diffraction, since it takes no benefit from the free spherical wave
existing below the source region (see figure 5), which should join on to
the lower edge of the new wave generated in the slit. Now the distance of
travel of a (planar) beam of width h before the diffraction effects reach
its center is

s = hZ/A = 1500 km . (81)

This distance is substantially larger than the distance ~ 600 km from an
observer on the horizon to the source region on his ray from the burst
point, Even so, this planar diffraction estimate suggests that diffrac-
tion effects could amount to several percent for the horizon observer,
Actually, we shall find that spherical diffraction is substantially less
than planar diffraction. -An outgoing spherical wave, once it is well into
the wave zone for all of its spherical harmonic components, does not
undergo further change in its angular dependence.
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2.5 BREMSSTRAHLUNG

The EMP that we have calculated thus far in this report is due
to the deflection of the Compton electrons by the geomagnetic field.
There are additional mechanisms by which Compton electrons radiate. Two
of these are described here,

The Compton scattering process produces a moving electron sud-
denly. Both classically and quantum mechanically, a sudden change in the
velocity of a charged particle leads to the emission of radiation. This
is in addition to the scattered gamma in the original Compton scattering
process. In quantum mechanics, there can be two, or more, photons in the
final state, and'the sum of the energies of these photons can approach the
energy of the initial photon. We need to distinguish between the addi-
tional photons that have energies that are an appreciable fraction of that
of the initial photon and those that have very small energies.

"~ The probability that there will be an additional photon of sub-
stantial energy in the final state is of the order of e2/hc ~ 0.01. Thus
this is a fairly rare occurrence. Furthermore, the additional photon will
be subsequently scattered by the air 1ike any other gamma, and the exis-
tence of the additional photon will cause no sighificant change in the EMP
produced. |

The probability that there will be additional photons of very
low energy is large, In fact, the total number of low energy photons is
(in lowest order) logarithmically infinite, since the number of photons

per unit photon energy E_ is-proportional to

p
N(Ep) dEp - dEp/Ep ~ do/w . (82)

Here we have used the Planck relation Ep = fiw, where w is the photon
angular frequency and fi is the reduced Planck constant. Further, the
emission of the low-frequency radiation can be computed classically,
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The quégtibn now arises whether this low-frequency radiation
will add coherently from the multitudinous Compton scattering events, as
the geomagnetic EMP does. Since the birthplaces and birth times of
Compton electrons are random, except that radial position and time are
correlated to within the gamma pulse duration by the speed c of the in-
jtial gammas, the only possible direction in which the phases of the vari-
ous emissions can add constructively is the forward or radial direction,
In this direction, the question is how many electrons can contribute
signals that are approximately in phase to a given observer. This ques-
tion was answered for the geomagnetic EMP at the end of Section 2.3,
equation (55). For frequencies less than v = 10%/sec, for which the time
delay for phase coherence is 10-° sec or less, the number of electrons is
of the order of 10'%. Now the fraction of the Compton electron energy

E o radiated at frequencies less than w = 10° is

f(0) ~ 0.01 fi/E., ~ 10°2° ergs/E g

- = 107" for E.o = 1 MeV . (83)

This is for a single radiating electron. Taking into account the addition
of fields from 10!® electrons, the energy radiated per electron has to be
multiplied by a number that is of the order of magnitude 10'8, since this
would make the fractiona] energy radiated per electron larger than unity,
it is clear that reaction of the radiated fields on the electrons would
limit the actual radiated fraction, presumably to a value not far from
unity. Thus the radiation from the starting of the Compton electrons
would be a large effect, at least comparable to the geomagnetic EMP, were
it not for the fact that the sum of these radiated fields of individual
electrons is actually zero except for fluctuation effects. The reason is

explained in figure 6. Opposite fields are radiated in the forward .
direction by two Compton electrons whose transverse velocity components
are opposite., Since the Compton electron angular distribution is sym-
metrical with respect to reversal of the transverse velocity, the radiated
fields for a given transverse velocity and its opposite cancel exactly in
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the forward diréztidn. Only fluctuations in the actual Compton electron
distribution will radiate. For these the radiated fields of an
individual electron to be multiplied by /10'% = 10°, and the radiated
noise energy per electron is 10° x 10~1* = 10-5 of the Compton electron
energy. These numbers are rough order-of-magnitude only, and will depend
on the frequencies considered. The noise is focussed in the forward
direction, but is attenuated at later times by air conductivity.

The effect described above could be called a type of bremsstrah-
lung. The Compton electrons also emit true bremsstrahlung in their col-
lisions with the nuclei of air atoms. Because the Compton electrons do
not move radially with the speed ofAlight, the noise so radiated should be
essentially incoherent, roughly isotropic in direction with power equal to
the sum of the powers radiated by individual electrons.

Y

Compton Electrons

- :'..L.. Fields Radiated in

2" Forward Direction

Figure 6. Cancellation in forward direction of fields
radiated due to sudden start of Compton electrons.
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SECTION 3
SPHERICAL DIFFRACTION

The goal of this section is to find a way to extrapolate out-
going spherical waves from a radius r; to larger r, including r = ». The
radius r; is the outer radius of the source region, so that the Compton
current and the air conductivity may be assumed to vanish in the region of

interest. In this region Maxwell's equations take the form

o >
%_:_E=-.V><E , (84)
P4 > .
lz_iwxe . (85)
c

Note that these equations are invariant to the replacement E >
§, § > - E; the two equations are simply interchanged by this replace-
ment. Therefore, any relation between E and E derived from the equations
will also be valid under the replacement. We shall call equations related
by the replacement images of each other. Thus equations (84) and (85) are

images of each other.

Taking the dot product of ¥ with equation (84) yields

(#.. E) = - ? . v-x E = - (F x V) . E = -E . E ’ (36)

ol —
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where,

L=Fxvy | (87)
This operator is the angular momentum operator of quantum mechanics, apart
from a constant factor. Of more immediate relevance, it involves deriva-
tives only in directions transverse to ¥; i.e., only with respect to the
angular coordinates 8 and ¢ of spherical coordinates.

Equation (86) can be written

st =-T.E . | (88)

The image of this equation is

13 (pgy={.8 89
L2(re,) , (89)

We can also find alternative expressions for these two time derivatives.
Since v x ¥ = 0, proceeding from the second step in equation (86) yields

L2 (bB)sc(PxV) eb=vxtobove(fxi) . (90)
c at r

The image of this equation is

S ) =-v e (Fxl) . (91)

41



The appearance of the cross products in these equations suggests that we
should cross ¥ with equations (84) and (85). The first of these yields

19 (2.3 > o> > >

22 (FxB)=-F Y xE)=(Ff ¥ - ¥

- (F x B) < (VxE) = (W) E- v (Feb)

where, in the last term, V(E) operates only on E. We can rewrite this as
13 > > - +. +- +.+ +.+
EEE(r‘ xB) = (r « V) E -V (r«E) +V(r)(r )

where v(r) operates only on . Working out this term in Cartesian compo-

nents r; and E; gives

j
re > _ _ >
V(r)(l" . E) = z: Ein‘.i = £ .
i
Therefore

13 [z _&
_Eﬁ(r B) = (r.a?)E+E-v(r‘E)

= % (re) - v(rE) . (92)

The left hand side of this equation has no radial component., It can be
seen that the right hand side doesn't either. To show this one needs to
use the fact that the rad1a1 derivatives of the unit vectors ro, eo and
$0, which enter into E all vanish., (Their derivatives with respect to o
and ¢ do not vanish.)
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Equations (88); (89), (92) and the image of (92) are equivalent
to the Maxwell equations (84) and (85). We have separated the fields into
radial and transverse parts.

3.1 THE RADIAL FIELDS

Taking the time derivative of equation (91) and using equation
(92) gives

2

(=]

(fE) =-v.e[(F-V)E+E- Wre)] . (93)

N

1
c? at
Now V E = 0 since there are no charge densities in the region of inter-
est. (Note that Eaking the divergence of equation (85) gives a(v « E)/at
=-0; thus if v « E = 0 initially, it will remain so.) Further, using

- Cartesian coordinates gives

ve@#eVE= ] 2 p 2

g J
3 K
= ;s — E.+r., = 7 E
_z_ ( War, 1 3 ar; oy i)
1,3 J J

=V +F + (Fev)v.E=0 .

Therefore equation (93) becomes

Q
N

1
c? ot

(rE,) = v3(rE,) . (98)

N

The image of this equation is

32 2
2 v ) = wre) | (95)

(e X
N
Q2
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_ . N .
Thus we see that the scalars ¥ » E and ¥ « B must satisfy the scalar wave
equation.

The general solution of the scalar wave equation in spherical
coordinates r, 8, ¢ is found by making use of the well-known decomposition
of v? into radial and angular derivatives. For any scalar function vy,

vy =1 3 23,1 2, - (96)

(This decomposition is verified by writing L2y = (¥ x v) « (¥ x wy) =
¥ o (v x (F x vy)) and working out the triple cross product.), The eigen-
functions of the operator L? are the spherical harmonics Yem (e, ¢), and

2 =
LYm---f.(ﬂ,+1)Ym . (97)

One solution of equation (94) is then

rE =.% R (r,t) Y, (8, ¢) _ : (98)

where the function R (r,t) is found by substituting this expression into
equation (94). The result is

1 a%R_ %R _a(e+1) " (99)
c2 at? ol r2

Usually this radial equation is solved by going to the Fourier domain, but

it is more convenient to stay in the time domain. We look for an outgoing

wave solution by trying R of the form

R(r,t) = £,(T) + -1; f(T) + % f.(T) + ... (100)
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where T is the delayed time
T=t-1 | (101)

For R a function of r and T, equation {99) becomes

23 0y M. (w1
(c aT ar) ar w2 R (102)

When the expression in equation (100) is substituted in this equation and
the coefficients of the power 1/rn+1 collected on both sides and set
equal, the result is a relation between fn_1 and fn,

2 dfn
- n = = [2(2+1) - (n-l)n]fn_1 . (103)

Putting n = 0 gives f_; = 0, whereas n = 1 yields

28f1 - g(e41) £, . (104)
c dT

Thus the series starts correctly with fg, and f4 (T) is completely arbi-
trary. The function f, is proportional to the T-integral of fq, f, is
‘proportional to the T-integral of fi, and so on. ' Since the right hand
side of equation (103) vanishes for n = & + 1, the series terminates after
n=2. (Since Er ~ R/r2, the powers in E,. range from 1/r? to 1/r£+2.)
Equation (100) therefore does provide a well-behaved solution of outgoing-
wave type. Changing the minus sign in eguation (101) to a plus sign would
yield an ingoing-wave solution. ‘
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The general solution for rE. is a sum of terms of the type of
equation (98) with all possible £ and m, where each Y, . (0,¢) has its own
factor R, (r,t). This general solution can obviously be written as a
power series in 1/r by collecting coefficients of the same power together,

r2e = Fo(T, 0, 0) + LFu(T, 0, ¢) + LoFp v . (105)
r2

The recursion relation between F and F_; is
dF

n= - WP (1) n] Py (106)

o™

Once again, Fy is completely arbitrary, both as to its T-dependence and
its dependence on 8 and ¢. Fi, F2, etc., are then determined as time
integrals of Fn with lower n, operated on by the operatdr on the right-
hand side of equation {(106).

If r2E (T, r, 6, ¢) is known at some value r = r,, the expansion
(105) and the recursion relations (106) allow determination of all of the
F,. From these, r2€, is determined for all other r outside the source
region (i.e. where Compton current and conductivity vanish). Thus given
E.at anr just outside the source region, E. can be calculated at all
larger r. The same is true, of course, for B.. We could use these facts
to extrapolate the EMP to larger distances, but we need to evaluate also
the transverse fields. These fall off only as 1/r, whereas E,. and B,

fall off as 1/r2, in the limit of large r.
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3.2 THE TRANSVERSE FIELDS

We pointed out just after equation (92) that that equation had
no radial component on either side. No 1nformat10n will be lost, there-
fore, in crossing the unit vector ro with it, Note that

a Fo =0 = +0 . . ' (107)

and

=-rB+FB_=-r8 , (108)
+ +
where Bt is the part of B transverse to ¥. The result of the crossing is
therefore

18 3 42 2 17
—— B, = - _(rxE) +=L (re 9
c r t W ( X t) - ( r) (10 )

The image of this equation is

13 2 _3 (2 1
—— rE —_ B - B ,
vt =2 (FxB) - L1 (s (110)

, > N _
These equations relate the transverse parts of B and E to each other and

to E. and B.. Together with equations (88) and (89) they are completely

equivalent to the Maxwell equations (84) and (85).

Let us examine the angu1ar dependence of Bt and Et Assume
first that the scalar 7 E = ¢ is nonvanishing, and let it have
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the angular dependence of some particular Yop- Equation (109) then
>
jndicates that a possible consistent angular dependence of Bt and ¥ x Et

is

B, - Ly~ ¥%xE . - ‘ (111)

rox (F x Et) ~ F x E¢
~or
2r . 2
SrE P x (P x W) = - Py,

where Y is the transverse part of the gradient operator. Thus our first
assumption (non-vanishing Er) leads to the angular dependences

> > ‘
B, - Ly R B, - Wv . (112)

Let us see if these results are consistent with equations (88)
and (89). Note that

>

LeB=(Fxv) CE

Fevxb=r(vxi), . (113)

>
The last form shows that only the transverse components of E are involved
> >
in L « E. Therefore

~y
*
mey
n
=
——
<1
x
‘_‘_4
=
g
=
n

r(vxw).=0 |, - (114)
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since the curl of the gradient of a scalar function vanishes identically.
Equation (88) then indicates that

B.=0 . (in first case) ' (115)

Equation (89) becomes

lz_ (g ) - L2 (vE) - 2(2t1) (rE) (116)
c

which is consistent. The only other equation to check for consistency of
the angular dependences (112) is equation (110). -Since B =0 this
equation requires
7 > 7 +>

E, - FxB ~Fxly-rx(rxw-- rivge (117)
which agrees with equation (112). .We have therefore found a consistent
set of angular dependences for the case Er # 0, Br = 0. The image
replacement will give consistent angular dependences for the E. = 0, B, #
0.

For the first case,'Br
found by taking the time derivative of equation (109),

0, a wave egquation for Bt B can be

1 B2 2 3 [+ _ 2 1719
- 2 _rB-= Z_(r xE Lo (rE
2 at2 7 A S T

Ol

-2
ar
Using ¥, crossed with equation (110) in the first term on the right and

equation (89) in the second term gives

> 2 > > >
133_2_ b= rB+ L(L-rB) . (118)
at ar r
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N ' . >
A similar attempt to find an equation for Es does not work out; E,. is not
eliminated from the equation.

For the case E. = 0, the image of equation (118) for Et = E is

2 > >

3 e+l Ul . rE) (119)
L L .

2 >
}.__a__ rg =
t ar® r

o2 ot2
These two sets of solutions are well known., The set with B. = 0 are
called transverse magnetic, or fields of electric type. Expanded in
spherical harmonics, they represent the electric multipole fields. The
set with E. = 0 are called transverse electric, or fields of magnetic
type, and the spherical harmonic expansion is in terms of magnetic
multipole fields.

There are no radiating solutions that have both E = 0 and B,
0. If we assume that E. = 0 then equation (89) shows that L « B =0,
This is the same as * - v x B 0, or that the radial component of v x B
must vanish. Therefore Bt ijs derivable from a potential, Bt =V ¥ for
some ¥, Equation (110) then gives the angular dependence of E,

> > > >
rEt r x Bt Fox V.Y rox Yy Ly . (120)

Therefore, if B. =0 aléo, equation (88) shows that
> +> 2 .
0=LE=L% . . -~ (121)

The only solutions of this equation are independent of angles (2 = 0), for

> >
which both B, and Eq vanish since they are angular derivatives of 4.
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3.3 Extrapolation of Transverse Fields

The extrapoltation of fields that satisfy equation (118) or (119)
parallels that of the radial fields developed in Section 3.1. For out-
going waves define the delayed time T by equation (101). Then for trans-
verse electric fields (Er = 0), try expanding E in an inverse power series

inr,

PE(P, 0, ¢, t) = EU(T! 0, ¢) +-% EI(Ts 8, ¢) +

lf FolT, 0, 6) + ... (122)
-z

Inserting this expansion in equation (119) and collecting coefficients of

1/rn+1 yields the recursion relation

t

> > > G
2nF == [L L+ (n-1)n] [ FcdT . (123)
o n-1 _

Again Eo is arbitrary and all higher Fn are determined in terms of T-inte-
EY
grals of Fy.

>
Suppose that E is known at some value ry of r for all 8, ¢ and
>
T. Then Fg can be determined from the equation

> > 1 2
FO(T’ 8, ¢) = rlE(rls 0, ¢, T) - Ly FI(T, 9, ¢)
- -1—-2- FZ(T, e, ¢) - -o‘o . (124)

ri
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This equation can be 1ntegrated forward in t1me If Eo is known at time
T, equat1on (123) can then be used to find F1(T + GT), then Fz(T + §T),
etc. Then equation (124) gives Fu(T + 8T). When Fo, Fl, F2, etc. have
thus been found for all T, equation (122) gives E for all r > ry. This
process is suitable for numerical evaluation.

Analytically, the equat10n: can be solved by iteration, The
first approximation neglects all F except Fo, which from equation (124)

is

Fo(T,8,8) = r1 E(r1,8,0,T) : (125)
Then _
rE(r!e:¢,)T) = F0(39¢9T) . ' (126)

This is the approximation normally used in CHAP.

In the second approximation, equation (123) is used to eva]uate
Fl from Fo, with the result

> +

Fo=-L00 ) Foedr

| =

[

sr T s .
= LL f r1 E(ry) cdT . (127)
0

<>
This result is now put back in equation (124) to re-evaluate Fq to the

second order,

Fo = rlE (ry) - (128)

il b
il 4
.
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Both equations (127) and (128) are then used in equation (122) to extrapo-

>
late rE. The resylt is

» +> 1 + 1 >
Y‘E(T‘) = TIE(Y‘I) - ﬁ F1 + * F1

> 1 ‘"1 >
= riE(ry) - 5 (I-+) Fp . (129)

>
Note that the term in F, here drops out at the matching radius r = ry,

Equation (129) gives the first-order correction for diffraction
that occurs in the region r > ri. As seen in equation (127), the cor-

rection involves an integration of the lowest-order field in time and an
> >

application of the angular derivative operator L Lo, Higher order cor-
rections involve repeated applications of the time integration and angular
derivatives,

Let us examine the sign of the first-order correction. If
E(ry) is positive at all T but returns to zero -for large T, then F, is
also positive for all T but approaches a constant for large T. Fquation
(129) then shows that E(r) is made less positive by the correction and
acquires a negative overshoot. This behavior is sketched in figure 7.
The diffraction correction is trying to make E have vanishing time inte-
gral at r = =,

The relative magnitude of the correction, for spherical harmonic

SE
(1 -1

- e+ 1) é—f— . , (130)
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Signal Calculated
by CHAP

E
s\“ T
First-Order ~ ~~ ~ """~
Diffraction Correction
Corrected Signal
E

T ‘\\\\\\\Ex“ﬁﬁﬁ——;

Figure 7. The effect of diffraction on the EMP calculated
by CHAP, to first order. The magnitude of the
correction is exaggerated in this sketch.
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where t is the pulse length at r = ri. In CHAP applications, ct is gener-
ally not larger than 100 meters, while r; is of the order of 100 kilo-
meters. Thus the correction is small unless very large 2's are present.

While the analytical method is good for estimating the dif-

fraction correction to the EMP during the original pulse (at r = ry), it

is not a convenient way to find the ultimate time wave-form of the dif-
fracted pulse. This is best done by the numerical method, which has been
applied successfully in the surface-burst EMP code LEMP. The duration of
the overshoots, which make the time integral of E vanish at r = =, is of
the order of r,/c. This is much longer than the original pulse.

&>

For transverse magnet1c fields (B = 0), E in the equations of
this section 1s rep]aced by B The quest1on arises as to how to decompose
an arbitrary E (or B ) on the surface of the sphere at r = r, into trans-

verse electr1c and transverse magnetic parts,

3.4 Decomposition of Transverse Fields

>
Suppose we are given Et on the surface of the sphere r = ry, but
have no reliable information on F there. (This is the situation for CHAP
results.) We shall show that Et can be decomposed into two terms

>

E (131)

>
t"—'l""vtx ]

where ¢ and x are two scalar functions over the surface of the sphere,

> +»
First, take L » Et and define y by

2 > +
L9 =L » Et . (132)
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This equation can always be solved by expanding the scalar Lt- Et in

spherical harmonics. Then the &, m harmonic part of ¢ is given by

- 1 e E
¢2.IT| - < m)— (L * t)R.m (133)
Formally, this equation can be written
> +
v=LC.E .. | (134)
2 t .
>
Next, subtract Ly from Et, defining
> + > '
E% = Et - Ly . ' (135)
’ + > >
Since Lo Ei =0 s or (Vv x E')r = 0, the integral
B » .
x (B) = [ E% « ds . (136)
A .

between a reference point A and any other point B on the sphere surface is
independent of the path taken, and therefore defines a potential function
x {B) such that

(137)

>
Equation (131) then follows. Note that L « Vix = 0 for any x, so that the
definition of y, equation (132) or (134), is unaffected by x.
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The function x can be evaluated by taking the surface divergence

> >
of Et' Since V¢ L ¥ =0 for any ¢

r

&>
This equation can always be solved by expanding Vi * Et in spherical har-
monics. Formally the solution is

From the work of Sections 3.1 and 3.2, it can be seen that Ly represents
the transverse-electric part of Et' while vx is the transverse part of the
electric field going with the_transverse-magnetic fields. Since in the
Tatter case we actually need the magnetic field, it is better to find X
such that

>

=1 .3 : ' 140
X-L—Z-L. t . . ( )

Then tx is the transverse-magnetic part of Et'
3.5 Application to CHAP Results

Analysis of the fields at r = r; in terms of spherical harmonics
is a considerable task. Since we desire only an estimate of the effect of
diffraction on the EMP calculated by CHAP for the Kingfish event, we adopt
a simpler approach.
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In CHAP coordinates, 8 is the angle of the observer with respect
to the (downward) vertical through the burst point, and ¢ is the azimuthal

angle about ground zero. ‘Because the geomagnetic field was. not far from
horizontal (dip angle ~ 30°), the electric field was principally Ee' The
most rapid variation of Ee was with e, rather than ¢, because the air

density varies expgnential]y with height or 8. This variation gf Ee with

6 means that v, - E, # 0. Thus there must be an E., since v « E = 0,
Therefore, we are dealing primarily with transverse-magnetic fields, and

>

the diffraction analysis should be applied to B¢ and Be' The operator L
-
appliied to B is

T 1 1 3
L «+B=———sing B, - B (141)

Since B¢ is larger than Be and 3/38 is larger than 3/3¢, we may drop the

+ > >
Tast term in this equation. Then picking out the ¢-component of L L « B
gives ' -

T 3 1 3 '
+ B s — — sine . 142
L¢ L 36 sino a9 B¢ ( )

Equation (129) for the extrapolated B¢ then becomes

1 r
rBy(r) = riBy(r1) - 3 (1- ) Foy (143)
where
15 1 3 IT '
F.. =229 ~— sind B.{r ar . 144
$1 2 39 sine 58 n o " ¢( 1) ¢ (144)
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To apply this to CHAP, one needs to run CHAP for several rays at
different 6's, running them out to an r; just outside the source region.
Then the angular differentiation and time integration are done to find the
correction factor F¢1. The results of this calculation are giveﬁ in the
classified companion report, Reference 4. Because in CHAP B¢ and Ee are

very nearly equal, the correction was actually applied to Ea'

If the fields were mostly transverse electric, the correction
would have been applied chiefly to E¢. The fractional correction to E¢
would have been about the same as that to B¢ or Ee'
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APPENDIX A
FIELD RADIATED BY A SINGLE ELECTRON

The formula for the electric field radiated by a moving and
accelerating electron is derived in References 7 and 8. In MKS units, the

formula is
E("Z‘ t)= A -EEXE(E-E) xE] ) (A'l)
0“0 ﬂﬁ— N ...3 -
(1 ~n - B)
Here Z, is the impedance of space,
Zo = 1207 ohms (to 0.1%) . (A-2)

R is the distance from the electron to the observer,

R=[¥ - HE)| (A-3)

where ¥(t) is the position of the electron at standard time t. The
velocity of the electron at this time, divided by c, is & and 3 is the
time derivative of 8 at the same time. The unit vector & is in the
direction of ¥y - F(t). The field radiated by the electron at t arrives

at the obserVer at standafd time to,

tg=t+RC . | (A-4)
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As in Section-2.3 we assume that the electron is born at the
origin t = 0, and that the observer's coordinate zp is very large com-
pared with the gyro radius L. Then the variation of n over the electron
trajectory is small compared with that of E, and f can be taken as
constant and in the z-direction. Further, if the right-hand side is
evaluated at the delayed time T, of the electron, it will give directly
the electric field at the delayed time Ty = Te of the observer,

Turning now to the_ evaluation of the vector products in equation
(A-1), note that both & and # are in the x,z plane, as is also A. There-
fore (A - 8) x & can have only a y-component, which is

[(% - B) x ], = (0,808, - (n-8,)8,

B, + BB, - B,B, .

Q;B[COSNet - 8] . ‘ (A-5)

3
Here we have used equatlon (22) for By and i Since E involves the
vector product of n with this vector, E has on]y an x component,

) . 1o e 8 (cosugt -38) . (A-6)
b= R (1-Bcosu,t) :

The relation between t and T, = is equation (32), or

Te

meTo = u,t - 8sin wt . (A-7)
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We also show here that

™
[ EATNdT, =0 .

wet=0

(A-8)

To perform this integration, it is most convenient to express dTo in terms

of dt by equation (31), or

dt, = (I—BCOSmet)dt

Therefore the indefinite integral

COSwet - B
1= medTo
(l-scosmet)3

= J’ COS¢ - 82 dé
(1-Bcosé)

(A-9)

(A-10)

(A-11)

where ¢ = met. It can be shown by differentiation that the indefinite

integral is

[ = sing
1-Bcos¢

(A-12)

Therefore, the integral from O to = vanishes, as stated. Also, the

integral from 0 to w,t is

, Sinmet
{wt) s —
e 1-Bcosugt
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