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Abstract. We consider the initial value problem for wave-maps corre-
sponding to constant coefficient second order hyperbolic equations in n + 1
dimensions, n ≥ 4. We prove that this problem is globally well-posed for
initial data which is small in the homogeneous Besov space Ḃ2,1

n/2× Ḃ2,1
n/2−1.

Our second result deals with more regular solutions; it essentially says that
if in addition the initial data is in Hs ×Hs−1, s > n/2, then the solutions
stay bounded in the same space. In part II of this work we shall prove that
the same result holds in dimensions n = 2, 3.

1. Introduction

Let (M, g) be a compact Riemmanian manifold without boundary. A wave
map is a continuous function from the Minkovski space Rn ×R into M ,

φ : Rn ×R→M,

which is locally a critical point for the functional

F (φ) =
∫

Rn+1
< ∂iφ, ∂iφ >g dtdx .

In local coordinates in M the equations for φ can be written as

2φα + Γα
jk(φ)∂iφj∂iφ

k = 0, (1.1)

where Γα
jk are the Riemann-Christoffel symbols. To formulate the correspond-

ing initial value problem consider the space-like surface Σ = {t = 0} and add
to the equation (1.1) the initial condition

φ = f0, φt = f1 in Σ. (1.2)

Typically one chooses the initial data in a Sobolev space, (f0, f1) ∈ Hs(Rn)×
Hs−1(Rn). Then the interesting question is what is the lowest value of s for
which this equation is locally well-posed. A simple scaling analysis leads to
the critical exponent

sc =
n

2
.

This roughly implies that one could hope to obtain a local well-posedness
result only for s ≥ sc = n/2. The exponent s = n/2 is particularly interesting
since rescaling preserves the homogeneous Ḣn/2 × Ḣn/2−1 norm of the initial
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data; hence, for this s a local well-posedness result (say, for small data) will
imply its global counterpart.

Naively one could say that this is essentially an equation of the form

2u = |∇u|2.
However, what enables one to obtain good results for this problem is the special
form of the nonlinearity. Namely, the square of the gradient only appears in
expressions of the form

Q0(u, v) = ∂iu∂iv = utvt − uxvx.

With this notation, the equation can be rewritten as

2φα + Γα
jk(φ)Q0(φ

i, φk) = 0. (1.3)

This special quadratic form exhibits certain cancellation properties in esti-
mates and is called a null-form. One simple way to see this cancellation is in
the following decomposition of Q0:

Q0(u, v) = 2(uv)− u2v − v2u, (1.4)

which is used later in the article.
Taking advantage of the null structure of the nonlinearity Klainerman was

able to prove global well-posedness for small smooth data [7] in dimension
n ≥ 3, (see also Sideris [14] for related results, including in dimension n = 2).
Recently counterexamples to global well-posedness for large data in dimension
n ≥ 3 were also found, see [13], [3].

On the local well-posedness side Klainerman-Machedon [10] proved local
well-posedness in Hs×Hs−1 for s > n/2 in dimension n ≥ 3. The same result
in dimension 2 was later proved by Klainerman-Selberg [11]. One should note
that the difficulty decreases with the dimension, so the problem in 2 dimensions
is the hardest.

Hence, the most interesting remaining problem is to study well-posedness in
the scale-invariant setting, i.e. when s = n/2. Since Hn/2 does not embed into
L∞, one does not expect the solution φ to be continuous therefore any approach
to this problem must take into account the global geometric properties of the
target manifold (e.g. completeness, curvature, etc).

Our aim here is to prove a slightly weaker result, namely that the wave maps
equation is locally well-posed for initial data in the homogeneous Besov space
Ḃ2,1

n
2
× Ḃ2,1

n
2
−1, which is a bit smaller than Ḣ

n
2 ×Ḣ n

2
−1. Nevertheless, the scaling

for the two spaces is the same, therefore we can still make the connection
between the local and the global problem and prove a global result for small
data. One advantage in using the Besov spaces is the embedding

Ḃ2,1
n
2
⊂ L∞,

which guarantees that in this case the solution φ is continuous. Then we can
study the problem locally with respect to the target manifold M . Conse-
quently, the geometrical properties of M become irrelevant in this context.



Our main result is

Theorem 1. a) There exist C,D > 0 so that for any initial data satisfying

|(f0, f1)|Ḃ2,1
n
2
×Ḃ2,1

n
2−1

< C, (1.5)

there exists a global solution φ to (1.1), (1.2) satisfying

|(φ(t), φt(t))|Ḃ2,1
n
2
×Ḃ2,1

n
2−1

≤ D,

which is the unique limit of smooth solutions. Furthermore, the solution de-
pends Lipschitz on the initial data.

b) Assume in addition that (f0, f1) ∈ Hs ×Hs−1. Then

|(φ(t), φt(t))|Hs×Hs−1 ≤ c|(f0, f1)|Hs×Hs−1 . (1.6)

For large data we can take advantage of the finite speed of propagation and
observe that the data is in effect small if restricted to a ball of sufficiently
small radius. Consequently we can use Theorem 1 to obtain

Theorem 2. For any initial data (f0, f1) ∈ Ḃ2,1
n
2
× Ḃ2,1

n
2
−1 there exists T > 0

and a solution φ to (1.1), (1.2) satisfying

(φ, φt) ∈ C([0, T ); Ḃ2,1
n
2
× Ḃ2,1

n
2
−1),

which is the unique limit of smooth solutions. Furthermore, the solution de-
pends continuously on the initial data.

Of course in this case the existence time T fully depends on the initial data,
and not only on its size.

2. Function spaces

A critical part in the proof of our result is the choice of the space-time
function spaces where we look for the solutions. There are two ingredients
required in the definition of our spaces, namely the structure of the dyadic
pieces and the Besov type norm used for the summation of the dyadic pieces.

We use the notations (x, t) for the space-time variables and (ξ, τ) for the
corresponding Fourier variables. Then the symbol of the wave operator 2 is

p(ξ, τ) = τ 2 − ξ2.

Denote by w the normalized symbol of the wave operator

w(ξ, τ) = |(ξ, τ)|−1p(ξ, τ).

Let χ be a smooth cutoff function supported in [1, 4] so that∑
j∈N

χ(2−jx) = 1.



Define now dyadic cutoff symbols with respect to frequency

aλ(ξ, τ) = χ(
|(ξ, τ)|
λ

),

and with respect to the distance to the cone,

bµ(ξ, τ) = χ(
|w(ξ, τ)|

µ
),

Define also the multiplier

b̃µ(ξ, τ) =
∑

j≥−4

b2−jµ(ξ, τ),

which cuts off a 4µ neighbourhood of the cone.
Now we can define the ||.||s norm by

||u||s =
∑

µ=2j

µs|Bµ(D)u|L2 .

Correspondingly we define the first dyadic building block for our function
spaces, namely the space Xs

λ of functions with Fourier transform supported in
a dyadic region in frequency |ξ| ∈ [λ, 4λ], with the ||.||s norm.

A second dyadic building block is the space Yλ of functions with Fourier
transform supported in a dyadic region in frequency |ξ| ∈ [λ, 4λ], with norm

|u|Yλ
= |u|L∞(L2) + λ−1|2u|L1(L2)

(Here and below Lp(Lq) stands for Lp
t (L

q
x)). Then we define the dyadic pieces

of our function spaces at frequency λ as

Fλ = X
1/2
λ + Yλ.

These dyadic blocks are on the same scale and contain the L2 solutions for the
wave equation.

The norm of the space F where we will look for solutions to the wave
equation with initial data in Ḃ2,1

n
2
× Ḃ2,1

n
2
−1 is a homogeneous 1-Besov space in

frequency with norm defined by

|u|F =
∑
λ=2j

λ−
n
2 |Aλu|Fλ

. (2.7)

The power of λ indicates how many derivatives we add (i.e. n/2). To be
precise, the functions in the space F are uniquely determined modulo poly-
momials. To resolve this ambiguity we restrict the space F to functions which
have limit 0 at infinity.

For larger exponents s > n
2

define the 2- Besov spaces F s with norms

|u|2F s =
∑
λ=2j

λ−2s|Aλu|2Fλ
. (2.8)

Observe that (modulo constants) F contains the solutions to the homoge-
neous wave equation with initial data in Ḃ2,1

n
2
× Ḃ2,1

n
2
−1 while F s contains the

solutions to the homogeneous wave equation with initial data in Hs ×Hs−1.



Applying 2 to functions in Fλ we obtain a space we denote 2Fλ which
equals

2Fλ = λ(X
−1/2
λ + L1(L2)λ).

Similarly we define the spaces 2F , 2F s.
Since we want to take advantage of decompositions in frequency away from

the cone, the following result is useful

Theorem 3. a) The operators B̃µ(D) are bounded in Fλ and in 2Fλ uniformly
in µ ≤ λ.

b) The operators (1−B̃µ)(D) are bounded from Yλ into µ−1L1(L2) uniformly
in µ ≤ λ.

Proof: a) The statement is obvious for the Xs
λ spaces, therefore it suffices

to show that the operators Aλ(D)Bµ(D) are bounded in L∞(L2) and in L1(L2).

Take the Fourier transform in x. For fixed ξ′ the symbol (aλb̃µ)(τ, ξ) satisfies

|Dα
0 (aλb̃µ)(τ, ξ)| ≤ cαµ

−|α|

and is supported in the region

|τ ± |ξ|| ≤ cµ

therefore its time inverse Fourier transform K(t, ξ) satisfies

K(t, ξ) = e±it|ξ|L(t, ξ),

where
|L(t, ξ)| ≤ cN

µ

(1 + µt)N
, for all N.

Hence
K(t, ξ) ∈ L1

t (L
∞
ξ ),

therefore the corresponding multiplier is bounded in L1(L2) and in L∞(L2),
q.e.d.

b) We need to prove that the multiplier with symbol gλ,µ = λ−1aλ(1− b̃µ)p−1

has norm at most O(µ−1) in L1(L2). In this case the symbol gλ,µ(τ, ξ) satisfies

|Dα
0 gλ,µ(τ, ξ)| ≤ cα(µ+ |τ ± |ξ||)−1−|α|,

therefore its time inverse Fourier transform K(t, ξ) satisfies

K(t, ξ) = e±it|ξ|L(µt, ξ),

where
|L(s, ξ)| ≤ cNs

−ε(1 + |s|)−N .

Hence
|K(t, ξ)|L1

t (L∞
ξ

) ≤ cµ−1,

which again implies the desired conclusion.

In the estimates in the proof of Theorems 1,2 it is essential to have good
Lp

t (L
q
x) embeddings for our function spaces. It is easier to (non-uniquely)



relabel the Lp spaces following the same convention as in [12], namely therefore
we are going to (non-uniquely) relabel the Lp spaces in Rm with two indices,

L[p,s] := Lr,
1

p
− s

m
=

1

r
.

In terms of the Sobolev embeddings, this means that

W s,p ⊂ Lr.

The desired embeddings can all be derived from the Strichartz estimates
for solutions to the homogeneous wave equation. Thus, let u solve 2u = 0 in
Rn+1 with initial data u(0) = u0 and ut(0) = u1. Then the estimates we need
are the energy estimate

|u|L∞(L2) ≤ c(|u0|L2 + |u1|H−1), (2.9)

and the L2(Lp) estimate, namely

|u|
L2(L[2,s+1

2 ])
≤ c(|u0|Hs + |u1|Hs−1),

n+ 1

2(n− 1)
< s <

n− 1

2
.

(2.10)

Then for the dyadic pieces Fλ of our spaces we shall use the following em-
beddings,

Theorem 4. The following embeddings hold uniformly in λ:
a) (energy) Fλ ⊂ L∞(L2)
b) λ−

n
2Fλ ⊂ L∞

c) (Pecher) λ−sFλ ⊂ L2(L[2,s+ 1
2
]), n+1

2(n−1)
< s < n−1

2

d) λ−
n−1

2 Fλ ⊂ L2(L∞)

Parts (a) and (c) follow from (2.9), respectively (2.10). To see this for the

X
1/2
λ component of F λ it suffices to foliate the Fourier space with cones which

are τ translates of the characteristic cone τ 2−ξ2 = 0. For the Yλ component of
Fλ, on the other hand, one needs to use the variation of parameters formula.
These embeddings are all given in a more general context in [15]. Similar
embeddings were used in [12].

Parts (b) and (d) follow from (a) and (c) by Sobolev embeddings, with the
observation that while the sharp embeddings into L∞ fail in general, they are
nevertheless true on dyadic pieces.

To solve the inhomogeneous wave equation define the operator V by V f = φ
iff 

2φ = f
φ0(0) = 0
∂tφ0 = 0

.

The following result describes the necessary regularity properties of V :

Theorem 5. The operator V maps 2F into F .



Proof: Let f = 2u, with u ∈ F . Then u − V f solves the homogeneous
wave equation and has the same Cauchy data as u. But u ∈ F therefore its
Cauchy data (u(0), ut(0)) is in B2,1

n
2
× B2,1

n
2
−1. This shows that u − V f ∈ F ,

therefore V f ∈ F .

3. Proof of Theorem 1

Suppose that D is small. Then, due to the embedding B2,1
n
2
⊂ L∞ the

solution φ should be small (modulo constants) therefore we can work in the
domain of a local map, i.e. work directly on the equation (1.1).

First set up the problem so that we can use a fixed point argument. Denote
by φ0 the solution to the wave equation with the same initial data as φ. Then
the equation (1.1) can be rewritten as

φ = φ0 + V N(φ) (3.11)

where N represents the nonlinear term in (1.1).
We want to solve (3.11) in the space F defined above. We know that φ0 is

in F modulo constants. To remove the ambiguity change the local coordinates
(translation) in M so that φ0 has limit 0 at ∞.

Now we need to know first that the the correct mapping properties hold,
i.e.

V N : F → F (3.12)

Secondly, we need to know that the right hand side has a small Lipschitz
constant in F .

Since N is at least quadratic the second property follows from the first.
Hence, if (3.12) holds then for small φ0 (in F ) we can use a fixed point argument
to solve (3.11); this will also give the Lipschitz dependence of the solution on
φ0, therefore on the initial data.

It remains to prove (3.12). By Theorem 5 it suffices to show that

N : F → 2F (3.13)

But due to (1.4) the nonlinear term can be written as

N(φ) = Γ(φ)(φ2φ+ 2(φ2))

Taking into account this form of the nonlinearity, (3.13) will follow from

Proposition 1. .
a) F is an algebra.
b) F ·2F ⊂ 2F

Proof:
a) Since F is a 1-Besov space, it suffices to look at the product of two given

dyadic pieces and show that

λ−
n
2Fλ · µ−

n
2Fµ ⊂ F. (3.14)

We need to consider two cases, based on the relative size of µ and λ.



a1) If µ ≈ λ then by Theorem 4 (a),(d) we get

λ−nFλ · Fλ ⊂ λ−
n+1

2 L2 ⊂ F.

If we now use the fact that the product has Fourier transform supported in a
λ-ball then (3.14) follows.

a2) If µ� λ then the Fourier transform of the product is supported in the
λ region, therefore we need to show that

µ−
n
2Fµ · Fλ ⊂ Fλ. (3.15)

(here to keep the notation simple we allow for a small increase in the size of
the support of the Fourier transform of Fλ functions). Now we use Theorem 3
to decompose the Fλ elements into a component with Fourier transform sup-
ported within a distance µ from the cone and a component at least O(µ) away
from the cone,

Fλ = B̃µFλ + (1− B̃µ)Fλ. (3.16)

To prove (3.15) for the first component of (3.16) we use Theorem 4(a,d) to get

µ−
n
2Fµ · B̃µFλ ⊂ µ−1/2L2(L∞)µ · L∞(L2)λ = µ−1/2L2

λ,µ ⊂ X
1/2
λ ⊂ Fλ.

In this case the Fourier transform of the product is supported within distance
µ from the cone, which is crucial for the third step.

To prove (3.15) for the second component of (3.16) we further decompose

Fλ into X
1/2
λ and Yλ and treat each case separately. Then it suffices to show

that

µ−
n
2Fµ · (1− B̃µ)X

1/2
λ ⊂ X

1/2
λ . (3.17)

and

µ−
n
2Fµ · (1− B̃µ)Yλ ⊂ Yλ. (3.18)

For (3.17) observe that each of the dyadic pieces of (1− B̃µ)X
1/2
λ with respect

to the distance to the cone are L2 and have Fourier transform supported in a
dyadic region of the form

|ξ|+ |τ | ≈ λ, |ξ| − |τ | ≈ d.

where µ � d ≤ λ. This region has thickness larger than µ, therefore when

we multiply (1 − B̃µ)X
1/2
λ by Fµ the support of the Fourier transform of the

product will stay roughly in the same region. Then it suffices to work on a
given such dyadic piece therefore (3.17) reduces to

µ−
n
2Fµ · L2 ⊂ L2.

which follows from the embedding µ−
n
2Fµ ⊂ L∞ in Theorem 4(b).

The same embedding leads to the L∞(L2) part of (3.18). Taking into account
the definition of the Yλ spaces, it then remains to show that

2(µ−
n
2Fµ · (1− B̃µ)Yλ) ⊂ L1(L2).



But

2(µ−
n
2Fµ · (1− B̃µ)Yλ) ⊂ µ−

n
2Fµ ·2((1− B̃µ)Yλ)+µ

−n
2
+1Fµ · λ(1− B̃µ)Yλ.

(the second term contains all the combinations where at least one derivative
applies to the first factor) Now by Theorem 4(b) the first term is contained in
L∞ ·L1(L2) = L1(L2). On the other hand, by Theorem 4(b) for the first factor
and Theorem 3(b) for the second factor the second term is in µL∞·µ−1L1(L2) =
L1(L2), q.e.d.

b) Since F is a 1-Besov space it suffices to look at the product of two dyadic
pieces and show that

µ−
n
2Fµ · λ−

n
2 2Fλ ⊂ 2F.

Again, we need to consider all possible relative sizes of λ and µ.
b1) Suppose λ ≤ µ. Then use Theorem 4(c) for the first term and the

straightforward embedding 2Fλ ⊂ λ
3
2L2 for the second term to obtain

µ−
n
2Fµ · λ

n
2 2Fλ ⊂ µ1−n

2L2(L[2, 3
2
])µ · λ

3−n
2 L2

λ

⊂ µ1−n
2L2(L[2, 3

2
])µ · L2(L[2, n−3

2
])λ (Sobolev embedding)

= µ1−n
2L1(L2) ⊂ 2F,

where at the last step we use the fact that the Fourier transform of the product
is supported in a ball of radius O(µ).

b2) Suppose µ� λ. Then we need to show that

µ−
n
2Fµ ·2Fλ ⊂ 2Fλ.

First we decompose 2Fλ in its two components. By Theorem 4(b) we get

µ−
n
2Fµ · L1(L2)λ ⊂ L1(L2)λ,

therefore it remains to show that

µ−
n
2Fµ ·X−1/2

λ ⊂ λ−12Fλ.

To achieve this we split X
−1/2
λ into a component with with Fourier transform

supported within a distance µ from the cone and a component at least O(µ)
away from the cone,

X
−1/2
λ = B̃µX

−1/2
λ + (1− B̃µ)X

−1/2
λ .

Since each of the dyadic pieces of (1− B̃µ)X
1/2
λ are L2 and have Fourier trans-

form supported in a dyadic region of thickness larger than µ, the product
estimate for the second term reduces as in part (a) to

µ−
n
2Fµ · (L2)λ ⊂ (L2)λ,

and follows from the embedding µ−
n
2Fµ ⊂ L∞.



For the first term, on the other hand, use Theorem 4(d) to get

µ−
n
2Fµ ·B̃µX

−1/2
λ ⊂ µ−

1
2L2(L∞)·µ

1
2L2 ⊂ L2(L∞)·λ1−n

2L2 = L1(L2)λ ⊂ λ−12F.

q.e.d.

Next we want to show that if in addition the data is more regular then the
solution is globally more regular as well. We start with an estimate:

Proposition 2. Suppose that

|φ|F , |ψ|F ≤ C. (3.19)

Then

|N(φ)−N(ψ)|2F s ≤ c|φ− ψ|F s(|φ|F + |ψ|F ) + |φ− ψ|F (|φ|F s + |ψ|F s).
(3.20)

Proof: The conclusion would follow from the following estimates:

|φψ|F s ≤ c(|φ|F |ψ|F s + |ψ|F |φ|F s), (3.21)

|φ2ψ|2F s ≤ c(|φ|F |ψ|F s + |ψ|F |φ|F s). (3.22)

But these estimates are proved in the same way as in Proposition 1; the ap-
propriate dyadic estimates are the same or simpler.

Now let M > 1 and define the space Z = F s ∩ F with the norm

|φ|Z =
1

M
|φ|F s +

1

ε
|φ|F .

We claim that if ε is sufficiently small, independently of M , then the map

φ→ V N(φ),

is a contraction from the unit ball in Z to the 1/2 ball in Z.
To prove that observe first that in order to use Proposition 2 it suffices to

take ε < C so that (3.19) holds. Then estimate

|V N(φ)|F ≤ c|N(φ)|2F ≤ c|φ|2F ≤ cε|φ|F ,
and, by Proposition 2,

|V N(φ)|F s ≤ c|N(φ)|2F s ≤ c|φ|F |φ|F s ≤ cε|φ|F s .

Hence if ε is sufficiently small then V N maps the unit ball in Z to the 1/2 ball
in Z. The fact that V N is a contraction follows in a similar fashion.

Go back now to our fixed point problem in (3.11) and choose

M = 2|(f0, f1)|Hs×Hs−1 .

Then the fix point argument works in Z. Consequently, the unique solution φ
of our problem in F is in effect in F s and satisfies the bound

|φ|F s ≤ 2M.



Since both fixed point arguments give continuous dependence on the data, now
we can argue that the solutions in F that we have produced are the unique
strong limit of smooth solutions to the equation.
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