

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 443 – 450, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model-Based Statistical Testing of a Cluster Utility

W. Thomas Swain1 and Stephen L. Scott2,∗

1 Software Quality Research Laboratory,
University of Tennessee Department of Computer Science Knoxville, Tennessee 37996

2 Network and Cluster Computing Group,
Computer Science and Mathematics Division,

Oak Ridge National Laboratory, Oak Ridge, Tennessee
swain@cs.utk.edu, scottsl@ornl.gov

Abstract. As High Performance Computing becomes more collaborative, soft-
ware certification practices are needed to quantify the credibility of shared ap-
plications. To demonstrate quantitative certification testing, Model-Based Sta-
tistical Testing (MBST) was applied to cexec, a cluster control utility developed
in the Network and Cluster Computing Group of Oak Ridge National Labora-
tory. MBST involves generation of test cases from a usage model. The test re-
sults are then analyzed statistically to measure software reliability. The popula-
tion of cexec uses was modeled in terms of input selection choices. The J Usage
Model Builder Library (JUMBL) provided the capability to generate test cases
directly as Python scripts. Additional Python functions and shell scripts were
written to complete a test automation framework. The resulting certification ca-
pability employs two large test suites. One consists of “weighted” test cases to
provide an intensive fault detection capability, while the other consists of ran-
dom test cases to provide a statistically meaningful assessment of reliability.

1 Introduction

The work described here had two primary objectives: (1) to certify the cexec com-
mand in the Cluster Command and Control (C3) tool suite [1,2], and (2) to demon-
strate Model-Based Statistical Testing (MBST) as a certification methodology for
computational software. Briefly C3 is a set of command line utilities to facilitate
management of Linux clusters. The cexec command invokes a specified application
on any combination of nodes in a Linux cluster.

MBST treats software testing as a statistical experiment. That is, each test is
viewed as a sample from the population of all possible uses. This approach to testing
involves six tasks: (1) usage model definition, (2) model analysis, (3) test automation,
(4) test case generation, (5) test execution, and (6) results analysis

MBST is applied to systems by mapping input stimulus sequences to states of use
and associated responses. However computational programs often have only two

∗ Research supported by the Mathematics, Information and Computational Sciences Office, Of-

fice of Advanced Scientific Computing Research, Office of Science, U. S. Department of En-
ergy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

444 W.T. Swain and S.L. Scott

states of use: pre-execution and post-execution. Such programs are further character-
ized by multiple input parameters, often with very large domains.

For cexec, usage was modeled in terms of the input selection process. The model
analysis, performed using the J Usage Model Builder Library (JUMBL) [3], provided
information needed to plan details of the testing strategy. Once a testing strategy was
defined, a test automation framework was implemented using Python and bash shell
scripts. From the model, JUMBL was used to generate test cases. Test cases for all
paths through the model were generated in decreasing order of probability; and a set
of random test cases were generated to be statistically representative of the usage pro-
file embodied in the model. All test cases were executed using the test automation
framework. The pass/fail outcome of all test cases was determined by automated in-
spection, supplemented by manual analysis of reported failures. The results were then
analyzed statistically to provide a quantitative basis for certification.

2 Model Definition

Model definition requires four elements: (1) definition of the test boundary, (2) defini-
tion of a use, (3) identification of all input stimuli, and (4) identification of correct
system responses.

The test boundary is defined by the list of interfaces where stimuli can be applied
and responses can be observed. The interface list for cexec includes the following:

• The interface by which command line arguments are supplied on invocation.
• The interface by which environment variables are supplied.
• The file system interface by which files are read, written, or deleted.
• The interfaces to stdout and stderr.
• Other interfaces provided by UNIX system calls.

The definition of a use is simply execution of cexec by sending its command line to
the operating system of the cluster head node. For each use, the command runs to
completion with no intervening stimuli. Consequently sampling the use population is
a matter of sampling the set of all possible input combinations. Modeling the input se-
lection process as a discrete Markov chain allowed JUMBL to be used for test case
generation and test analysis. With this approach, test cases are defined by input com-
binations obtained using the model as a statistical sampling mechanism.

The set of all possible combinations of the input parameters is quite large, even for
a utility such as cexec. In addition to some discrete command line options, cexec input
may include the following inputs as arbitrary character strings: Machine Definition
expressions (to specify a subset of the cluster), UNIX command strings, configuration
file names, and configuration file contents.

To cope with the large domains of these parameters, the following abstractions
were used:

• Machine Definitions = [good, bad, none]
• UNIX commands = [good, bad]
• configuration file names = [good, bad, missing (when expected)]
• configuration files = [good, bad]

 Model-Based Statistical Testing of a Cluster Utility 445

For test execution, sampling within these subdomains was built into the test
automation framework.

Fig. 1. cexec Usage Model

The resulting input selection model is illustrated graphically in Figure 1. The nodes
of the graph represent input parameter values (or abstracted ranges), and the arcs rep-
resent individual value choices. Probabilities (not shown in the figure) are assigned to
the arcs to indicate the relative likelihood of each value for a particular parameter.
The probabilities used were based on the following assumptions:

• Except as noted below, all valid choices for a parameter are equally probable.
• Valid choices for a parameter are about 100 times more likely than invalid choices.
• A Machine Definition will be specified for 90% of all commands.
• About half of all commands will specify the configuration file on the command

line instead of using the default configuration file.

3 Model Analysis

Analysis of the model as a Markov chain is used for model validation and test plan-
ning. Table 1 shows key results from the model analysis.

Table 1. cexec Usage Model Analysis

Node Count 27 nodes
Arc Count 60 arcs
Statistically Typical Sequences 26.65 cases
Maximum Mean First Passage 200 cases
Mean First Passage Variance 39,800

The model analysis results can be useful for both model validation and test plan-
ning. In this case the model structure is simple enough that the structure and prob-
abilities can be validated by inspection.

For test planning, the analysis provides insights that are not available from inspec-
tion of the model. First the number of Statistically Typical Sequences given in Table 1

Enter Exit

Good
Config

Bad
Config

Valid
Cmd

Invalid
Cmd

Non-
existent

file

No File
Spec

No file
name

Inter-
active

On

Inter-
active

Off

All On

All Off

Head
On

Head
Off

-p

Pipe
Off

Invalid
Machine

Def

Valid
Machine

Def

No
Machine

Def

-h

Help
Off

Valid
file

FS-f

FS--file

--pipe --help

446 W.T. Swain and S.L. Scott

indicates that 26.65 (~100) random test cases are needed to produce a test population
that is typical of the usage profile embodied by the model. Additionally the maximum
Mean First Passage indicates the average number of random test cases needed to en-
counter every node of the model is 200 with a variance of 39,800. The corresponding
standard deviation σ is on the order of 200. Using the semi-quantitative argument that
>3σ test cases would give high confidence of complete model coverage, 1000 random
test cases were planned.

4 Test Automation

Figure 2 shows an overview of the test automation data flow. The processes in the
figure are grouped into the following major automation tasks:

• Test case generation (cexec command line construction),
• Generation of configuration files and Machine Definitions,
• Results checking and comparison.

Most of the automation framework is reusable for other C3 commands or future
versions of cexec. Only the usage model definition file and the Python functions used
to check test results would need to be changed.

Fig. 2. Test Automation Overview

Automated Command Line Construction

To support test automation, the TML modeling language [4] allows each element
(model, state, or arc) to be annotated with arbitrary text, referred to as a “label” in
TML syntax. Test cases are initially generated and stored in a compressed Saved Test
Record (STR) format. For test execution the JUMBL managetest export command [5]

Sample Master
Config File

Usage
Model

Generate
Test

Cases

Test
Execution

Check Test
Results

Compressed
Test Record

Export Test
Scripts

Record Pass/
Fail by Case

Analyze
Results

Result Checking
and Comparison

Configuration File and Machine Definition Generation

Test Case Generation

Master
Config

File
(XML)

 Model-Based Statistical Testing of a Cluster Utility 447

is used to convert STR to a human-readable form. The exported test case is a sequen-
tial listing of the labels associated with the model elements encountered.

Labels in the cexec TML file consist of Python statements. Initialization code is as-
sociated with the [Start] state. Python code in arc labels assigns values to cexec
input parameters. Code associated with state labels records inputs for use in results
checking. The label on the [Exit] state consists of code required to assemble the
cexec command line, spawn the resulting command, and record and evaluate the out-
put. Thus each exported test case is a short Python program that automates execution
of the required command string and comparison of actual and expected output.

Configuration File and Machine Definition Generation

As mentioned above, four of the cexec input parameters are character strings and were
each abstracted into two or three discrete values in the usage model. During test case
generation, each of these parameters is assigned one of its abstract values. At test case
run time, the assigned abstract value must be replaced with a specific value from the
associated subdomain. For example, “good” file names are created as <test case
name>.conf, and “bad” file names are always bogus.conf (a non-existent file).

Since configuration files and machine definitions are processed entirely within
cexec, a much more varied sampling of their parameter spaces is desirable. Figure 3
shows an overview of this sampling process.

Fig. 3. Data Flow for Generating Configuration Files and Machine Definitions

To expedite data format conversion, an XML format was defined to represent the
content of a C3 configuration file. The Master Config File in Figure 3 is the XML
representation of the complete test system. At test case run time, a subset of clusters
and nodes is selected from the Master Config File and used to create the Reference
Config File. The Reference Config File is then transformed to the Test Config File in
the standard C3 configuration file format.

If the test case calls for a “bad” configuration file, a single fault is inserted in the
file by the Build Test Config process. The type of fault and the insertion location are
selected randomly from among the syntactic elements that compose a C3 configura-
tion file. If the test case requires a Machine Definition expression in the command
line, the clusters and nodes to be included are selected and composed into the required
string by the Build Machine Def process in Figure 3. When required, machine defini-
tion fault injection is handled in a manner similar to that for configuration files.

Results Checking

The standard output of cexec for each test case is redirected to a log file. The contents
of the log file are then compared to the expected output. The graphs in Figures 4 and

Master
Config File

(XML)

Reference
Config File

(XML) Test Config
File

(C3 format)

MACHINE
DEFINITION

Build
Machine Def

Sample
Master

Build Test
Config

448 W.T. Swain and S.L. Scott

5 depict the mapping of input combinations to responses. Each shaded leaf node in the
graph represents a set of input combinations for which the expected output can be de-
termined from a single rule.

 Fig. 4. Top Level cexec Response Tree

Fig. 5. Continuation of cexec Response Tree

Based on these rules for the expected output, a Python function was written to
make a run-time pass/fail determination for each test case. For each test case, this
function writes the test case name and a summary of the cexec input parameters to a
file. If a test case failure is detected, additional diagnostic information is written to the
file. If cexec terminates abnormally, the UNIX exit code is reported. If cexec termi-
nates normally, the output line causing the failure determination is reported along
with the expected result. Finally the test case is marked as a failure in the STR file.

A few cases involving invalid Machine Definition input were reported as failed by
the run-time checking and required manual inspection to screen out the false failures.
However these cases were easily recognized in the summary report.

Bad Config
Good Config

-h or --help help off

-f or --file with
invalid or missing

file name

no file option or
file option with
valid file name

No --all or --head --all --head --all and --head

Invalid
Machine
Definition

Valid
Machine
Definition

2

2 2 2

file missing and
no -i, --all, --head,

-p, nor --pipe

any other arg
combo with -h or

--help

2

Valid
Command

Invalid or
missing

Command

-i no -i -i no -i

-p or --pipe

-p or --pipe

-p or --pipe

-p or --pipe

no -p or --pipe

no -p or --pipe

no -p or --pipe

no -p or --pipe

 Model-Based Statistical Testing of a Cluster Utility 449

5 Test Case Generation and Execution

The JUMBL provides five test case generation options: state and arc coverage, ran-
dom, probability-weighted, cost-weighted, and manually crafted. The following fac-
tors were considered in selecting the test generation options to be used:

• Since the model involves relatively coarse abstractions for configuration file and
Machine Definition inputs, minimal state and arc coverage is not adequate.

• With automation, up to several thousand test cases can be run within reasonable
time and cost.

• Since quantitative certification is a primary objective, a subset of the test cases
should represent a statistically typical sample (based on the model).

• Based on the model analysis above, the statistically typical sample requires 500 to
1000 random test cases.

• Since the model contains no loops or cycles, it is possible to test all possible paths
through the model.

Based on these factors, the probability-weighted generation option was selected as
a way to produce test cases for all possible paths through the model. This process
generated 6048 test cases. To provide a statistically typical sample, 1000 random test
cases were also generated.

The tests were executed on ORNL’s XTORC cluster. As described above, each test
case was exported as a Python program. One bash shell script was used to sequence
the weighted test cases, and a second was used for random test cases. Execution of all
7048 test cases takes about four hours.

6 Results Analysis

Table 2 shows a summary of the test results. Sample Reliability is a simple ratio of
the number of tests passed to the total for each type (i.e., assumes Bernoulli sam-
pling). Miller reliability is a Bayesian reliability estimate described in [6].

Table 2. cexec Certification Test Results

Case Type Cases Pass Fail Sample Reliability /
Variance

Miller Reliability /
Variance

Weighted 6048 5837 211 0.965/0.0337 0.965/0.00564
Random 1000 999 1 0.999/0.000999 0.998/0.000332
Combined 7048 6836 212 0.970/0.0292 0.970/0.00488

For weighted test cases, each path through the model is included exactly once in
the test. This fact causes low probability test cases to be over-represented in the
weighted sample relative to typical usage. The random test case sample, and therefore
its reliabilities, reflects more realistic assumptions regarding actual usage.

The total of 212 failures observed among all test cases resulted from six distinct
faults. All of the faults involved failure of cexec to handle input errors gracefully. The

450 W.T. Swain and S.L. Scott

test results also included two significant observations regarding undocumented behav-
ior of cexec: (1) Non-existent nodes in the Machine Definition are ignored, and (2)
duplicate nodes in the machine definition are processed as many times as they appear.

7 Conclusions

The purpose of the work described above was twofold: (1) demonstration of MBST
for computational software and (2) certification of the C3 cexec utility.

Using cexec as the system under test, this effort demonstrated that the methods and
tools developed for MBST could be applied effectively to computational software.
The key adaptation required is to model the input selection process instead of the dis-
crete behavior. Using the test case generation and annotation features of the JUMBL
tool set, it was possible to generate automatically a large number of test cases whose
execution could be readily automated.

The following are key elements of the test automation framework:

• Direct generation of test cases in the form of Python programs,
• Python classes to generate run-time values for input parameters represented by ab-

stractions in the model,
• Python utilities to capture cexec output, compare it to expected results, and record

pass/fail information.

With this framework, cexec can be thoroughly tested in about four hours, and the
automation framework is largely reusable.

In terms of cexec certification, the test cases generated using the “weighted” algo-
rithm exercised every input combination at the defined level of abstraction. While the
weighted test cases proved quite thorough in detecting even obscure software faults,
the random test cases provide the primary basis for certification. The random test
cases represent a statistically typical usage sample based on the model. The results of
these tests indicate that users can expect the cexec program to function properly
99.8% of the time.

References

1. "Project C3 Cluster Command and Control," Network and Cluster Computing Group, Com-
puter Science and Mathematics Division, ORNL, http://www.csm.ornl.gov/torc/C3.

2. M.Brim, R.Flanery, A.Geist, B.Luethke, and S.L.Scott, “Cluster Command and Control
(C3) Tool Suite,” pp. 381-399, Parallel and Distributed Computing Practices Special Issue:
Quality of Parallel and Distributed Programs and Systems, Ed: P. Kacsuk and G. Kotsis,
Vol. 4, No. 4, December 2001, issn 1097-2803, Nova Science Publishers Inc.

3. S. Prowell, "JUMBL: A Tool for Model-Based Statistical Testing", Proceedings of the 36th
Annual Hawaii International Conference on System Sciences (HICSS'03), January 2003.

4. S. Prowell, "TML: A description language for Markov chain usage models", Information
and Software Technology, Vol. 42, No. 12, September 2000, 835--844.

5. JUMBL 4 User's Guide, Software Quality Research Laboratory, Department of Computer
Science, University of Tennessee, November 22, 2002.

6. K. Sayre, J. Poore, "A Reliability Estimator for Model Based Testing", Proceedings of the
Thirteenth Symposium on Software Reliability Engineering, November, 2002.

