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Abstract. As High Performance Computing becomes more collaborative, soft-
ware certification practices are needed to quantify the credibility of shared ap-
plications. To demonstrate quantitative certification testing, Model-Based Sta-
tistical Testing (MBST) was applied to cexec, a cluster control utility developed 
in the Network and Cluster Computing Group of Oak Ridge National Labora-
tory. MBST involves generation of test cases from a usage model. The test re-
sults are then analyzed statistically to measure software reliability. The popula-
tion of cexec uses was modeled in terms of input selection choices. The J Usage 
Model Builder Library (JUMBL) provided the capability to generate test cases 
directly as Python scripts. Additional Python functions and shell scripts were 
written to complete a test automation framework. The resulting certification ca-
pability employs two large test suites. One consists of “weighted” test cases to 
provide an intensive fault detection capability, while the other consists of ran-
dom test cases to provide a statistically meaningful assessment of reliability. 

1   Introduction 

The work described here had two primary objectives: (1) to certify the cexec com-
mand in the Cluster Command and Control (C3) tool suite [1,2], and (2) to demon-
strate Model-Based Statistical Testing (MBST) as a certification methodology for 
computational software. Briefly C3 is a set of command line utilities to facilitate 
management of Linux clusters. The cexec command invokes a specified application 
on any combination of nodes in a Linux cluster. 

MBST treats software testing as a statistical experiment. That is, each test is 
viewed as a sample from the population of all possible uses. This approach to testing 
involves six tasks: (1) usage model definition, (2) model analysis, (3) test automation, 
(4) test case generation, (5) test execution, and (6) results analysis 

MBST is applied to systems by mapping input stimulus sequences to states of use 
and associated responses. However computational programs often have only two 
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states of use: pre-execution and post-execution. Such programs are further character-
ized by multiple input parameters, often with very large domains. 

For cexec, usage was modeled in terms of the input selection process. The model 
analysis, performed using the J Usage Model Builder Library (JUMBL) [3], provided 
information needed to plan details of the testing strategy. Once a testing strategy was 
defined, a test automation framework was implemented using Python and bash shell 
scripts. From the model, JUMBL was used to generate test cases. Test cases for all 
paths through the model were generated in decreasing order of probability; and a set 
of random test cases were generated to be statistically representative of the usage pro-
file embodied in the model. All test cases were executed using the test automation 
framework. The pass/fail outcome of all test cases was determined by automated in-
spection, supplemented by manual analysis of reported failures. The results were then 
analyzed statistically to provide a quantitative basis for certification. 

2   Model Definition 

Model definition requires four elements: (1) definition of the test boundary, (2) defini-
tion of a use, (3) identification of all input stimuli, and (4) identification of correct 
system responses. 

The test boundary is defined by the list of interfaces where stimuli can be applied 
and responses can be observed. The interface list for cexec includes the following: 

• The interface by which command line arguments are supplied on invocation. 
• The interface by which environment variables are supplied. 
• The file system interface by which files are read, written, or deleted. 
• The interfaces to stdout and stderr. 
• Other interfaces provided by UNIX system calls. 

The definition of a use is simply execution of cexec by sending its command line to 
the operating system of the cluster head node. For each use, the command runs to 
completion with no intervening stimuli. Consequently sampling the use population is 
a matter of sampling the set of all possible input combinations. Modeling the input se-
lection process as a discrete Markov chain allowed JUMBL to be used for test case 
generation and test analysis. With this approach, test cases are defined by input com-
binations obtained using the model as a statistical sampling mechanism. 

The set of all possible combinations of the input parameters is quite large, even for 
a utility such as cexec. In addition to some discrete command line options, cexec input 
may include the following inputs as arbitrary character strings: Machine Definition 
expressions (to specify a subset of the cluster), UNIX command strings, configuration 
file names, and configuration file contents. 

To cope with the large domains of these parameters, the following abstractions 
were used: 

• Machine Definitions = [good, bad, none] 
• UNIX commands = [good, bad] 
• configuration file names = [good, bad, missing (when expected)] 
• configuration files = [good, bad] 
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For test execution, sampling within these subdomains was built into the test 
automation framework.  

Fig. 1. cexec Usage Model 

The resulting input selection model is illustrated graphically in Figure 1. The nodes 
of the graph represent input parameter values (or abstracted ranges), and the arcs rep-
resent individual value choices. Probabilities (not shown in the figure) are assigned to 
the arcs to indicate the relative likelihood of each value for a particular parameter. 
The probabilities used were based on the following assumptions: 

• Except as noted below, all valid choices for a parameter are equally probable. 
• Valid choices for a parameter are about 100 times more likely than invalid choices. 
• A Machine Definition will be specified for 90% of all commands. 
• About half of all commands will specify the configuration file on the command 

line instead of using the default configuration file. 

3   Model Analysis 

Analysis of the model as a Markov chain is used for model validation and test plan-
ning. Table 1 shows key results from the model analysis. 

Table 1. cexec Usage Model Analysis 

Node Count  27 nodes 
Arc Count  60 arcs 
Statistically Typical Sequences  26.65 cases 
Maximum Mean First Passage 200 cases 
Mean First Passage Variance 39,800 

The model analysis results can be useful for both model validation and test plan-
ning. In this case the model structure is simple enough that the structure and prob-
abilities can be validated by inspection. 

For test planning, the analysis provides insights that are not available from inspec-
tion of the model. First the number of Statistically Typical Sequences given in Table 1 
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indicates that 26.65 (~100) random test cases are needed to produce a test population 
that is typical of the usage profile embodied by the model. Additionally the maximum 
Mean First Passage indicates the average number of random test cases needed to en-
counter every node of the model is 200 with a variance of 39,800. The corresponding 
standard deviation σ is on the order of 200. Using the semi-quantitative argument that 
>3σ test cases would give high confidence of complete model coverage, 1000 random 
test cases were planned. 

4   Test Automation 

Figure 2 shows an overview of the test automation data flow. The processes in the 
figure are grouped into the following major automation tasks: 

• Test case generation (cexec command line construction), 
• Generation of configuration files and Machine Definitions, 
• Results checking and comparison. 

Most of the automation framework is reusable for other C3 commands or future 
versions of cexec. Only the usage model definition file and the Python functions used 
to check test results would need to be changed. 

 
Fig. 2. Test Automation Overview 

Automated Command Line Construction 

To support test automation, the TML modeling language [4] allows each element 
(model, state, or arc) to be annotated with arbitrary text, referred to as a “label” in 
TML syntax. Test cases are initially generated and stored in a compressed Saved Test 
Record (STR) format. For test execution the JUMBL managetest export command [5] 
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is used to convert STR to a human-readable form. The exported test case is a sequen-
tial listing of the labels associated with the model elements encountered. 

Labels in the cexec TML file consist of Python statements. Initialization code is as-
sociated with the [Start] state. Python code in arc labels assigns values to cexec 
input parameters. Code associated with state labels records inputs for use in results 
checking. The label on the [Exit] state consists of code required to assemble the 
cexec command line, spawn the resulting command, and record and evaluate the out-
put. Thus each exported test case is a short Python program that automates execution 
of the required command string and comparison of actual and expected output. 

Configuration File and Machine Definition Generation 

As mentioned above, four of the cexec input parameters are character strings and were 
each abstracted into two or three discrete values in the usage model. During test case 
generation, each of these parameters is assigned one of its abstract values. At test case 
run time, the assigned abstract value must be replaced with a specific value from the 
associated subdomain. For example, “good” file names are created as <test case 
name>.conf, and “bad” file names are always bogus.conf (a non-existent file).  

Since configuration files and machine definitions are processed entirely within 
cexec, a much more varied sampling of their parameter spaces is desirable. Figure 3 
shows an overview of this sampling process. 

 

Fig. 3. Data Flow for Generating Configuration Files and Machine Definitions 

To expedite data format conversion, an XML format was defined to represent the 
content of a C3 configuration file. The Master Config File in Figure 3 is the XML 
representation of the complete test system. At test case run time, a subset of clusters 
and nodes is selected from the Master Config File and used to create the Reference 
Config File. The Reference Config File is then transformed to the Test Config File in 
the standard C3 configuration file format. 

If the test case calls for a “bad” configuration file, a single fault is inserted in the 
file by the Build Test Config process. The type of fault and the insertion location are 
selected randomly from among the syntactic elements that compose a C3 configura-
tion file. If the test case requires a Machine Definition expression in the command 
line, the clusters and nodes to be included are selected and composed into the required 
string by the Build Machine Def process in Figure 3. When required, machine defini-
tion fault injection is handled in a manner similar to that for configuration files.  

Results Checking 

The standard output of cexec for each test case is redirected to a log file. The contents 
of the log file are then compared to the expected output. The graphs in Figures 4 and 
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5 depict the mapping of input combinations to responses. Each shaded leaf node in the 
graph represents a set of input combinations for which the expected output can be de-
termined from a single rule. 

 Fig. 4. Top Level cexec Response Tree 

 

Fig. 5. Continuation of cexec Response Tree 

Based on these rules for the expected output, a Python function was written to 
make a run-time pass/fail determination for each test case. For each test case, this 
function writes the test case name and a summary of the cexec input parameters to a 
file. If a test case failure is detected, additional diagnostic information is written to the 
file. If cexec terminates abnormally, the UNIX exit code is reported. If cexec termi-
nates normally, the output line causing the failure determination is reported along 
with the expected result. Finally the test case is marked as a failure in the STR file. 

A few cases involving invalid Machine Definition input were reported as failed by 
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5   Test Case Generation and Execution 

The JUMBL provides five test case generation options: state and arc coverage, ran-
dom, probability-weighted, cost-weighted, and manually crafted. The following fac-
tors were considered in selecting the test generation options to be used: 

• Since the model involves relatively coarse abstractions for configuration file and 
Machine Definition inputs, minimal state and arc coverage is not adequate.  

• With automation, up to several thousand test cases can be run within reasonable 
time and cost. 

• Since quantitative certification is a primary objective, a subset of the test cases 
should represent a statistically typical sample (based on the model). 

• Based on the model analysis above, the statistically typical sample requires 500 to 
1000 random test cases. 

• Since the model contains no loops or cycles, it is possible to test all possible paths 
through the model. 

Based on these factors, the probability-weighted generation option was selected as 
a way to produce test cases for all possible paths through the model. This process 
generated 6048 test cases. To provide a statistically typical sample, 1000 random test 
cases were also generated. 

The tests were executed on ORNL’s XTORC cluster. As described above, each test 
case was exported as a Python program. One bash shell script was used to sequence 
the weighted test cases, and a second was used for random test cases. Execution of all 
7048 test cases takes about four hours. 

6   Results Analysis 

Table 2 shows a summary of the test results. Sample Reliability is a simple ratio of 
the number of tests passed to the total for each type (i.e., assumes Bernoulli sam-
pling). Miller reliability is a Bayesian reliability estimate described in [6]. 

Table 2. cexec Certification Test Results 

Case Type Cases Pass Fail Sample Reliability / 
Variance 

Miller Reliability / 
Variance 

Weighted 6048 5837 211 0.965/0.0337 0.965/0.00564 
Random 1000 999 1 0.999/0.000999 0.998/0.000332 
Combined 7048 6836 212 0.970/0.0292 0.970/0.00488 

For weighted test cases, each path through the model is included exactly once in 
the test. This fact causes low probability test cases to be over-represented in the 
weighted sample relative to typical usage. The random test case sample, and therefore 
its reliabilities, reflects more realistic assumptions regarding actual usage. 

The total of 212 failures observed among all test cases resulted from six distinct 
faults. All of the faults involved failure of cexec to handle input errors gracefully. The 
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test results also included two significant observations regarding undocumented behav-
ior of cexec: (1) Non-existent nodes in the Machine Definition are ignored, and (2) 
duplicate nodes in the machine definition are processed as many times as they appear. 

7   Conclusions 

The purpose of the work described above was twofold: (1) demonstration of MBST 
for computational software and (2) certification of the C3 cexec utility. 

Using cexec as the system under test, this effort demonstrated that the methods and 
tools developed for MBST could be applied effectively to computational software. 
The key adaptation required is to model the input selection process instead of the dis-
crete behavior. Using the test case generation and annotation features of the JUMBL 
tool set, it was possible to generate automatically a large number of test cases whose 
execution could be readily automated. 

The following are key elements of the test automation framework: 

• Direct generation of test cases in the form of Python programs, 
• Python classes to generate run-time values for input parameters represented by ab-

stractions in the model, 
• Python utilities to capture cexec output, compare it to expected results, and record 

pass/fail information. 

With this framework, cexec can be thoroughly tested in about four hours, and the 
automation framework is largely reusable. 

In terms of cexec certification, the test cases generated using the “weighted” algo-
rithm exercised every input combination at the defined level of abstraction. While the 
weighted test cases proved quite thorough in detecting even obscure software faults, 
the random test cases provide the primary basis for certification. The random test 
cases represent a statistically typical usage sample based on the model. The results of 
these tests indicate that users can expect the cexec program to function properly 
99.8% of the time. 
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