
 

K. Janowicz, M. Raubal, and S. Levashkin (Eds.): GeoS 2009, LNCS 5892, pp. 140–158, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

SPARQL Query Re-writing Using Partonomy Based 
Transformation Rules* 

Prateek Jain1, Peter Z. Yeh2, Kunal Verma2, 
Cory A. Henson1, and Amit P. Sheth1 

1 Kno.e.sis, Computer Science Department, Wright State University, 
Dayton, OH, USA 

{prateek,cory,amit}@knoesis.org 
2 Accenture Technology Labs, 

San Jose, CA, USA 
{peter.z.yeh,k.verma}@accenture.com 

Abstract. Often the information present in a spatial knowledge base is repre-
sented at a different level of granularity and abstraction than the query con-
straints. For querying ontology’s containing spatial information, the precise  
relationships between spatial entities has to be specified in the basic graph pat-
tern of SPARQL query which can result in long and complex queries. We pre-
sent a novel approach to help users intuitively write SPARQL queries to query 
spatial data, rather than relying on knowledge of the ontology structure. Our 
framework re-writes queries, using transformation rules to exploit part-whole 
relations between geographical entities to address the mismatches between 
query constraints and knowledge base. Our experiments were performed on 
completely third party datasets and queries. Evaluations were performed on 
Geonames dataset using questions from National Geographic Bee serialized 
into SPARQL and British Administrative Geography Ontology using questions 
from a popular trivia website. These experiments demonstrate high precision in  
retrieval of results and ease in writing queries.  

Keywords: Geospatial Semantic Web, Spatial Query Processing, SPARQL, 
Query Re-writing, Partonomy, Transformation Rules, Spatial information  
retrieval. 

1   Introduction 

Recently, spatial information has become widely available to consumers through a 
number of popular sites such as Google Maps, Yahoo Maps and Geonames.org [1]. In 
the context of the Semantic Web, Geonames has provided RDF [2] encoding of their 
knowledge base. One issue that makes using the Geonames ontology, or any non-
trivial spatial ontology difficult to use, is that users have to completely understand the 
structure of the ontology before they can write meaningful queries. To illustrate our 
point, consider the following query from National Geographic Bee [3], “In which 
                                                           
* The evaluation components related to this work are available for download at 

http://knoesis.wright.edu/students/prateek/geos.htm 



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 141 

 

country is the city of Pamplona?” This seems to be a straightforward question, and 
one would assume that the logic for encoding this question into SPARQL [4] query 
would be to ask – Return a country which contains a city called Pamplona. However, 
it turns out that such a simple query does not work. This is because Pamplona is a city 
within a state, within the country of Spain. Therefore the correct logic for encoding 
the question into query would be – Return a country which contains a state, which 
contains a county, which contains a city called Pamplona. Unless the user fully under-
stands the structure of the ontology, it is not possible to write such queries.  

In this paper, we describe a system called PARQ (Partonomical Relationship Based 
Query Rewriting System) that will automatically align the gap between the constraints 
expressed in user’s query and the actual structured representation of information in 
the ontology. We leverage existing work in classification of partonomic relation-
ships[5]  to re-write queries.   

To study the accuracy of our approach for re-write, we tested it on (1) 120 ran-
domly selected questions from the National Geographic Bee and evaluated them on 
Geonames ontology (2) 46 randomly selected trivia questions related to British vil-
lages and counties from trivia website[22] and evaluated them on British Administra-
tive Geography Ontology[23]. For both the evaluations, users were instructed to read 
the questions and to write queries in SPARQL for the questions. PARQ rewrote the 
queries using partonomical relationships. The results were encouraging, and on an 
average, for evaluation 1, PARQ was able to re-write and answer 84 of 120 queries 
posed by users, whereas a SPARQL processing system could answer only 20 such 
queries. For evaluation 2, PARQ was able to re-write and answer 41 of 46 queries 
posed by users. For both the evaluations, we also compare the performance of PARQ 
with another well known system PSPARQL [24] which extends SPARQL with path 
expressions to allow use of regular expressions with variables in predicate position of 
SPARQL.  

The contributions of this work are the following: 

1. This work focuses on rewriting SPARQL Queries, written from a user’s 
perspective without worrying about the underlying representation of in-
formation.   

2. Our work utilizes partonomic transformation rules to re-write SPARQL 
queries.  

3. PARQ has been completely evaluated on third party data (queries and 
dataset) and shows that it is able to re-write and answer queries not an-
swered by a SPARQL processing system. We demonstrate PARQ can 
significantly improve precision without any recall loss. 

The rest of the paper is organized as follows: section 2 discusses the background 
work, section 3 discusses approach followed by evaluation in Section 4. In Section 5, 
we discuss the related work and finally we conclude with section 6. 

2   Background 

All spatial entities are fundamentally part of some other spatial entity. Hence, spatial 
query processing systems often encounter queries such as (1) querying for parts of 



142 P. Jain et al. 

 

spatial entities (for example, give me all counties in Ohio) (2) querying for wholes 
which encompass spatial parts (for example, return a country which contains a city 
called Pamplona).  

By identifying which relationships between spatial entities are partonomic in na-
ture it becomes feasible to identify if queries involving those relationships fail be-
cause of part-whole mismatch and it becomes possible to fix the mismatches using 
transformation rules that leverage the partonomic relationships. In this section, we 
will provide a brief overview of work related to partonomic relationships.  

Our work of query rewriting to remove these mismatches is based upon using well-
accepted partonomic relationships to address mismatches between a user’s conceptu-
alization of a domain and the actual information structure.  

Part/Whole relation, or partonomy, is an important fundamental relationship which 
manifests itself across all physical entities such as human made objects (Cup-Handle), 
social groups (Jury-Jurors) and conceptual entities such as time intervals (5th hour of 
the day). Its frequent occurrence results in manifestation of part-for-whole mismatch 
and whole-for-part mismatch within many domains especially spatial datasets.    

Winston [5] created a categorization of part whole relations which identified and 
covers part whole relations from a number of domains such as artifacts, geographical 
entities, food and liquids. We believe it is one of the most comprehensive categoriza-
tion of partonomic relationships and other works in similar spirit such as [6] analyze 
his categorization.  

This categorization has been created using three relational elements:   

1. Functional/Non-Functional (F/NF):- Parts are in a specific spatial/temporal 
relation with respect to each other and to the whole to which they belong. 
Example: Belgium is a part of NATO partly because of its specific spatial 
position. 

2. Homeomerous/Non-Homeomerous (H/NH):- Parts are same as each other 
and to the whole. Example:  Slice of pie is same as other slices and the pie  
itself [5]. 

3. Separable/Inseparable (S/IN): - Parts are separable/ inseparable from the 
whole. Example: A card can be separated from the deck to which it belongs. 

Table 1 illustrates these six different categories, their description using the relational 
elements and examples of partonomic relationships covered by them.  

Using this classification and relational elements, relations between two entities can 
be marked as partonomic or non partonomic in nature. Further if they are partonomic, 
the category to which they belong is identified. Finally, appropriate transformation 
rules can be defined for each category to fix these mismatches.  

For the purpose of this work, we have focused our attention on the last category 
“Place-Area”. Places are not parts of any area because of any functional contribution 
to the whole, and they are similar to the other places in the area as well. Also places 
cannot be separated from the area to which they belong. Hence, this classification can 
allow appropriate ontological relationships to be mapped to Place-Area category such 
as those found in Geonames. 

 



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 143 

 

Table 1. Six type of partonomic relation with relational elements 

Category Description Example 
Component-Integral 
Object 

Parts are functional, non-
homeomerous and separable 
from the whole. 

Handle-Cup 

Member-Collection Parts are non functional, non 
homeomerous and separable 
from the whole. 

Tree-Forest 

Portion-Mass Parts are non functional, ho-
meomerous and separable 
from the whole. 

Slice-Pie 

Stuff-Object Parts are non functional, non-
homeomerous and not separa-
ble from the whole. 

Gin-Martini 

Feature-Activity Parts are functional, non-
homeomerous and not separa-
ble from the whole. 

Paying-Shopping 

Place-Area Parts are non functional, ho-
meomerous and not separable 
from the whole. 

Everglades-Florida 

3   Approach 

At the highest level of abstraction, PARQ takes in a SPARQL query and transforms it 
with the help of transformation rules. This section provides the details of our system. 
We describe the various modules of the system, the technologies used for building the 
system, the transformation rules utilized for transformation of the SPARQL queries 
and the motivation behind them. Finally we describe the underlying algorithm that 
explains how the transformation rules are utilized by PARQ for re-writing queries. 

3.1   System Architecture 

PARQ consists of following three major modules: 1) Mapping Repository 2) Trans-
formation Rule generator and 3) Query Re-writer. Figure 1 illustrates the overall  
architecture of this system.  
 
Mapping Repository. This module stores mappings of ontological properties to 
Winston’s categories. These mappings are utilized by the Transformation Rule Gen-
erator to generate domain specific rules, which are consumed by the Query Re-writer. 
This is the only module in our system which requires user interaction (other than for 
query submission). In other words, the user has to specify these mappings. 

Each mapping is encoded as a rule in Jena’s rule engine format where the antece-
dent is a triple specifying an ontological property to be mapped and the consequent is 
a triple specifying the Winston category that the property is mapped to. For example, 
the following mapping: 



144 P. Jain et al. 

 

[parentFeature: (?a geo:parentFeature ?b)=>(?a place_part_of ?b)] 
 
maps “parentFeature” – a property from the Geonames ontology – to  “place_part_of” 
– Winston’s category of Place-Area. 
 
Transformation Rule Generator. This module automatically generates domain 
specific transformation rules using the mapping repository and pre-defined meta-level 
transformation rules based on Winston’s categories of part-whole relations, which we 
will explain later. For example, given the following meta-level transformation rule:  
 
[transitivity_placePartOf: (?a place_part_of ?b)(?b place_part_of ?c)=>(?a 
place_part_of ?c)] 

 
This module will utilize the parentFeature mapping defined above to generate the 
following domain specific transformation rule. 
 
[transitivity_parentFeature: (?a geo:parentFeature ?b)(?b geo:parentFeature ?c)=>(?a 
geo:parentFeature ?c)] 
 
The resulting rule is used by the Query Re-writer to re-write the graph pattern of 
SPARQL queries in the event of a partonomic mismatch. 

This design enables PARQ to be easily used with a wide-range of ontologies. The 
knowledge engineer only needs to specify the mappings between properties of these 
ontologies and Winston’s categories, which requires less effort than generating the 
domain-specific transformation rules themselves. This design also allows the trans-
formation rules to be extended in an ontology agnostic manner. 

We implemented this module using Jena’s [7]  rule engine API. Like the mappings, 
the meta-level transformation rules and the generated rules are encoded in the format 
accepted by Jena rule engine API. The rule engine allows reading, parsing and   proc-
essing of rules along with the creation and serialization of new rules.  

 
Query Re-writer. This module re-writes a SPARQL query in case of a partonomic 
mismatch between the query and the knowledge base to which the query is posed.  
This module is implemented using Jena and ARQ API [8]. Jena and ARQ provide 
functionality to convert a query into algebraic representation and vice versa. The 
triples specified in the query are identified. If they map to partonomic relation using 
the mapping repository and using Jena’s Rule Engine API, the domain specific trans-
formation rule, appropriate transformation is performed on the triples. These trans-
formations are then utilized to re-write the triples exhibiting the mismatch using the 
features provided by ARQ API.  

We believe including transitivity as a part of the reasoner can result in significant 
overhead for large datasets such as geonames where transitivity applies to almost all 
the entities. By including it as a part of query rewriting method (1) it allows the mis-
matches to be resolved on an "on demand" basis (2) it makes it easy to plug in support 
for resolving other kinds of mismatches. 



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 145 

 

PARQ System

Transformation Rules Generator

Mapping Repository

Query Re-writer

Original Query

SELECT  ?schoolname 
{?school geo:parentFeature ?state.   ?state geo:featureCode A.ADM1. 

?school geo:parentFeature S.SCH. ?school geo:name ?schoolname.
?state geo:name “Ohio”.}

Re-written Query

SELECT  ?schoolname 
{?school geo:parentFeature ?county; geo:featureCode S.SCH;
geo:name ?schoolname.  ?county geo:parentFeature ?state.
?state geo:featureCode A.ADM1;  geo:name “Ohio”.}

Mappings
1.(a geo:parentFeature b)-> (a place_part_of b)
2.(a lubm:subOrganizationOf b)->(a component_part_of b).
3.(a wine:consistsOf b)->(a stuff_part_of b) 
4. …..

Meta Level Rules
1. (a place part b),(b place part c)=>(a place part c)
2. ( a component part b)(b component part c)=>( a component part c)
3. ( a stuff part b)(b stuff part c)=>( a stuff part c)
4………………….

Domain Specific Rules
1. (a geo:parentFeature b),(b geo:parentFeature c)=>(a geo:parentFeature c)
2.(a lubm:subOrganizationOf b)(b lubm:subOrganizationOf c)=>( a 
lubm:subOrganizationOf c)
3. (a wine:consistsOf b),(b wine:consistsOf c)=>(a wine:consistsOf c)
4. …………….

 

Fig. 1. PARQ System Architecture. The relevant rules and mappings for queries shown are 
highlighted in bold. 



146 P. Jain et al. 

 

3.2   Meta-level Transformation Rules 

Meta-level transformation rules are used to generate domain-specific rules that are 
used to resolve mismatches resulting from differences in encoding between the granu-
larity of query constraints and the knowledge base by transforming the encoding of 
the constraints in the query to match the knowledge base. 

These meta-level rules are defined at the level of Winston’s categories, and a rule 
defined for a particular category applies to only the partonomic relations covered by 
that category. For example, rules defined for Component-Object category will cover 
only relations between machines and their parts, organization and their members, etc.   

We used the following methodology to define the meta-level rules used by our sys-
tem. First, we leveraged previous work by Varzi[9] and Winston, who both showed 
the semantics of transitivity holds true as long as it is applied across the same cate-
gory of partonomic relation. From this result, we defined the meta-level transitive 
transformation rules shown in Table 2, that correspond to Winston’s six part-whole 
categories. 

Table 2. Transitivity for Winston's categories 

ID Antecedent1 Antecedent2 Consequent 
1 a component part of b b component part of c A component part of c 
2 a member part of b b member part of c A member part of c 
3 a portion part of b b portion part of c A portion part of c 
4 a stuff part of b b stuff part of c A stuff part of c 
5 a feature part of b b feature part of c A feature part of c 
6 a place part of b b place part of c A place part of c 

Next, we investigated the interaction between Winston’s categories by examining 
all possible combinations of these categories for additional transformation rules. This 
investigation, however, resulted in only frivolous rules, which were not useful for 
resolving mismatches. For example, the following transformation rule resulted from 
composing the Feature-Activity category with the Place-Area category. 

 
(a place_part_of b) (b feature_part_of c) => (a feature_part_of c) 
 

However given the following query and triples in an ontology (given in English for 
brevity), 

 
 QUERY: “What state was attacked in WW-II?” 
 

TRIPLE 1 : Florida is a place part of USA (Place-Area). 
TRIPLE 2: USA was attacked in WW-II (Feature-Activity) 

 
The rule incorrectly transformed this query to match the ontology, that resulted in an 
incorrect answer being returned (i.e. Florida).  



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 147 

 

The reason for these frivolous rules is because Winston’s categories are mutually 
exclusive as they are defined using relational elements. Hence, our meta-level trans-
formations consist of only transitive rules. Despite this small number of rules, we 
found – through our evaluation – that transitivity by itself provide significant leverage 
in resolving part-whole mismatches. 

3.3   Algorithm 

The algorithm used in applying transitivity for resolving mismatches is as follows 
 

SPR= Set of Partonomic Relation  
If the query is not well formed  
      return  
else 

Convert the query Q into its algebric representation (AR). 
    Identify the graph pattern(GP) and query variables(QV). 
   For every triple t Є GP 

if t.property Є  SPR  
     If t.subject is a variable 
            Identify other triples with t.subject and use them to unify t.subject   
           Insert unified values in s.List 
    else 
          Insert t.subject in s.List  

             If t.object is a variable 
          Identify other triples with t.object and use them to unify t.object   
         Insert unified values in o.List 
 else    
        Insert t.object in o.List 
 for each  s Є s.List 
  for each o Є o.List 

path= Find path between s and o using the transformation rule. 
If (path! =null) 

              Replace the resources in the path such that, 
   path.source = t.subject. 
               path.destination = t.object   
The intermediate nodes are replaced such that the object and subject of contiguous 
triples have the variable names. 
Replace the triple in the graph pattern with the path containing the variables. 

 
Return the query Q' to the user 

 
 
Explanation 

Let us explain the algorithm using a query “In which county can you find the village 
of Crook that is full of lakes?” If the SPARQL Query submitted by user for this  
question is  



148 P. Jain et al. 

 

SELECT  ?countyName 
WHERE 
  { ?village ord:hasVernacularName  "Crook" . 
    ?county  rdf:type              ord:County ; 
                   ord:hasVernacularName  ?countyName ; 
                   ord:spatiallyContains  ?village . 
  } 

 
 
 
 
 
  
 
 
 

Step 1: The system compiles the query to verify if it is well formed. Since, in this 
case it is a well written query, the system moves on to Step 2.  
 

Step 2: The query is converted into its algebraic representation, and the system iter-
ates through its list of triples to identify triples containing partonomic relationship 
using the mapping file provided by the user. In this case the last triple 
 

t=?county ord:spatiallyContains ?village 

contains “spatiallyContains” property which indicates that the object is part of the 
subject. Hence, this triple is identified as a triple for re-writing. 
 

Step 3: The other triples which contain the variables mentioned in “t”,such as:  
 

?village  ord:hasVernacularName  "Crook"., 
     ?county   rdf:type              ord:County. 

        ?county  ord:hasVernacularName  ?countyName. 

are utilized for unifying the values of variables of t (i.e. ?village and ?county). Using 
these ?village ={ osr7000000000013015 } which is the resource for “Crook” in Ad-
ministrative Geography Ontology and ?county={set of resources belonging to coun-
ties} is computed. 
 

Step 4: The set of unified values from Step3 is then utilized to compute a path by 
executing transformation rule of transitivity involving the property “tangentiallySpa-
tiallyContains”, “completelySpatiallyContains”  
 
?place ={osr7000000000013015}  ?county={List of counties}.This results in the 
following path being returned: 

1. osr7000000000013244 tangentiallySpatiallyContains  osr7000000000012934 
2. osr7000000000012934  completelySpatiallyContains  osr7000000000013015 

 

Step 5: In the path, the source and destination are replaced as mentioned in the origi-
nal query, and the intermediate node is consistently replaced by a variable. 
 

1. ?county ord:tangentiallySpatiallyContains  ?var 
2. ?var  ord:completelySpatiallyContains ?village. 



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 149 

 

Step 6: In the original query the last triple is replaced by these two triples resulting in 
the following query 

 
 

 
 
 
 
 
 

 

There can be certain cases where a number of paths are computed between two end 
points because of transitivity. This will result in generation of multiple re-written 
queries. We try to rank these generated queries using the following parameters: (1) 
Re-written queries generating results are given higher ranking than ones which do not 
(2) If both queries generate results, in those scenarios queries requiring minimum 
amount of re-writing are given a higher ranking. 

4   Evaluation 

We present two evaluations to assess the performance of our approach on resolving 
partonomic mismatches between SPARQL queries written by users and the ontol-
ogy’s to which these queries are posed. We perform these evaluations using: (1) 
Questions from National Geographic Bee on Geonames Ontology (2) Questions from 
a popular trivia website which hosts quiz related to “British Villages and Counties”  
on British Administrative Geography Ontology. 

4.1   Evaluation Objective and Setup 

Our objective is to determine whether our approach enables users to successfully pose 
queries about partonomic information to ontology where the users are not familiar 
with its structure and organization. This lack of familiarity will result in many mis-
matches that need to be resolved in order to achieve good performance. 

To evaluate our objective, we chose Geonames [1] and British Ordinance Survey-
Administrative Geography Ontology [23] as our ontology’s because: (1) they are one 
of the richest sources of partonomic information available to the semantic web com-
munity. (2) they are rich in spatial information. Geonames has over 8 million place 
names – such as countries, monument, cities, etc. – which are related to each other via 
partonomic relationships corresponding to Winston’s category of Place-Area. For 
example, cities are parts of provinces and provinces are parts of countries. Table 3 
shows some key relationships found in Geonames. 

SELECT  ?countyName 
WHERE 
{  
    ?village  ord:hasVernacularName  "Crook" . 
    ?county  rdf:type  ord:County ; 

     ord:hasVernacularName  ?countyName ; 
     ord:tangentiallySpatiallyContains ?var . 

     ?var       ord:completelySpatiallyContains  ?village . 
} 



150 P. Jain et al. 

 

Table 3. Geonames important properties 

Property Description 
http://www.geonames.org/ontology#name Name of the place 
http://www.geonames.org/ontology#featureCode Identifies if the place is a 

country, city, capital etc. 
http://www.geonames.org/ontology#parentFeature Identifies that the place iden-

tified by domain is located 
within the place identified by 
the range 

Similarly, Administrative Geography Ontology provides data related to location of 
villages, counties and cities of the United Kingdom which again map to Winston’s 
place-area relation. Table 4 shows the description of key administrative geography 
ontology properties. Namespace has been omitted for brevity. 

Table 4. Administrative Geography important properties 

Property Description 
spatiallyContains The interior and boundary of one region is 

completely contained in the interior of the other 
region, or the interior of one region is com-
pletely contained in the interior or the boundary 
of the other region and their boundaries inter-
sect. 

tangentiallySpatiallyContains The interior of one region is completely  
contained in the interior or the boundary of the 
other region and their boundaries intersect. It is 
a sub-property of spatiallyContains.  

completelySpatiallyContains The interior and boundary of one region is 
completely contained in the interior of the other 
region. It is a sub-property of spatiallyContains. 

 
For evaluating our approach on Geonames ontology, we constructed a corpus of 

queries for evaluation by randomly selecting 120 questions from previous editions of  
National Geographic Bee[3], an annual competition organized by the National Geo-
graphic Society which tests students from across the world on their knowledge of 
world geography. For British Administrative Geography ontology, we selected 46 
questions from a popular trivia website [22] that hosts a number of quizzes related to 
British geography. We chose these questions for evaluation because: 

• These questions are publicly available, so others can replicate our evaluation. 
• Each question has a well-defined answer, which avoids ambiguity when 

grading the performance of our approach. 
• These questions are of places and their partonomic relationship to each  

other. Hence, there is significant overlap with Geonames and Administrative 
Geography Ontology. 



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 151 

 

Examples of such questions include: 

• The Gobi Desert is the main physical feature in the southern half of a country 
also known as the homeland of Genghis Khan. Name this country. 

• In which English county, also known as "The Jurassic Coast" because of the 
many fossils to be found there, will you find the village of Beer Hackett? 

Once the questions were selected, we employed 4 human respondents (computer 
science students at a local university) to encode the corresponding SPARQL query for 
each question. These respondents are familiar with SPARQL (familiarity ranged from 
intermediate to advanced) but are not familiar with Geonames or Administrative Ge-
ography Ontology. These two conditions meet our evaluation objective. 

For the National Geographic Bee questions, each subject was given all 120 ques-
tions along with a description of the properties in the Geonames ontology. Each sub-
ject was then instructed to encode the SPARQL query for each question using these 
properties and classes.  

For the trivia questions, we employed only one human respondent to encode the 
corresponding SPARQL query because of limitations in time and resources. This 
respondent was given all 46 questions along with a description of the properties in the 
administrative geography ontology. 

These instructions, original queries, responses and our source code is available for 
download at http://knoesis.wright.edu/students/prateek/geos.htm 

4.2   Geonames Results and Discussion 

We compared our approach to PSPARQL and SPARQL. PSPARQL [24] extends 
SPARQL with path expressions to allow use of regular expressions with variables in 
predicate position of SPARQL. The regular expression patterns allowed in PSPARQL 
grammar can be constructed over the set of uris, blank nodes and variables. For ex-
ample, the following query when posed to PSPARQL returns all cities connected to 
the capital of France by a plane or train. 
 
 
 
 
 
 
 
We posed queries encoded by human respondents (see previous subsection) to 
SPARQL and PARQ. We graded the performance of each approach using the metrics 
of precision (i.e. the number of correct answers over the total number of answers 
given by an approach) and recall (i.e. the number of correct answers over the total 
number of answers for the queries). We said an approach correctly answered a query 
if its answer was the same as the answer provided by the National Geographic Bee.  

Table 5 shows the result of this evaluation for PARQ and SPARQL. PARQ on an 
average correctly re-writes 84 queries of the 120 posed by users performing signifi-
cantly better than SPARQL processing system across all respondents (p < 0.01 for the 
X2 test in each case).  The low performance (61 queries by using PARQ and 19 by  
 

Select ?City2 
WHERE  
{  ?City1 ex:capital ex:France . 
    ?City1 (ex:plane | ex:train) ?City2 . } 



152 P. Jain et al. 

 

Table 5. Comparison Re-written queries Vs original SPARQL queries 

 System # of queries 
answered  

Precision  Recall 

PARQ 82 100% 68.3% Respondent1 
SPARQL 25 100% 20.83% 
PARQ 93 100% 77.5% Respondent2 
SPARQL 26 100% 21.6% 
PARQ 61 100% 50.83% Respondent3 
SPARQL 19 100% 15.83% 
PARQ 103 100% 85.83% Respondent4 
SPARQL 33 100% 27.5% 

SPARQL) for respondent 3 can be attributed to this subject having the least familiar-
ity with writing queries in SPARQL and writing improper SPARQL queries. The high 
performance (103 queries using PARQ and 33 using SPARQL) for respondent 4, can 
be attributed to this subject having the most experience with SPARQL. For each re-
spondent, the difference of 120 and re-written queries is the number of queries not  
re-written using PARQ. 

For this comparison, we also compared the execution time of PARQ to PSPARQL 
as shown in Table 6. Because of limitations in time and resources, we were able to 
employ only one respondent to encode the queries posed to PSPARQL. Hence, we 
selected Respondent 4 because this respondent has the most experience and familiar-
ity with SPARQL.  

Table 6. Comparison PSPARQL and PARQ for Respondent 4 

System Precision Recall Execution time/query in seconds 
PARQ 100% 86.7% 0.3976 
PSPARQL 6.414% 86.7% 37.59 

Although PARQ and PSPARQL deliver the same recall (86.7%), we clearly illus-
trate that PARQ performs much better than PSPARQL in precision (p<0.01 for X2 
test) because of retrieval of multiple answers by PSPARQL even when the particular 
resource was present only once in the ontology, thus exhibiting a flaw in the underly-
ing algorithm or implementation. It also illustrates that PSPARQL takes almost 95% 
more time on, average in answering a query than PARQ (p<0.05 for 2-tailed pair-wise 
t-test).  

These results shows that mismatches are common when posing queries to an ontol-
ogy and that our approach can successfully resolve these mismatches which enabled 
more queries to be correctly answered.  

For example, given the question: 

    “In which country is Grand Erg Oriental?”  



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 153 

 

Most of the subjects produced the following query. 
 
 
 
 
 
 
 
 
 
 
This query, however, failed to return any results when posed to Geonames because in 
Geonames “Grand Erg Oriental” is represented as a part of “Tunis al Janubiyah 
Wilayat” (a state) which is a part of “Tunisia” (a country).  PARQ was able to re-
write the original query to align with Geonames (see rewritten query below) which 
enabled the correct result to be retrieved (i.e. Tunisia).   

 
 
 
 
 
 
 
 
 
 
 

4.3   Administrative Geography Ontology Results and Discussion 

For the questions related to British villages and counties, we also compared our  
approach to PSPARQL. We did not compare our approach to SPARQL because it 
delivered poor performance in the previous evaluation. Because of time and resource 
limitations, we were able to employ only one respondent to serialize trivia questions 
related to British Villages for PARQ and PSPARQL. Again, we selected Respondent 
4 for this task because this respondent has the most experience and familiarity with 
SPARQL, The performance of each approach was graded using precision and recall, 
and we also compared the execution time of both approaches. We said an approach 
correctly answered a query if its answer was the same as the answer provided by the 
trivia website. As illustrated in Table 7 PSPARQL and PARQ perform equally well 
for recall, but PARQ has a much better precision than PSPARQL (p<0.01 for X2 
test). It also illustrates PSPARQL on an average is 28 times slower than PARQ 
(p<0.05 for the 2-tailed pair-wise t-test). 

 

PREFIX geo:<http://www.geonames.org/ontology#>  
SELECT ?countryname 
 WHERE 

{  ?country   geo:featureCode geo:A.PCLI. 
    geo:name ?countryname. 

  ?place       geo:name "Grand Erg Oriental"; 
                 geo:parentFeature ?country.} 

PREFIX geo:<http://www.geonames.org/ontology#>  
SELECT ?countryname 
 WHERE 

{ 
?country geo:featureCode geo:A.PCLI; 

    geo:name ?countryname. 
?place     geo:name "Grand Erg Oriental". 

                 geo:parentFeature ?var. 
 ?var        geo:parentFeature ?country.  
} 



154 P. Jain et al. 

 

Table 7. Comparison PSPARQL and PARQ for Respondent 4 

System Precision Recall Execution time/query in seconds 
PARQ 100% 89.13% 0.099 
PSPARQL 65.079% 89.13% 2.79 

These results again illustrate the fact that part-for-whole and whole-for-part mis-
matches are common in spatial ontology’s and PARQ helps resolve these mismatches 
allowing users to write queries without worrying about the structure of the ontology. 
As for example for the following trivia question “In which English county, also 
known as "The Jurassic Coast" because of the many fossils to be found there, will you 
find the village of Beer Hackett?”.  

The user poses the following SPARQL query for the question (Namespace omitted 
for brevity). 
 

 
 
 
 
 
 
 

The above specified query will not fetch any results because (1) the instance data 
for Administrative Geography models information using two subproperties of spatial-
lyContains namely “tangentiallySpatiallyContains” and “completelySpatiallyCon-
tains”. (2) Villages may or may not be directly part of counties and may contain  
additional administrative divisions in between. 

Unfortunately the difference between “tangentiallySpatiallyContains” and “com-
pletelySpatiallyContains” is very subtle and makes it extremely difficult for a naïve 
user to correctly identify and use the property for querying the ontology, unless the 
user looks at the instance data and identifies the properties. However, the property 
“spatiallyContains” is a parent property of both “tangentiallySpatiallyContains” and 
“completelySpatiallyContains” and is perhaps the most intuitive property of the on-
tology which captures the semantics of both the properties and can be used by a user 
for posing queries. So when the above mentioned query is re-written by PARQ ac-
cording to ontology as following, it retrieves the correct result of “Dorset”. 

 
 
 
 
 

SELECT  ?countyName 
WHERE 
{ ?village  ord:hasVernacularName  "Beer Hackett" . 
   ?county   rdf:type              ord:County ; 
                  ord:hasVernacularName  ?countyName ; 

              ord:spatiallyContains  ?village . 
 } 

SELECT  ?countyName 
WHERE 
  { ?village  ord:hasVernacularName  "Beer Hackett" . 
    ?county  rdf:type  ord:County ; 
                   ord:hasVernacularName  ?countyName ; 
                   ord:tangentiallySpatiallyContains ?var . 
     ?var     ord:completelySpatiallyContains  ?village . 
  } 



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 155 

 

4.4   Summary of Results and Limitations 

Based on our experiments performed we have demonstrated that PARQ significantly 
improves precision without any loss in recall and performs significantly faster as well 
over other systems.   

Although our approach significantly improved performance over PSPARQL and 
SPARQL, there were several queries that it could not answer. Our analysis uncovered 
the following reasons:  

• Several queries (e.g. those about political entities) could not be answered be-
cause of insufficient information in Geonames. Example of such queries in-
cludes “The Cayman Islands are a territory of which country?” 

• Some queries required additional transformations beyond the ones we have 
identified. These transformations involve relations such as containment and 
overlap of entities which cannot be defined in terms of Winston’s categories. 
Hence, we need to extend Winston’s categories to handle these types of 
mismatches. Example of such queries includes “Which continent contains 
the largest number of landlocked countries?”  

• Some questions required features, such as aggregate functions, that are not 
part of the standard SPARQL specification. Our current focus is to provide 
support for features which are part of standard SPARQL specification. Ex-
ample of such queries includes “Not including Taiwan, how many provinces 
comprise China?”    

5   Related Work 

To the best of our knowledge this is the first work which tries to allow users to formu-
late SPARQL queries from their perspective without having to worry about the  
structure of the ontology. However, there are existing works related to RDF Query 
processing and retrieval of spatial information some of which we think are worth 
mentioning to highlight their salient features and distinguish our work from them.  

The use of Semantic Web technologies for better retrieval of spatial information by 
incorporating data semantics and exploiting it during the search process was illus-
trated in [26]. Building upon the vision of [26], for retrieval of spatial information, in 
our previous work [10] we have defined operators to query spatial, temporal and the-
matic information from RDF datasets. Our approach for retrieval of spatial informa-
tion in that work utilizes metric parameters such as geometric co-ordinates, radius, 
buffer for defining various operators. The operators enhance the standard spatial  
operators provided by Oracle Spatial and are implemented as supplemental to 
SPARQL. The reliance on metric parameters compliments our approach here which 
relies on utilization of named relationships. 

Another interesting approach for querying spatial information using SPARQL[11]  
advocates re-modeling of ontology, than extending SPARQL for retrieval of informa-
tion. Because of the emphasis on remodeling ontology than transformation of query, 
this work is obviously along a different dimension than our work. But the work  



156 P. Jain et al. 

 

discusses shortcomings of SPARQL for querying spatial data and discusses some 
interesting query types which a language tailored for spatial querying should be able 
to handle and hence motivates us in our work. In [17] authors discuss a system for 
storing spatial and semantic web data efficiently without sacrificing query efficiency 
which in future can help us in supporting various other kinds of queries. 

In [12] we have defined operators for identifying paths in RDF dataset given a 
source and destination. Using these operators it is possible to express constraints such 
as the length of the path, specifying a particular node to include in the paths etc. Our 
current work differs from these works since this work is not on identifying paths. 
Additionally, our system re-writes SPARQL queries and does not require specifica-
tion of source and destinations for results to be retrieved. In [25][24] investigate in-
corporation of regular expressions in the predicate position of SPARQL queries. 
Though some of these works can be used for answering the queries they suffer from 
issues of poor precision and slower execution time as demonstrated through our 
evaluation. Query re-writing has been investigated in other research areas such as 
databases for yielding better execution plans, data integration and semantic data cach-
ing in client-server system [19]. In context of query languages for structured graph 
data models, [20][21] deal with queries that involve transitive or repetitive patterns of 
relations in context of databases.  

There has been work in spatial query processing system for retrieval of information 
using partonomic relation such as in [13][18], but not in the context of SPARQL and 
not utilizing named relationships. These works rely on the use of metric relations such 
as radius, distance etc. [13] focus on creation of composite or higher order objects via 
the process of thematic and spatial abstraction. 

The work which comes close to our approach is [14]. The work utilizes OWL-DL 
entailment rules for re-writing SPARQL to retrieve inference results. Unlike our ap-
proach where we alter the original graph pattern, the queries are altered by extending 
graph pattern using UNION construct of SPARQL. In the absence of an accessible 
implementation, it becomes difficult to compare our approach with the system.  

Another work SPARQL-DL[15] incorporates the semantics of SPARQL in their 
DL reasoner and hence, is along a different dimension than our work. 

Some other works on query rewriting are related to Query Optimization [16] , but 
in our work we are more concerned with retrieval of information from spatial datasets 
by harnessing partonomic relationships than its optimization. 

6   Conclusion and Future Work 

We have presented an approach for supporting SPARQL rewriting to allow users to 
write queries from their perspective without having to worry about the structure of the 
ontology. Our experiments have been completely performed on third party dataset and 
queries. Using our experimental results we have proven that our system re-writes 
these queries using transformation rules such as transitivity effectively and thus helps 
in resolving the mismatch between query constraints and underlying knowledge base 
while maintaining a high level of precision of results. Further we have demonstrated 
that PARQ is significantly faster and can improve precision without any loss to recall. 



 SPARQL Query Re-writing Using Partonomy Based Transformation Rules 157 

 

Our future research ideas include support to handle mismatches that cannot be 
handled by transitivity alone such as overlap, spatial inclusion. We are investigating 
support for more SPARQL constructs such as FILTER, OPTIONAL pattern. We are 
also further testing our approach for its applicability across domains. Limited tests 
performed show that our approach performs well across other domains of partonomic 
relations as well. A systematic comparison between resolving mismatches using query 
re-writing method viz-a-viz a reasoner is part of some of the future goals of this work. 
 
Acknowledgments. This research is funded primarily by NSF Award#IIS-0842129, 
titled "III-SGER: Spatio-Temporal-Thematic Queries of Semantic Web Data: a Study 
of Expressivity and Efficiency" and secondarily by NSF ITR Award #071441,  
“Semantic Discovery: Discovering Complex Relationships in Semantic Web”.   

References 

1. Geonames, http://geonames.org 
2. Resource Description Framework, http://www.w3.org/RDF/ 
3. National Geographic Bee, http://www.nationalgeographic.com/geobee/ 
4. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008), 

http://www.w3.org/TR/rdf-sparql-query/ 
5. Winston, M.E., Chaffin, R., Herrmann, D.: A Taxonomy of Part-Whole Relations. Cogni-

tive Science 11, 417–444 (1987) 
6. Peter, G., Simone, P.: A conceptual theory of part-whole relations and its applications. 

Data & Knowledge Engineering 20, 305–3227 (1996) 
7. Jena, http://jena.sourceforge.net/ 
8. ARQ, http://jena.sourceforge.net/ARQ/ 
9. Varzi, A.C.: A note on the transitivity of parthood. Applied Ontology 1, 141–146 (2006) 

10. Perry, M., Sheth, A., Hakimpour, F., Jain, P.: Supporting Complex Thematic, Spatial and 
Temporal Queries over Semantic Web Data. In: Fonseca, F., Rodríguez, M.A., Levashkin, 
S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 228–246. Springer, Heidelberg (2007) 

11. Kolas, D.: Supporting Spatial Semantics with SPARQL. Terra Cognita, Karlsruhe (2008) 
12. Anyanwu, K., Maduko, A., Sheth, A.P.: SPARQ2L: Towards Support For Subgraph Ex-

traction Queries in RDF Databases. In: 16th World Wide Web Conference (WWW 2007), 
Banff, Canada (2007) 

13. Omair, C., William, A.M.: Utilising Partonomic Information in the Creation of Hierarchi-
cal Geographies. In: 10th ICA Workshop on Generalisation and Multiple Representation, 
Moscow, Russia, 

14. Jing, Y., Jeong, D., Baik, D.-K.: SPARQL Graph Pattern Rewriting for OWL-DL Infer-
ence Query. In: Fourth International Conference on Networked Computing and Advanced 
Information Management, NCM 2008 (2008) 

15. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: OWLED 2007 
Workshop on OWL: Experiences and Directions, Innsbruck, Austria (2007) 

16. Hartig, O., Heese, R.: SPARQL Query Graph Model for Query Optimization. In: Franconi, 
E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519. Springer, Heidelberg (2007) 

17. Kolas, D., Self, T.: Spatially-Augmented Knowledgebase. In: Aberer, K., Choi, K.-S., 
Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., 
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. 
LNCS, vol. 4825, pp. 792–801. Springer, Heidelberg (2007) 



158 P. Jain et al. 

 

18. Vogele, T., Hübner, S., Schuster, G.: BUSTER-an information broker for the semantic 
web. In: KI, vol. 17, p. 31 (2003) 

19. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal (2001) 
20. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting recur-

sion. SIGMOD Record 16, 323–330 (1987) 
21. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: G+: Recursive Queries Without Recursion. In: 

Expert Database Conference (1988) 
22. http://www.funtrivia.com/ 
23. Administrative Geography Ontology, http://www.ordnancesurvey.co.uk/ 

oswebsite/ontology/AdministrativeGeography/v2.0/ 
AdministrativeGeography.rdf 

24. Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with regular expression pat-
terns (for querying RDF). Web Semantics 7, 57–73 (2009) 

25. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A Navigational Language for RDF. In: 
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. 
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 66–81. Springer, Heidelberg (2008) 

26. Egenhofer, M.J.: Toward the semantic geospatial web. In: 10th ACM international sympo-
sium on Advances in geographic information systems. ACM, New York (2002) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


