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Abstract

Normals and curvatures are fundamental for geometric modeling and computer-aided

design, but their accurate computations on discrete surfaces are challenging. Two types of

methods, namely height-function based and parameterization based polynomial fittings, are

well founded mathematically and can be proven to deliver convergent results under reason-

able assumptions. However, the numerical behaviors of these methods can differ drastically

in practice, and no systematic analysis and comparison have been reported previously for

these methods. In this paper, we describe a unified framework for these methods based on

weighted least squares approximations, and on top of this framework we compare a num-

ber of methods in terms of numerical accuracy and stability as well as runtime efficiency

and robustness through both theoretical analysis and numerical experiments. Our analy-

sis shows that the choice of parameterization and numerical solver for the least squares

problem can have significant impact on the accuracy and stability of polynomial fittings.

In addition, we show that the methods based on local orthogonal projection with a safe-

guard against folding delivers the best combination of simplicity, accuracy, efficiency, and

robustness.

Key words: Differential geometry, surface meshes, discrete operators, normals, curvatures

1 Introduction

Computing normals and curvatures is a fundamental problem for many geometric

and numerical computations, including feature detection, shape retrieval, shape reg-

istration or matching, surface fairing, surface mesh adaptation or remeshing, front
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tracking and moving meshes. Many methods have been introduced for computing

normals and curvatures, such as (Taubin, 1995; Meek and Walton, 2000; Meyer

et al., 2002; Xu, 2004; Rusinkiewicz, 2004; Cazals and Pouget, 2005; Grinspun

et al., 2006; Jiao and Zha, 2008). In recent years, there have been significant inter-

ests in the accuracy and stability of these methods, driven by the needs of geomet-

ric or physical modeling. Among the existing methods, some do not guarantee the

convergence of the estimations except under some special conditions. For example,

Meyer et al. (2002) proposed a cotangent formula for estimating mean curvatures,

which is closely related to the formula for Dirichlet energy of Pinkall and Polth-

ier (1993). It was shown that the cotangent formula does not produce converging

pointwise mean-curvature estimations except for some special cases, as noted in

(Borrelli et al., 2003; Xu, 2004; Hildebrandt et al., 2006; Wardetzky, 2007). As

another example, Langer et al. (2007) proposed a tangent-weighted formula for es-

timating mean-curvature vectors, whose convergence relies on special symmetric

patterns of a mesh. Cohen-Steiner and Morvan (2003) proposed a method for cur-

vature computation based on the theory of normal cycles, but their error analysis

is limited to the case of restricted Delaunay triangulations. On the other hand, a

few methods based on polynomial fittings have been proven to deliver converging

results (see e.g., Meek and Walton, 2000; Xu, 2004; Cazals and Pouget, 2005; Jiao

and Zha, 2008). However, these methods can have drastically different numerical

behaviors, and sometimes they can deliver very poor results in practice.

Accuracy and stability of polynomial fittings are subtle numerical issues. These

issues are complicated due to the interactions among different aspects of the meth-

ods, including point selection, parameterization, numerical solvers, as well as their

interactions with classical differential geometry formulas. Therefore, a systematic

analysis and comparison of these polynomial-fittings based methods are decidedly

nontrivial but are important to advance our understanding of this fundamental prob-

lem. The main objective of this paper is to present a systematic analysis and com-

parison of polynomial-fittings based methods including those based on parameter-

ization or height functions. Our analysis is based on an extension of that in (Jiao

and Zha, 2008) for local height functions. We emphasize that our objective is not to

compare all the existing methods for normal and curvature estimations. Readers are

referred to (Petitjean, 2002) and (Gatzke and Grimm, 2006) for more comprehen-

sive surveys and comparisons. Although our focus is on polynomial fittings only,

some of the numerical issues that we address also apply to some other methods,

such as those in (Goldfeather and Interrante, 2004) and (Rusinkiewicz, 2004).

The main contributions of the paper are as follows. First, we present a complete

set of formulas for computing differential operators for continuous parametric sur-

faces. Second, we extend the computational framework and associated accuracy

and stability analysis in (Jiao and Zha, 2008) for height functions to parametric

surfaces. Third, we present theoretical and experimental comparison for a num-

ber of polynomial-fitting based methods. Our analysis shows that the choices of

parameterization and numerical solver for the polynomial fittings can have signif-
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icant impact on the accuracy and stability of the resulting estimations. In addition,

we show that the methods based on local orthogonal projection with a safeguard

against folding delivers the best combination of simplicity, accuracy, efficiency,

and robustness.

The remainder of this paper is organized as follows. Section 2 analyzes the clas-

sical formulas for continuous parametric surfaces and presents some alternative

formulas that are more amenable to numerical computation for their numerical sta-

bility. Section 3 presents a unified framework for polynomial fittings based on local

parameterizations and weighted least squares approximations. Section 4 analyzes

a few methods within this framework and compares them in terms of point selec-

tion, smoothness of parameterization, and robustness of numerical solver. Section 5

presents some numerical experiments to verify our theoretical analysis and com-

pare the different algorithms in terms of accuracy and runtime efficiency. Section 6

concludes the paper with a discussion.

2 Formulas for Continuous Surfaces

Reliable computations of differential quantities on discrete surfaces critically de-

pend on their counterparts for continuous surfaces. The latter is a subject in classical

differential geometry and has been studied extensively, but the numerical behaviors

of classical formulas have not been carefully scrutinized until recently. In (Jiao and

Zha, 2008), the stability of the classical formulas for height functions was analyzed,

and some new formulas were proposed. In this section, we extend the analysis to

the formulas for parametric surfaces and propose some alternative formulas that are

more amenable to numerical computations.

2.1 Formulas for Parametric Surfaces

Given a smooth surface Γ in the global xyz coordinate system, let x = f(u) be a

parameterization of a neighborhood around a vertex on Γ, where u = [u, v]T (we

consider all vectors as column vectors for consistency with the modern convention

in numerical analysis.). If the surface is smooth, the coordinate function f defines

a smooth surface composed of points x(u) ∈ R
3. The Jacobian matrix of x(u)

with respect to u is then J = [xu,xv]. The vectors xu and xv form a basis of the

tangent space of the surface. Let du denote [du, dv]T . The first fundamental form

of the surface is the quadratic form

I(du) = duT Gdu, where G = JT J .

G is known as the first fundamental matrix. Its determinant is g = det(G) =
‖xu × xv‖2. Let ℓ denote

√
g, i.e., ℓ = ‖xu × xv‖ , which we refer to as the “area
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element.” The unit normal to the surface is then

n̂ =
xu × xv

ℓ
. (1)

The second fundamental form in the basis {xu,xv} is given by the quadratic form

II(du) = duT Bdu

where

B = −






n̂T
u xu n̂T

u xv

n̂T
v xu n̂T

v xv




 =






n̂T xuu n̂T xuv

n̂T xuv n̂T xvv




 , (2)

and is known as the second fundamental matrix.

The well-known Weingarten equations read [n̂u | n̂v] = − [xu | xv] W , where W

is the Weingarten matrix (a.k.a. the shape operator) with basis {xu,xv}. By left-

multiplying JT on both sides, we have B = GW , and therefore,

W = G−1B. (3)

The mean curvature is equal to half of the trace of W . The Gaussian curvature is

equal to the determinant of W . Let κ1 and κ2 denote the eigenvalues of W , which

are the principal curvatures. Then, κH = (κ1 + κ2)/2 and κG = κ1κ2. Let d̂1

and d̂2 be the eigenvectors of W . Then ê1 = Jd̂1/‖Jd̂1‖ and ê2 = Jd̂2/‖Jd̂2‖
are the principal directions. The principal curvatures and principal directions are

sometimes used to construct a 3 × 3 matrix

C = κ1ê1ê
T
1 + κ2ê2ê

T
2 . (4)

We refer to C as the principal curvature tensor or simply the curvature tensor for

brevity.

The Weingarten matrix in (3) is classical in differential geometry, but it is not well-

suited for numerical computations. The reason is that the matrix is in general not

symmetric, so its eigenvectors are not orthogonal to each other. In addition, the

eigenvalues of W are not necessarily real in the presence of round-off errors. For

robust numerical computations, we derive a symmetric shape operator as follows.

Let J = QR denote the QR factorization of J , where Q is 3×2 with orthonormal

column vectors (i.e., QT Q = I) and R is a 2 × 2 upper triangular matrix. The QR

factorization can be constructed using Gram-Schmidt orthogonalization (see e.g.,

Golub and Van Loan, 1996). Let q̂1 and q̂2 denote the column vectors of Q. The

shape operator in the orthonormal basis {q̂1, q̂2} is the symmetric matrix

W̃ = R−T BR−1, (5)

and the curvature tensor is then

C = QW̃QT = J+T BJ+, (6)
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where J+ = R−1QT is the pseudo-inverse of J . Note that the curvature tensor (6)

is equivalent to the embedded Weingarten map in (Peters and Reif, 2008, p. 20).

Eq. (6) also has the same form as Eq. (13) in (Jiao and Zha, 2008), but it is more

general in that it applies to parametric surfaces instead of just local height functions

(see subsection 2.2).

After obtaining the symmetric shape operator W̃ , its eigenvalues are guaranteed to

be real and its eigenvectors are guaranteed to be orthonormal. More specifically, let

wij denote the entries of W̃ . The principal curvatures are then

κ1,2 =
1

2

(

w11 + w22 ±
√

(w11 − w22)
2 + 4w2

12

)

. (7)

If κ1 = κ2, we choose the principal directions to be q̂1 and q̂2, respectively. Other-

wise, the principal direction corresponding to κi is

êi =
(w11 − κ3−i)û1 + w12û2

‖(w11 − κ3−i)û1 + w12û2‖
=

w12û1 − (w11 − κi)û2

‖w12û1 − (w11 − κi)û2‖
(8)

for i = 1, 2. For better stability, we use the first equality if |w11−κ3−i| > |w11−κi|
and use the second equality otherwise.

2.2 Formulas for Height Functions

The preceding formulas apply to any smooth parameterization of a neighborhood of

any point on a surface. A special parameterization is associated with the so-called

“local height function,” obtained by the orthogonal projection of the neighborhood

onto a plane that is nearly tangential to the surface. Specifically, given a smooth

surface in the global xyz coordinate system, it can be transformed into a local

uvw coordinate system by translation and rotation. Assume both coordinate frames

are orthonormal right-hand systems. Let the origin of the local frame be at point

[x0, y0, z0]
T

. Let t̂1 and t̂2 be the unit vectors in the global coordinate system along

the positive directions of the u and v axes, respectively. Then, m̂ = t̂1 × t̂2 is

the unit vector along the positive w direction. Let U denote the orthogonal matrix

composed of column vectors t̂1, t̂2 and m̂, i.e., U =
[

t̂1, t̂2, m̂
]

. Any point x on

the surface is then transformed to a point p(x) = [u, v, f(u)]T = UT (x − x0).
Conversely, x = Up + x0. The function f(u) : R

2 → R (more precisely, from

a subset of R
2 to R) is a height function near x0. In the uvw coordinate system,

the first two components of the coordinate function are u and v, respectively, so the

differential quantities depend on only the derivatives of f with respect to u and v.

Let ∇f = [fu, fv]
T

denote the gradient of f with respect to u and H =






fuu fuv

fvu fvv






the Hessian of f , where fuv = fvu. For this particular form, the Jacobian matrix

5



and the first and second fundamental matrices can be written explicitly in terms of

∇f and H , resulting in some simple closed-form formulas. Table 1 summarizes

the formulas of first- and second-order differential quantities of a parametric sur-

face or local height function. We separate the table into three parts by double lines.

Most of the first two parts are well known; see e.g. (do Carmo, 1976). The formulas

for mean and Gaussian curvatures of local height functions were derived in (Jiao

and Zha, 2008). To the best of our knowledge, the third part of the table has not

appeared in the literature previously. Note that in (Jiao and Zha, 2008) a symmetric

shape operator was derived for local height functions using the singular value de-

composition (SVD) of the Jacobian matrix, but unfortunately the Jacobian matrix

for a parametric surface is too complex to derive an explicit SVD, so we express

the symmetric shape operator using QR factorization instead.

2.3 Analysis of Stability

The formulas for the classical Weingarten matrix (3) and the symmetric shape op-

erator (5) both involve an inverse operation. Symbolically, the operators are valid if

and only if J has full rank. However, in the presence of errors in J and B (such as

roundoff or approximation errors), these errors can propagate into W or W̃ , and

in turn lead to errors in the principal curvatures and principal directions.

Let κJ denote the condition number of the Jacobian matrix in 2-norm, i.e., the ratio

between the largest and smallest singular values of J . From perturbation theory we

know that the errors in W and W̃ depend on the errors in J and B as well as the

condition numbers of J . Let ǫJ and ǫB denote the norms of the errors in J and B.

The error in W and W̃ are then both O(κ4
J ǫJ +κ2

J ǫB). Therefore, it is important

that κJ is not too large (i.e., J is far from being rank deficiency).

While the errors in the classical and symmetric shape operators have similar scales,

the eigenvalues and eigenvectors of these shape operators can behave drastically

differently. In terms of the eigenvalues, the eigenvalues of a symmetric matrix are

always well conditioned, but the eigenvalues of a non-symmetric matrix may be ill

conditioned, depending on the angles between the eigenvectors. The skewness of

the Jacobian matrix can therefore severely jeopardize the stability of the principal

curvatures for the classical shape operator. In terms of the principal directions, the

eigenvectors of a symmetric shape operators are always orthogonal to each other,

but those for the classical shape operator are in general not. The loss of orthog-

onality of the eigenvectors can translate into large angular errors of the principal

directions. These errors in the principal curvature and principal directions from

the classical shape operator can further pollute the principal curvature tensor (4).

Eq. (6) overcomes this pollution error and at the same time provides a more efficient

way for obtaining the curvature tensor.
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Table 1

Summary of formulas for continuous parametric surfaces and height functions.

local parameterization local height function

description x = f(u, v) x = U








u

v

f(u, v)








+ x0

Jacobian matrix J =








xu

∣
∣
∣
∣
∣
∣
∣
∣
∣

xv








=








q̂1

∣
∣
∣
∣
∣
∣
∣
∣
∣

q̂2








︸ ︷︷ ︸

Q

R U








1 0

0 1

fu fv








1st fundamental matrix G = JT J




1 + f2

u fufv

fufv 1 + f2
v





area element ℓ =
√

det(G) = ‖xu × xv‖2 1 + f2
u + f2

v

surface normal n̂ = xu×xv

ℓ
1
ℓ U








−fu

−fv

1








2nd fundamental matrix B =




n̂T xuu n̂T xuv

n̂T xuv n̂T xvv








fuu fuv

fvu fvv





︸ ︷︷ ︸

H

/ℓ

Weingarten matrix W = G−1B 1
ℓ (J

T J)−1H

mean curvature κH = 1
2 tr(W ) tr(H)

2ℓ − (∇f)T H(∇f)
2ℓ3

Gaussian curvature κG = det(W ) = det(B)/ℓ2 det(H)/ℓ4

symmetric shape operator W̃ = R−T BR−1 = [wij ] in basis {q̂1, q̂2}

principal curvature tensor C = QW̃QT = J+T BJ+

principal curvatures κ1,2 = 1
2

(

(w11 + w22) ±
√

(w11 − w22)
2 + 4w2

12

)

principal directions êi =
(w11−κ3−i)q̂1

+w12q̂2

‖(w11−κ3−i)q̂1
+w12q̂2

‖
=

w12q̂1
−(w11−κi)q̂2

‖w12q̂1
−(w11−κi)q̂2

‖

3 A Computational Framework for Discrete Surfaces

To apply the formulas for continuous surfaces to discrete surfaces, we must con-

struct a parameterization and estimate the first and second derivatives of the coor-

dinate functions with respect to the parameterization. Different methods may use

different parameterizations and/or numerical solvers for estimating the derivatives.

To compare and analyze different methods, it is important to consider them in a
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common framework. In this section, we assume that a neighborhood around a point

has been selected and a parameterization is obtained (we will address these issues in

the next section). Hereafter, we focus on the description and analysis of a common

framework that unifies the methods under consideration, and present a thorough

analysis of this framework.

3.1 Weighted Least Squares Polynomial Fitting

In approximation theory, the Taylor series expansion is a powerful tool in deriving

numerical approximations. Let u denote [u, v]T and f(u) denote a smooth bivariate

function, which may be the local height function under orthogonal projection, or

the x, y, or z component of the coordinate function for a parametric surface. Let

cjk be a shorthand for ∂j+k

∂uj∂vk f(0). Given a positive integer d, if f(u) has d + 1
continuous derivatives, it can be approximated to (d + 1)st order accuracy about

the origin u0 = [0, 0]T by

f(u) =
d∑

p=0

j+k=p
∑

j,k≥0

cjk
ujvk

j!k!
︸ ︷︷ ︸

Taylor polynomial

+
j+k=d+1

∑

j,k≥0

∂j+k

∂uj∂vk
f(ũ, ṽ)

ũj ṽk

j!k!
︸ ︷︷ ︸

remainder

, (9)

where 0 ≤ ũ ≤ u and 0 ≤ ṽ ≤ v. We emphasize that this equality assumes that

f is continuously differentiable up to d + 1, and we refer to this as the regularity

assumption. The derivatives of the Taylor polynomial are the same as f at u0 up

to degree d, and hence the problem of estimating the derivatives reduces to the

estimation of the coefficients cjk of the Taylor polynomial. Specifically, given a set

of data points, say [ui, vi, fi]
T

for i = 1, . . . ,m − 1, sampled from a neighborhood

near a point u0 = [u0, v0, f0]
T

on a smooth surface. Plugging in each given point

into (9), we obtain an approximate equation

d∑

p=0

j+k=p
∑

j,k≥0

cjk
uj

iv
k
i

j!k!
≈ fi, (10)

which has n = (d + 1)(d + 2)/2 unknowns (i.e., cjk for 0 ≤ j + k ≤ d, j ≥ 0
and k ≥ 0), resulting in an m × n rectangular linear system. We refer to d as the

degree of fitting. Note that one could enforce the fit to pass through the point u0

by setting c00 = 0 and removing the equation corresponding to u0, reducing to an

(m−1)×(n−1) rectangular linear system, but there is typically little or no benefit

for doing it.

The above method for estimating the Taylor polynomial is known as polynomial

fitting or local polynomial fitting, because the fitting is in a local neighborhood
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around point u0. Let us denote the rectangular linear system obtained from (10) as

V c ≈ f , (11)

where c is an n-vector composed of cjk, and V is a generalized Vandermonde ma-

trix. For a local height function, f is an m-vector composed of fi; for a parametric

surface, f is an m × 3 matrix, of which each column corresponds to a component

of the coordinate function.

Numerically, (11) can be solved using the framework of weighted linear least

squares (Golub and Van Loan, 1996, p. 265), i.e., to minimize a weighted norm

(or semi-norm),

min
c

‖V c − f‖Ω = min
c

‖Ω(V c − f)‖2, (12)

where Ω is a weighting matrix. Typically, Ω is an m × m diagonal matrix, whose

ith diagonal entry ωi assigns a priority to the ith point [ui, vi]
T

by scaling the ith
row of V . This formulation is equivalent to the linear least squares problem

Ṽ c ≈ b, where Ṽ = ΩV and b = Ωf . (13)

In general, Ṽ is m × n and m ≥ n. However, this linear system may be rank defi-

cient (i.e., the column vectors of Ṽ may not be linear dependent) or ill-conditioned

(i.e., the singular values of Ṽ may have very different scales) due to a variety of

reasons, including poorly scaling, insufficient number of points, or degenerate ar-

rangements of points (Lancaster and Salkauskas, 1986). The scaling of A can be

improved substantially by introducing a scaling matrix S and change the problem

as

min
d

‖Ad − b‖2, where A = Ṽ S and d = S−1c. (14)

Here S is typically a diagonal matrix. Let ṽi denote the ith column of Ṽ . The ith
diagonal entry of S is typically chosen to be either ‖ṽi‖∞ (e.g., Cazals and Pouget,

2005; Xu, 2007) or ‖ṽi‖2 (Jiao and Zha, 2008), where the latter approximately min-

imizes the condition number of Ṽ S (Golub and Van Loan, 1996, p. 265). However,

the problem may still be ill-conditioned after rescaling, and we address this issue

in Section 4.3.

3.2 Analysis of Accuracy and Stability

The weighted least-squares formulation is a well-known linear algebra technique.

However, in the context of derivative estimation for parametric surfaces, its numer-

ical analysis must be customized and does not seem to exist in the literature. We

present an analysis in this subsection, focusing on two aspects: 1) the accuracy and

stability of the least squares problem (14), and 2) the propagation of the errors from

(14) to differential quantities.
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3.2.1 Errors in Least Squares Formulation

By the perturbation theory, the error in the solution to Eq. (14) depends on a number

of factors, including the input errors in A and b, the condition number of A, the

angle of b with respect to column space of A, as well as the orientation of b within

the column space of A (Trefethen and Bau, 1997, Lecture 18). The entries in A

depend only on the parameterization, which we address in subsection 3.2.2. Here,

we focus on the errors in b and the condition number of A.

The error in b depends on both the “noise” in the input points and the residual in

(9). Note that an important assumption behind (9) is the regularity assumption. If

this assumption is violated, then the derivatives may be unbounded, and the errors

in the remainder may be arbitrarily large. It is therefore very important that the

coordinate functions are smooth with respect to the parameterization (i.e., with

bounded derivatives).

We now consider the condition number of Ad ≈ b. Assume the least squares prob-

lem is well conditioned and the numerical solver is stable. Let h denote the average

edge length of the mesh, and assume the maximum diameter of the neighborhood is

O(h). We bound the errors in the approximations to the partial derivatives in terms

of h.

Proposition 1 Given a set of points [ui, vi, f̃i] that interpolate a smooth height

function f or approximate f with an error of O(hd+1). Assume the point distri-

bution and the weighing matrix are independent of the mesh resolution, and the

condition number of the scaled matrix A = ÃS in (14) is bounded. The degree-d
weighted least squares fitting approximates cjk to O(hd−j−k+1).

The proof of the proposition follows that for Theorem 4 in (Jiao and Zha, 2008).

We omit the proof here for brevity. Note that in practice the matrix A may be rank

deficient or ill-conditioned, which poses challenges to the numerical solvers, as we

will discuss in Section 4.3.

3.2.2 Error Propagation to Differential Quantities

The analysis above considers the errors in the approximations to cjk, i.e. the partial

derivatives of the coordinate functions with respect to the parameters u and v. From

the coefficients cjk, we compute the normal and curvatures using the formulas in

Table 1. The errors in cjk therefore can propagate into the computed normals and

curvatures. Following the same proof as Theorem 5 in (Jiao and Zha, 2008), we

obtain the following proposition.

Proposition 2 Assume the position, gradient, and Hessian of coordinate functions

that approximated to O(hd+1), O(hd) and O(hd−1), respectively, and assume the

condition number of the Jacobian matrix is bounded. a) The angle between the
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computed and exact normals is O(hd); b) the components of the shape operator

and curvature tensor are approximated to O(hd−1); c) the Gaussian and mean

curvatures are approximated to O(hd−1).

In the proposition, it is important that the condition number of the Jacobian matrix

is bounded. This requirement is a direct consequence of the stability analysis in

Section 2.3. If the condition number of the Jacobian matrix is unbounded, the errors

in cjk can be magnified by an arbitrarily large factor. Note that this proposition

makes no claim about the principal directions, as they are inherently unstable if

the maximum and minimum curvatures are roughly equal. If the magnitudes of the

principal curvatures are well separated, then the principal directions would also

have similar convergence rates as the curvatures. When using our symmetric shape

operator, the computed principal directions are guaranteed to be orthonormal.

3.2.3 Summary of Requirements for Accuracy and Stability

The analysis above indicates that polynomial fittings produce converging estima-

tions of differential quantities under certain conditions. We summarize the condi-

tions as follows, grouped into three categories. First of all, the input points must

satisfy the following:

1. Decreasing neighborhood size: The size of the neighborhood (in terms of the

distances between points) should decrease asymptotically for finer meshes (i.e.,

should be O(h)).
2. Accurate input points: For degree-d polynomial fitting, the coordinate func-

tions should be at least (d + 1)st order accurate (i.e., O(hd+1)).

These requirements are necessary for asymptotically bounding the errors of the

input to polynomial fittings. These conditions are universal for any fitting method,

and they may or may not be satisfied by certain applications. Under the above

conditions, the parameterization must satisfy the following requirements:

3. Smooth coordinate functions: The partial derivatives of the coordinate func-

tions must be bounded with respect to the parameters in the given neighborhood.

4. Well conditioned Jacobian: The Jacobian matrix must be far from rank defi-

ciency (i.e., must be well conditioned).

These two conditions are related to, but do not necessarily imply, each other. Fi-

nally, additional requirements must be imposed on the numerical solver of the lin-

ear least squares system (14):

5. Robust solver: The least squares solver must be stable and at the same time be

able to resolve ill-conditioned systems.
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Under the above conditions, convergence is guaranteed theoretically for the com-

puted differential quantities, and small errors can be expected in practice for suffi-

ciently fine meshes. On the other hand, if any of the above conditions is violated,

convergence is not guaranteed and the errors can be large, although one may still

observe convergence and relatively small errors in practice. The above analysis

provides us guidelines for choosing the neighborhood, the parameterizations, and

numerical solvers. It also provides us a platform for comparing different methods,

as we report in the next two sections.

4 Analysis of Parameterization-based Approximations

The framework that we just described is very general. However, not all realizations

of the framework can perform equally well in practice in terms of accuracy, stabil-

ity, flexibility, and efficiency. In this section, we compare a few methods using the

terminology of this framework. Because there potentially can be a large number of

variants of different methods, we consider separately the issues of point selection,

smoothness of parameterization, and robustness of numerical solver, and use some

specific methods in the literature as examples during our discussions.

4.1 Point Selections Strategies

For polynomial fittings on meshes, it is typical to select the points based on mesh

connectivity, and sometimes coupled with some geometry-based filtration. It is

common to use a k-ring neighborhood for some integer k, such as 1, 2, or 3 (Xu,

2004; Cazals and Pouget, 2005; Gatzke and Grimm, 2006). The 1-ring neighbor

faces of a vertex v is the faces incident on v, and the 1-ring neighbor vertices are

the vertices of these faces. For an integer k ≥ 1, the (k + 1)-ring neighborhood of

a vertex is the union of the 1-ring neighbors of its k-ring neighbor vertices.

When k is constrained to integers, the numbers of vertices in k-ring neighbors grow

rapidly as k increases. For finer control, Jiao and Zha (2008) proposed to use half-

ring increments by defining the 1.5-ring neighbor faces to be the faces that share

an edge with a 1-ring neighbor face, and the 1.5-ring neighbor vertices to be the

vertices of these faces. For an integer k ≥ 1, the (k+1.5)-ring neighborhood is the

union of the 1.5-ring neighbors of the k-ring neighbor vertices. Figure 1 illustrates

the neighborhood definitions up to 2.5 rings. Table 2 shows the typical numbers of

vertices of a (d + 1)/2-ring for d up to 6, which have approximately twice as many

points as the number of unknowns of degree-d fittings. In our later discussions,

we allow k to have half increments when referring to k-ring neighbors. Note that

under some pathological situations (such as near the boundary of an open surface),

a (d + 1)/2-ring may have insufficient number of points for degree-d fittings. Jiao
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1.5 ring

2.5 ring

1 ring

2 ring

Fig. 1. Schematics of 1-, 1.5-, 2-, and 2.5-ring neighborhood. Each diagram shows the

neighborhood of the center (black) vertex.

Table 2

Numbers of coefficients in dth degree fittings versus numbers of points in typical d+1
2 rings.

degree (d) 1 2 3 4 5 6

#coeffs. 3 6 10 15 21 28

#points in d+1
2 ring 7 13 19 31 37 55

and Zha (2008) proposed to adaptively enlarge the neighborhood size by half-ring

increments if the number of vertices is fewer than 1.5 times of the required number

of points. We follow such an adaptive strategy in this paper when appropriate.

A k-ring neighborhood depends only on mesh connectivity. For highly irregular

meshes it could contain some points that are far away from the point of interest.

One could address this problem by choosing the vertices based on distances rather

than mesh connectivity (such as using the k nearest neighbors), but it is less efficient

and prone to the well-known problem of “short circuiting” (i.e., to choose points

that are close in Euclidean distance but are far away in geodesic distance). Under

the weighted least squares framework, we can easily filter out any vertex within a

k-ring neighbor by simply setting its corresponding weight in the weighting matrix

Ω to zero or to a very small number. Typically, the weight can be inversely propor-

tional to some power of the distance from the point to the vertex under considera-

tion and sometime can also depend on the vertex normals for better robustness (Jiao

and Zha, 2008). Therefore, k-ring neighbors with weighted least squares provides

a simple and flexible approach, so we do not consider other point-select strategies

here.
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4.2 Alternatives of Parameterizations

Given a local neighborhood near a vertex, different methods may utilize differ-

ent parameterizations. Parameterization has received significant attention in recent

years in geometric modeling and computer graphics (e.g. Floater, 2003; Gotsman

et al., 2003; Lévy et al., 2002). See (Floater and Hormann, 2005) for a survey of

recent work on parameterization. It is important to note that polynomial fittings

require only a local parameterization around a vertex, instead of a global parame-

terization of the whole surface mesh. This localization simplifies the problems both

theoretically and computationally and allows specialized parameterization strate-

gies. It is a natural but fundamental question how well these parameterizations are

suited for our problem at hand. In this section, we evaluate three representative

parameterizations in increasing generality.

4.2.1 Xu’s 1-Ring Parameterization

To support quadratic fittings, Xu (2004; 2007) proposed a simple but specialized

procedure to parameterize the 1-ring neighborhood of a vertex. At high level, this

procedure flattens the neighborhood while preserving both the ratios between the

interior angles of the triangles at the vertex and the lengths of the edges incident on

the vertex. Such a parameterization is not unique, subject to translation and rotation.

Xu eliminated the additional degrees of freedom by making the vertex the origin of

the uv plane and choosing one of the edges as the u direction. We refer readers to

(Xu, 2007) for detail.

Xu’s 1-ring parameterization is very simple and efficient. It is approximately iso-

metric at the vertex, so it is likely to be smooth. However, this construction has

some limitations, among which the most notable is its limitation to 1-ring neigh-

borhood. A 1-ring neighborhood sometimes does not even have enough points for

quadratic fittings, not to mention cubic or higher-degree fittings. This limitation

has serious consequences, as we will demonstrate in numerical experiments. In

addition, the algorithm in (Xu, 2004, 2007) assumes a 1-ring neighborhood is topo-

logically a disk so that the sum of the interior angles at a vertex is equal to 2π after

flattening. The procedure would have to be modified for boundary vertices if it were

used for open surfaces (more precisely, for 2-manifolds with boundary).

4.2.2 Local Orthogonal Projection with Safeguard

Another simple and efficient procedure for constructing the parameterization is to

project the neighborhood orthogonal onto a plane. We refer to this method as local

orthogonal projection (LOP). To avoid rank deficient (or ill-conditioned) Jacobian

matrices, the plane should be approximately tangential to the surface. The LOP is

often used in the construction of a local height function, as we describe in Section
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2.2 and as done in (Cazals and Pouget, 2005) and (Jiao and Zha, 2008). Therefore,

LOP enjoys the flexibility of utilizing the formulas for either local parameterization

or local height function in Table 1.

The LOP is simple and efficient, but unlike Xu’s parameterization it is more general

and can be applied to k-rings for k ≥ 1. However, if the surface is highly curved

and the mesh is too coarse, the projection of the k-ring neighborhood onto the

plane may not be one-to-one, which in turn can lead to a violation of the regularity

assumption of polynomial fittings.

The proneness to folding is the single most important issue with LOP. In the weighted

least squares framework, this problem can be addressed by utilizing the weighting

matrix to filter out vertices whose normals form too large an angle with the normal

to the uv plane, as suggested in (Jiao and Zha, 2008). Specifically, let m̂i denote a

rough estimation of the unit normal at the ith vertex, and let m̂0 denote the normal

to the uv plane, typically equal to the approximate vertex normal at the vertex in

consideration. Note that the m̂i are used only for the construction of projection

plane and the weights, so some simple averaging of face normals suffices. Jiao and

Zha (2008) chose the weight for the ith vertex to be

ωi = γi

/(√

‖ui‖2 + ǫ
)d/2

, (15)

where ǫ is a small number to prevent division by zero. The key safeguard in (15)

is γi, which is set to m̂T
i m̂0 if the angle between m̂i and m̂0 is small but set to

0 if the angle is too large. For a typical mesh, γi is approximately equal to 1 and

plays no role. For a coarse mesh with rapidly varying normals where a vertex may

“wrap around,” γi would become zero and the vertex is filtered out. This safeguard

is simple and efficient, and we employ it for LOP in our tests.

4.2.3 Conformal Parameterizations of k-Ring

Besides employing a safeguard, the potential problem of mesh folding of LOP

can also be resolved (or alleviated) by using a more sophisticated parameteriza-

tion strategy. Such an approach was advocated by some authors, such as Gatzke

and Grimm (2006). A number of methods have been developed for planar param-

eterization of surfaces in recent years. A few have been implemented in CGAL

(www.cgal.org), including barycentric mapping (Tutte, 1963), mean value coordi-

nates (Floater, 2003), discrete authalic parameterization (Desbrun et al., 2002), and

least squares conformal maps (LSCM) (Lévy et al., 2002); we refer readers to (Sa-

boret et al., 2007) for a complete list.

The planar parameterization methods in general can be categorized as either fixed

boundary or free boundary. For fixed-boundary methods, such as barycentric map-

ping and mean value coordinates, a surface is mapped onto a convex shape (such as
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Table 3

High-level comparison of different parameterization schemes.

advantages disadvantages

Xu simple and efficient limited to 1-ring neighborhood

LOP simple, efficient, flexible prone to folding if without safeguard

LSCM flexible expensive; no guarantee against folding

a circle or a convex polygon). Such mappings are typically guaranteed to be one-

to-one but are not necessarily smooth. Furthermore, because a k-ring neighborhood

is not necessarily convex even for k = 1, mapping it to a convex shape can lead to

arbitrarily large distortions and in turn large errors for polynomial fittings. Among

the free-boundary methods, the most appealing types are those based on conformal

mappings. For smooth compact surfaces, a conformal mapping is a type of har-

monic mapping that preserves angles, so it is smooth by construction. For discrete

surfaces, exact conformal mapping in general does not exist, and an approximation

is constructed by solving a linear or nonlinear system of equations. Unlike free-

boundary methods, fixed-boundary methods cannot guarantee the mapping to be

one-to-one and can even lead to flipped triangles (Saboret et al., 2007), resulting in

a violation of the regularity assumption for polynomial fittings. Therefore, none of

these general parameterization methods is ideal for polynomial fittings.

After extensive experimentation, we selected LSCM of Lévy et al. (2002) as a rep-

resentative for the general parameterization methods for our comparisons, because

it is a free-boundary method based on conformal mappings, and in our tests it de-

livered better results than the others available in CGAL. Although LSCM does not

guarantee against mesh folding, it is less likely to cause folding than a naive LOP

without any safeguard. However, LSCM is more expensive than LOP for its require-

ment of solving a linear system. Its effectiveness compared to safeguarded LOP is

unclear and can only be examined through numerical experimentation, which we

report in Section 5.

4.2.4 Summary of Different Parameterizations

Before concluding this subsection, we summarize a high-level comparison of the

advantages and disadvantages of different methods in Table 3. Note that each of

the methods has its own disadvantages. Xu’s parameterization and LSCM suffer

from inflexibility and inefficiency, respectively. LOP seems to be promising to de-

liver the best simplicity, efficiency, and flexibility. Its potential problem of mesh

folding can be resolved in a simple manner with the weighted least squares formu-

lation. In Section 5, we will study the accuracy and efficiency of different methods

experimentally and verify this conclusion.
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4.3 Alternatives of Numerical Solvers

In polynomial fittings the most difficult aspect is the solution of the least squares

system (14), because this system can be rank deficient (i.e., under-determined) or

even worse be nearly rank deficient (i.e., highly ill-conditioned). Such ill-conditioned

problems can occur even if the number of points is greater than the number of un-

knowns. Although there exist general techniques for solving ill-conditioned least

squares problems, such as SVD, an effective solution should take advantage of the

special properties of the problem at hand. In this subsection, we compare two tech-

niques, SVD, and a customization of QR factorization.

4.3.1 Singular Value Decomposition

In numerical linear algebra, singular value decomposition (SVD) is the standard

technique for solving rank-deficient least squares problems; see for example (Golub

and Van Loan, 1996, Chapter 5). Given a linear least squares problem Ax ≈ b,

where A ∈ R
m×n and b ∈ R

n, let A = UΣV T denote the SVD of A, where

U ∈ R
m×n is composed of left singular vectors ui of A, Σ = diag(σ1, σ2, . . . , σn)

with σ1 ≥ σ2 ≥ · · · ≥ σn, and V ∈ R
m×n is composed of the right singular vectors

vi of A. A general solution to a rank-deficient problem Ax ≈ b is

x =
∑

σi>ǫ

viu
T
i b/σi,

where ǫ is small number close 0 (such as 10−8). For an ill-conditioned problem, we

can set ǫ to a small factor of σ1 (such as 10−4σ1), which would effectively solve a

modified problem Ãx ≈ b, where Ã =
∑

σi≥ǫ σiuiv
T
i . The condition number of

Ã, namely the ratio between its largest and smallest singular values, is bounded by

1/ǫ. Given that the noise in the input points is small, limiting the condition number

of Ã effectively limits the sensitivity of x with respect to the noise in b.

In the context of polynomial fittings, SVD has been used to address the potential

rank deficiency in (Xu, 2007) and (Cazals and Pouget, 2005, 2008). Xu (2007)

solved (14) by constructing the normal equation AT Ad = AT b and then solve it

using the SVD of AT A, which is equivalent to the eigenvalue decomposition of

AT A, as AT A is symmetric positive semi-definite. Let σ̃i denote the eigenvalues

of AT A and ũi denote the eigenvectors of AT A. Xu solves the system as x =
∑

σ̃i≥ǫ ũiũ
T
i AT b/σ̃i, where ǫ was chosen to be 10−8. In contrast, Cazals and Pouget

(2005) used SVD of A to solve (14) directly, but no detail was given. In either case,

the use of SVD does not take into account the geometric meaning of polynomial

fittings, and it does not give higher priorities to lower derivatives. In addition, SVD

is far more expensive compared to techniques based on QR factorizations, as we

describe next.
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4.3.2 QR Factorization with Safeguard

Instead of using a standard technique, Jiao and Zha (2008) proposed a customized

QR factorization with a safeguard for polynomial fittings. The idea is based on

the observation that given the QR factorization A = QR, the QR factorization

of the first k leading columns of A (i.e., A:,1:k using MATLAB-like notation) are

the k leading columns Q (i.e., Q:,1:k) and the k × k leading submatrix of R (i.e.,

R1:k,1:k). If A has a large condition number, one can remove the columns of A

from the right to obtain a better conditioned problem. This effectively reduces to

a lower-degree fitting, so Proposition 1 is still applicable to bound the errors. Fur-

thermore, because the condition number (in 2-norm) of A is the same as that of

R, the condition number can be estimated efficiently. See (Jiao and Zha, 2008) for

more detail. Compared to SVD, this QR factorization based approach is about four

to five times faster than using SVD. Note that QR factorization with partial pivoting

is another alternative for solving rank deficient least squares problem (Golub and

Van Loan, 1996), but like SVD such an approach is less appropriate because it does

not give higher priorities to lower derivatives.

5 Numerical Experimentation

In this section, we report some numerical experiments to verify our preceding anal-

ysis. The experimental results can be affected by a number of factors, such as input

errors, surface topology, mesh connectivity, parameterization methods, degrees of

fittings, and numerical solvers. For the input meshes, we consider three aspects:

closed versus open surfaces, noise-free versus noisy input points, and well-shaped

(or regular) versus poor-shaped (or irregular) meshes. For the algorithms, we eval-

uate four different methods that we described earlier, including (1) Xu’s 1-ring

parameterization as detailed in (Xu, 2007), (2) local height functions (Jiao and

Zha, 2008), and parameterizations based on (3) local orthogonal projection or (4)

least-squares conformal maps (Lévy et al., 2002). When appropriate, we use dif-

ferent degrees of polynomial fittings (degrees 2, 3, or 4). We denote these different

methods by Xu-d, LHF-d, LOP-d, LSCM-d, respectively, where d is the degrees of

polynomial fittings.

The combinations of the above options lead to tens of cases. For each case we

compute the normals, and mean and Gaussian curvatures, principal curvatures, and

principal directions. For convergence study, we use four meshes of different reso-

lutions for each case and compute the average convergence rate as

convergence rate =
1

3
log2

(
error of level 1

error of level 4

)

.

The convergence rate is showed at the right end of the curves. Let v denote the

total number of vertices, and let n̂i and ñi denote the exact and computed unit
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Fig. 2. Sample meshes of torus generated by commercial mesh generation software (left)

and by isosurface algorithm (right).

vertex normals at the ith vertex. We measure the relative L2 errors in normals as
√

∑v
1 ‖ñi − n̂i‖2

2/v. For comprehensiveness, we sometimes also consider the L∞

error of normals, evaluated as maxi ‖ñi − n̂i‖2. Let ki and k̃i denote the exact and

computed curvatures at the ith vertex. We measure the relative errors of curvatures

in L2 norm as ‖κ̃ − κ‖2/‖κ‖2 =
√

∑v
i=1 (κ̃i − κi)

2
/ √

∑v
i=1 κ2

i , and measure the

L∞ error as maxi |κ̃i − κi|/|κi|. Altogether, we obtain thousands of data points. In

consideration of paper length, we report only a representative subset of results. All

of our computations use double-precision floating point arithmetic.

5.1 Experiments for Noise-Free Closed Surfaces

We first present results on noise-free closed surfaces. We chose a torus with inner

radius 0.7 and outer radius 1.3. A torus is representative for smooth surfaces as it

contains parabolic, elliptic and hyperbolic points. In practice, a mesh can be well

shaped (such as those obtained from CAD software for finite element analysis) or

poor shaped (such as those from marching cubes for visualization purposes). To

capture both types of meshes, we generated four triangular meshes using a com-

mercial mesh generation software GAMBIT of Fluent Inc. (now part of ANSYS,

Inc.) and four others using the isosurface function in MATLAB. Figure 2 shows

a coarse mesh of either type. To eliminate potential input errors, we projected the

vertices onto the torus so that the input points are accurate up to machine precision.

We first compare quadratic fittings using the four methods described earlier, de-

noted by Xu-2, LHF-2, LOP-2, and LSCM-2, respectively. For Xu-2, 1-ring neigh-

bors were used, and for others 1.5-rings were used. Figure 3 shows the L2 error

and L∞ errors in the computed normals, and Figure 4 shows the corresponding re-

sults for mean curvature. Note that except for Xu-2, the other methods converged

at about quadratic rates for normals in terms of both L2 error and L∞ errors, and

converged at about linear rates for curvatures in L∞ error and nearly quadratic rates

in L2 error. The super-convergence in L2 error is likely due to statistical cancella-

tion of truncation errors. For Xu-2, the behavior was inconsistent: for well-shaped

meshes it performed better than others in L2 errors but substantially worse in L∞
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Fig. 3. Comparison of L2 (left) and L∞ (right) errors in computed normals using degree-2

fittings for noise-free torus meshes.
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Fig. 4. Comparison of L2 (left) and L∞ (right) errors in computed mean curvatures using

degree-2 fittings for noise-free torus meshes.
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Fig. 5. Comparison of L2 errors in computed Gaussian curvature and principal directions

using degree-2 fittings for noise-free torus meshes.

errors, and for poor-shaped meshes it failed to converge. This inconsistent behavior

is not surprising, because the 1-ring neighbors used in Xu-2 are more compact than

1.5-ring and in turn could sometimes deliver more accurate results, but they some-

times have too few points and lead to rank-deficient or ill-conditioned systems.

Even though the SVD employed in Xu (2007) could produce numerical solutions

in such cases, accuracy is not guaranteed. For completeness, we also report the

L2 errors in the computed Gaussian curvature and principal directions in Figure 5,

whose behaviors were qualitatively similar to mean curvature.

For noise-free surfaces from CAD models or analytic functions, it is possible and

sometimes desirable to obtain higher order estimations. Except for Xu’s method,

the other three methods are capable of supporting higher-degree fittings. We con-

sider only LHF and LSCM for high-degree fittings and evaluate degree-3 and 4

fittings using 2 and 2.5-rings, respectively, while adaptively increasing the ring size

at half increments if the numbers of points are insufficient. Since LHF and LOP de-

liver nearly identical results (which is evident from the results of quadratic fittings),

the primary difference between LHF and LSCM is the parameterization being used.
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Figure 6 shows the L2 and L∞ errors in the computed normals. Figure 18 shows the

L2 errors in the computed mean and Gaussian curvatures. Note that LSCM-3 de-

livered slightly better accuracy than LHF-3 in most cases, but LHF-4 substantially

out-performed LSCM-4 in almost all cases. In all cases, the convergence rates of

LHF-4 were nearly an order higher than the theoretical prediction due to statisti-

cal error cancellations. In contrast, LSCM-4 converged at a rate nearly an order

lower than the theoretical prediction for well-shaped meshes and failed to converge

for poor-shaped meshes. This behavior of LSCM indicates that parameterizations

can affect the accuracy of high-degree fittings significantly, and LSCM seems to be

sufficiently smooth for cubic fitting but insufficient for higher-degree fittings.
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Fig. 6. Comparison of L2 errors of in computed normals (left) and mean curvatures (right)

using degree-3 and 4 fittings for noise-free torus meshes.
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Fig. 7. Comparison of L2 errors in computed Gaussian curvatures (left) and principal di-

rections (right) using degree-3 and 4 fittings for noise-free torus meshes.

5.2 Experiments for Noise-Free Open Surfaces

In geometric modeling, surfaces often have boundaries and/or sharp features. It is

therefore sometimes necessary to compute differential quantities using one-sided

stencils. The boundaries (or sharp features) can adversely affect the computations

of the differential quantities for two reasons: first, the neighborhood of a boundary

vertex typically has fewer points, which may lead to ill-posed or ill-conditioned

equations. Second, the stencil of boundary vertices are asymmetric, preventing sta-

tistical error cancellation associated with symmetry. Some existing methods for

normal and curvature computations actually require the surface to be closed and

rely on symmetry for convergence. Although polynomial fittings in general do not

require closed surfaces, the accuracies of different methods may vary substantially

near boundaries. To assess accuracies, we use a surface defined by the following
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Fig. 8. Test meshes for open surfaces.

function adopted from (Xu, 2004):

z = f(x, y) = exp
(

−81

16

(

(x − 0.5)2 + (y − 0.5)2
))

,

where (x, y) ∈ [0, 1] × [0, 1]. We use two types of meshes, as shown in Figure 8,

which we refer to as irregular and 4-8 meshes, respectively. These meshes are both

well-shaped compared to the meshes from isosurfacing algorithms, but the varia-

tions of vertex valences can pose some challenges to the algorithms.

Figure 9 shows the L2 and L∞ errors in the computed normals for Xu-2, LHF-2,

LOP-2, and LSCM-2. Because Xu’s parameterization is limited to 1-ring neigh-

borhoods that are topological disks, we excluded border vertices when computing

errors for Xu-2. However, boundary vertices are included for all the other meth-

ods. Figure 10 shows the L2 errors of the computed mean and Gaussian curvatures.

Except for Xu-2, the other three methods delivered very similar results, but the

convergence rates in L2 errors of mean curvatures were lower than those for the

torus, probably due to the loss of statistical error cancellations along boundaries.

For Xu-2, it is worth noting that the curvatures failed to converge for both types of

meshes due to insufficient number of points in the stencil.
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Fig. 9. Comparison of L2 (left) and L∞ (right) errors in computed normals using degree-2

fittings for noise-free open surface meshes.
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Fig. 10. Comparison of L2 errors in computed mean (left) and Gaussian (right) curvatures

using degree-2 fittings for noise-free open surface meshes.
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Fig. 11. Comparison of L2 (left) and L∞ (right) errors in computed normals using degree-3

and 4 fittings for noise-free open surface meshes.

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

1.8
1.9

2.5

3.4

refinement level

l2
e
rr

 m
c

mesh irregular

 

 

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

1.8
1.9

2.8

3.3

refinement level

mesh 4−8

LSCM 3

LHF 3

LSCM 4

LHF 4

1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

1.7
1.9

2.6

3.5

refinement level

l2
e
rr

 g
c

mesh irregular

 

 

1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

10
1

1.7
1.8

2.7

3.2

refinement level

mesh 4−8

LSCM 3

LHF 3

LSCM 4

LHF 4

Fig. 12. Comparison of L2 errors in computed mean (left) and Gaussian (right) curvatures

using degree-3 and 4 fittings for noise-free open surface meshes.

Figures 11 and 12 compare the errors for degree-3 and 4 fittings, namely LHF-

3, LHF-4, LSCM-3, and LSCM-4. LHF consistently delivered better accuracy than

LSCM for both degree-3 and 4 fittings, and LSCM-4 converged substantially slower

than LHF-4, which confirms our observation that LSCM is unsuitable for high-

degree fittings. From these tests, we conclude that LHF and similarly LOP are more

flexible and robust than Xu’s method, and they deliver higher accuracy than LSCM

for high-degree fittings.

In the proceeding results, we included both the interior and boundary vertices, ex-

cept for Xu’s method. To study the effect of border vertices, Figures 13 shows

the L2 errors and their convergence rates in the computed normals using LHF and

LSCM for boundary vertices and their 1-ring neighbors Figure 14 shows the cor-

responding results for the mean and Gaussian curvatures. It can be seen that these

convergence rates are somewhat lower than those for the interior vertices but are

very close to the theoretical analysis. These results indicate that these fitting meth-
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Fig. 13. L2 errors in computed normals for

boundary vertices for noise-free open sur-

face meshes.
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Fig. 14. L2 errors in computed mean (left)

and Gaussian (right) curvatures for boundary

vertices for noise-free open surface meshes.

Table 4

Input position errors of torus meshes extracted using isosurface function of MATLAB.

#volume #surface average error convergence rate

cells verts. edge length L2 L∞ L2 L∞

163 320 0.11 3.60e-3 9.30e-3 − −

323 1760 0.048 1.12e-3 3.47e-3 1.69 1.42

643 7320 0.023 2.59e-4 9.03e-4 2.11 1.94

1283 31136 0.011 6.71e-5 2.25e-4 1.95 2.00

2563 122464 0.0057 1.65e-5 5.70e-5 2.03 1.98

ods do not rely on symmetry for convergence, although they can benefit from sym-

metry and statistical error cancellation in practice.

5.3 Experiments for Noisy Surface Meshes

In many practical situations, the input points are not precisely on an analytical

surface but contain noise or input errors. An example is the meshes extracted from

isosurfaces, for which the vertex positions contain inherent errors. Another example

is meshes obtained from solutions of numerical computations. We now assess the

methods for these situations.

To study the effect of numerical errors, we use the meshes obtained from the iso-

surface function in MATLAB as in Section 5.1, but unlike in Section 5.1 we do not

project the vertices onto the true torus. Table 4 shows the errors in the vertex po-

sitions for the surface mesh extracted using the isosurface function of MATLAB.

We compute the position error for each vertex based on its distance to the torus,

and report both L2 and L∞ errors for five different mesh resolutions. From Ta-

ble 4, it seems that the isosurface function in MATLAB is second-order accurate,

so convergence of curvature is not guaranteed theoretically.
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For improved noise resistance, we increased the neighborhood size by half a ring

for LHF, LOP, and LSCM. Figure 15 shows the L2 and L∞ errors of the computed

normals for degree-2 fittings, and Figure 16 shows the L2 errors in the computed

mean and Gaussian curvatures, respectively. It can be seen that Xu-2 had the largest

errors, nearly two orders of magnitude larger than the other methods. This again

is primarily because Xu’s method uses only 1-ring neighbors. For the other three

methods, the L2 errors of the normal directions converged at about second order,

while the L∞ errors converged slower than second order. The L2 errors of the cur-

vatures converged at about first order. These rates are higher than the theoretical

predictions for noisy data, probably due to statistical error cancellation. We note

that when a first-order isosurface algorithm is used, we observed no convergence

and sometimes even divergence for the curvatures.
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Fig. 15. Comparison of L2 (left) and L∞

(right) errors in computed normals using

degree-2 fittings for noisy torus.
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Fig. 16. Comparison of L2 errors in com-

puted mean (left) and Gaussian curvatures

using degree-2 fittings for noisy torus.
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Fig. 17. Comparison of L2 (left) and L∞

(right) errors in computed normals using

degree-3 and 4 fittings for noisy torus.
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Fig. 18. Comparison of L2 errors in com-

puted mean (left) and Gaussian curvatures

using degree-3 and 4 fittings for noisy torus.

For completeness, we also present the results of cubic and quartic fittings in Fig-

ures 17 and 18 for the computed normals and curvatures, respectively. The results

of these higher-degree fittings were worse than those for quadratic fittings, because

a degree-d fitting requires the input errors to be order d + 1 or higher for optimal

convergence.

The input noise in the preceding test was due to numerical errors in isosurfacing,

which are beyond our control. To verify our analysis, we report experiments with

controlled errors, where the noise is added by perturbing the surface. We use the

open surface meshes in this test, and for each vertex we perturb it by adding a noise

of αhk along the normal direction, where α is a random number between 0 and 0.1

25



with Gaussian distribution, h is the average edge length, and k is chosen to be 2 or

3. For brevity, we report results only for quadratic fittings.

Figure 19 shows the L2 and L∞ errors of computed normals for O(h3) pertur-

bation, and Figure 20 shows the corresponding results for O(h2) perturbations.

Figure 21 shows the L2 errors of the computed mean and Gaussian curvatures for

O(h3) perturbation, and Figure 22 shows the corresponding results for O(h2) per-

turbations. We excluded boundary vertices when computing errors for Xu-2 but

included boundary vertices for the other methods. Note that for the normals, each

method performed nearly identically for the two different orders of perturbations.

Xu-2 again delivered slightly better results than the others for the 4-8 mesh due to

its use of a smaller neighborhood. However, for curvatures Xu-2 failed to converge

again due to insufficient number of points, and the other methods delivered higher

than linear convergence for O(h3) perturbations and generally lower than linear

convergence for O(h2) perturbations, consistent with the theoretical analysis.
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Fig. 19. Comparison of L2 (left) and L∞ (right) errors of computed normals using degree-2

fittings for noisy open surface with third-order perturbation.
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Fig. 20. Comparison of L2 (left) and L∞ (right) errors of computed normals using degree-2

fittings for noisy open surface with second-order perturbation.
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Fig. 21. Comparison of L2 errors of computed mean (left) and Gaussian (right) curvatures

using degree-2 fittings for noisy open surface with third-order perturbation.
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Fig. 22. Comparison of L2 errors of computed mean (left) and Gaussian (right) curvatures

using degree-2 fittings for noisy open surface with second-order perturbation.

Table 5

Comparison of execution times in seconds of different methods for torus mesh.

Mesh #verts. #tris. Xu-2 LOP-2 LHF-2 LHF-3 LHF-4 LSCM-2 LSCM-3 LSCM-4

1 1338 2676 0.035 0.011 0.0061 0.013 0.028 0.20 0.36 0.66

2 5246 10492 0.12 0.039 0.023 0.050 0.11 0.81 1.43 2.65

3 21156 42312 0.51 0.16 0.096 0.20 0.44 3.32 5.74 10.58

4 85208 170416 2.06 0.65 0.38 0.83 1.81 13.66 23.21 43.16

5.4 Comparison of Efficiency

A key practical consideration in choosing a proper method is runtime efficiency. Ta-

ble 5 reports the execution times of the different methods for the well-shaped torus

mesh. We implemented the methods of Xu, LOP, and LHF in MATLAB and then

converted the MATLAB code into C using Agility MCS (www.agilityds.com). For

Xu’s method, we used the singular value decomposition procedures in LAPACK

(Anderson et al., 1999). For least-squares conformal mapping, we used the C++

implementation of the parameterization algorithm in CGAL and used the same C

code as for LOP for the other numerical computations. All the codes were compiled

using gcc 4.2.4, with optimization enabled. We performed the tests on a Linux com-

puter with a 3GHz Intel Duo Core Pentium 4 processor and 2GB of RAM.

As can be seen in the table, LSCM was roughly an order of magnitude more ex-

pensive than the others. This is partially due to the overhead of the data structures

in CGAL and the high cost for solving linear system for the conformal parameteri-

zation. With a better optimized procedure for conformal parameterizations, LSCM

may become more competitive in cost. Xu’s method was the second most expen-

sive, even though it uses only 1-ring neighbors. This is primarily because of its use

of SVD, which is substantially more expensive than QR factorization. The most

efficient algorithm was LHF. The effective performance of LHF-2 is about 450
thousand triangles per second, and the cost approximately doubles when the de-

gree of fitting is increased by one. For comparison, we also tested Jet_fitting_3 of

Cazals and Pouget (2008) on the same computer, and the effective performance of
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Jet_fitting_3 for second-order fitting was about 28 thousand triangles per second,

consistent with their results reported in (Cazals and Pouget, 2008). Our algorithm

and implementation is more than 16 times faster than Jet_fitting_3, probably be-

cause of their use of SVD as well as the the overhead of the data structures in

CGAL. LOP slightly under-performs LHF, because the linear system for LOP in-

volves three right-hand-side vectors (instead of one in LHF) and also the formulas

for parametric surfaces are more complex than those for height functions. From

these experimental results, it seems that LHF offers the best combination of effi-

ciency, accuracy, simplicity, and robustness.

6 Conclusions

In this paper, we analyzed the numerical properties of parameterization-based com-

putation of first and second-order differential quantities for continuous and discrete

surfaces, and also compared a number of different methods for surface meshes in

terms of accuracy, stability and efficiency. We studied, both theoretically and exper-

imentally, the impact of a number of key factors, including input errors, parameteri-

zation methods, numerical solvers, as well as the formulas for continuous functions.

From our study, we draw the following conclusions. First, guaranteed convergence

of curvature computation requires the input points be third or higher-order accurate.

This high-order accuracy requirement is fortunately satisfied by meshes generated

from CAD models and solutions of high-order numerical simulations. Our second

and related conclusion is that meaningful (and even converging) curvature estima-

tions can be obtained from noisy input (with lower than third-order accurate input)

for purposes such as visualization or shape analysis when using stable least squares

approximations. In practice, these estimations are fairly close to the true results,

although they are not guaranteed to converge to the true solutions during mesh re-

finement. Thirdly, we observed that approximate conformal parameterizations are

smooth enough for quadratic and cubic fittings but are insufficient for high-degree

fittings. In contrast, local height function or local orthogonal projection are applica-

ble in higher degree fittings and can deliver high-order convergence rates. Finally,

it was evident that the choices of numerical solvers can have significant impacts on

the accuracy and efficiency on least squares polynomial fitting. In particular, QR

factorization with safeguard turned out to be more efficient (by roughly a factor

of five) and more accurate (especially for high order methods) compared to SVD.

We believe these conclusions will be valuable in helping readers setting proper ex-

pectations and choosing proper methods for computing differential quantities for

surface meshes. As a future research direction, we will investigate the use of local

height functions or local orthogonal projection in geometric flows for geometric

modeling and physics-based simulations.
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