
Abstract—This paper presents a comprehensive 
characterization of cyclostationary feature detectors 
through theoretical analysis, hardware implementation, 
and real-time performance measurements. Results of our 
study show that feature detectors are highly susceptible to 
sampling clock offsets. We propose a new detector that 
overcomes this limitation, and characterize its 
performance through experiments. In addition, the 
comparison with a conventional energy detector shows 
that feature detectors are more robust to adjacent channel 
interference. 

I. INTRODUCTION 
Cyclostationary feature detectors have been introduced as a 

complex two dimensional signal processing technique for 
recognition of modulated signals in the presence of noise and 
interference [1]. Recently, they have been proposed for the 
detection of weak primary user signals in the context of 
spectrum sensing for cognitive radios. However, there are 
number of issues that must be addressed in order to understand 
the robustness of this technique in a new application.  

In this paper we take a three phase approach in tackling 
some of the fundamental theoretical and practical questions 
for spectrum sensing. First, we model real system impairments 
and analyze their effects on feature detector theoretically. 
Then, we implement the proposed detectors on the real-time 
wireless testbed and investigate their low complexity 
implementations. Lastly, we use the testbed to characterize 
performance of feature detectors for the weak signal detection. 
We also compare them with a conventional energy detector. 

The paper is organized as follows: Section 2 provides 
theoretical background for feature detectors and analyzes their 
performance robustness in practical implementations. Digital 
implementation and experimental setup for its performance 
measurements are described in section 3. In section 4, we 
describe three experiments using the testbed including detector 
performance in the presence of sampling offsets, required 
detection time in highly negative SNRs, and robustness to out-
of-band interference. Summary of the work and conclusions 
are presented in Section 5.  

II. CYCLOSTATIONARY FEATURE DETECTOR 

A. Theoretical Background 
Modulated signals are in general coupled with sine wave 

carriers, pulse trains, repeating spreading, hoping sequences, 
or cyclic prefixes which result in built-in periodicity. Even 
though the data is a wide-sense stationary random process, 
these modulated signals are characterized as cyclostationary, 
since their statistics, mean and autocorrelation, exhibit 

periodicity. This periodicity is introduced intentionally in the 
signal format so that a receiver can exploit it for: parameter 
estimation such as carrier phase, pulse timing, or direction of 
arrival. This information can then be used for detection of a 
random signal with a particular modulation type in a 
background noise and other modulated signals. 

Common analysis of wide-sense stationary random signals 
is based on autocorrelation function and power spectral 
density. On the other hand, cyclostationary signals exhibit 
correlation between widely separated spectral components due 
to spectral redundancy caused by periodicity. By analogy with 
the definition of conventional autocorrelation, one can define 
spectral correlation function (SCF): 
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where finite time Fourier transform is given by: 
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Unlike power spectrum density, which is real-valued one 
dimensional transform, the spectral correlation function is two 
dimensional transform, in general complex-valued and the 
parameter α is called cycle frequency. Power spectral density 
is a special case of a spectral correlation function for α=0.  

The sufficient statistics used for the detection are obtained 
through non-linear squaring operation. Therefore, 
cyclostationary detectors fall in the category of non-coherent 
detectors in terms of detection time requirements. Given N 
samples divided in blocks of TFFT samples, spectral correlation 
function is estimated as:  
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XTFFT(n, f) is the NFFT point FFT around sample n. 

B. Robustness Issues 
Given that feature detectors exploit additional coherency in 

the signal that is not present in noise, the natural question 
arises if there are robustness issues involved in the detector 
performance. In cyclostationary processing of the features 
related to the symbol clock, it is evident that sampling of the 
incoming signal becomes critical. Intuitively, random 
sampling of a periodic signal would not resemble its 
periodicity. Features are easily recovered if the sampling clock 
is an integer multiple of symbol rate. However, if there is a 
sampling clock offset there will be a progressive drift in the 
position of sampling points within a symbol time. This drift 
changes the spectral correlation function. First, note that a 
constant time offset introduces a phase offset in both 
frequency and spectral correlation function domain.  
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Since SCF is a complex function, a time offset has different 
effect on it than on a power spectrum density, which is a real 
function. Now assume that there is a residual sampling clock 
offset ∆ from the ideal sampling clock T0, i.e. T-T0=∆ where T 
is the sampling clock interval. Then, in the process of 
estimation of SCF every estimate obtained by correlation of 
FFT bins will have a phase offset. Let us assume that N FFTs 
are used to estimate SCF as  
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where each FFT serves to estimate  
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Now, in the presence of clock offset estimations, each FFT 
block will have a phase offset: 
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Where ti = iNFFT∆ and          is the estimate with perfect 
sampling. In the process of averaging, these estimates are non-
coherently added and resulted SCF has the attenuated feature: 
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The feature at α can be completely cancelled when                 
∆ ≈ 1/(αNNFFT). Sampling offset ∆ can be expressed in terms 
of sampling clock frequency offset δ as          

)( δαα
δ
−

=∆
 

(11) 

Similar to the coherent pilot detector case, the number of 
samples that can be used for sensing is limited to                      
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The cancellation of the features due to sampling clock offset 
can be prevented by performing partially coherent feature 
processing. Based on the maximum expected sampling offset 
δmax, number of coherent averages M1 is chosen to be 
α/δmaxNFFT. Then two stage processing is performed as: 
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where the total number of averages is N=M1M2.  

C. Feature vs. Signal Energy 
The performance of the feature detector also depends on 

how much energy a feature contains. Different modulation 
schemes have different features and energy associated with 
them. Here, we will take a common example of a class of 
amplitude modulated signals and analyze the feature 
associated with the symbol rate. All amplitude modulated 
signals can be represented as:           where an is 

data sequence, q(t) is a pulse shaping filter and Ts is a symbol 
rate.  
The cyclic spectrum of x(t) is given by: 
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where Q(f) is a pulse shaping filter in Fourier domain. In case 
of most commonly used square root raised cosine filter, the 
feature spans over                    
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where β is a roll-off factor of the square root raised cosine 
filter. Since filters with β=0 are not realizable, every practical 
system will have some energy in the feature. Larger β 
contributes to a larger spectrum redundancy and would 
provide larger energy in the feature. 

III. IMPLEMENTATION AND EXPERIMENTAL SETUP  
In order to study performance and robustness issues of the 

feature detector, we used the wireless testbed built around 
Berkeley Emulation Engine (BEE2) [2]. This testbed also 
allowed us to investigate low complexity implementations of 
feature detectors. 

A. Experimental setup 
The detection of signal features and investigation of detector 

robustness to sampling offsets require real-time experiments. 
However, feature detection involves complex signal 
processing with high computational requirements that must be 
performed at the high speed sampling clock. The BEE2 
processing engine, used in our experimental study, was 
particularly suitable as it can support up to 500 GOPS at 100 
MHz rate. Furthermore, it is an FPGA based platform that 
allows VLSI implementation and reconfiguration during a run 
time. Wireless experiments are performed using 2.4 GHz 
radios front-ends so that real noise and interference sources 
are incorporated.  

B. Detector Architecture 
Implementation of the cyclostationary feature detectors 

requires computation of spectral correlation function. The 
frequency domain estimation methods require computation of 
an NFFT point FFT plus a cross-correlation of all bins and 
averaging over a period of detection time. However, for the 
specific signal of interest only the deterministic region of SCF 
needs to be computed. Therefore, the multiplication intensive 
cross-correlation can be limited to the frequency bins occupied 
by a signal of interest. We developed a parametrizable 
architecture for computation of any segment of NFFT by NFFT 
matrix representing SCF. Figure 1 shows the detailed block 
diagram. In order to match input rate of NFFT samples and 
output rate of a maximum NFFT

2, K frames (K<NFFT) are 
buffered and arranged so that cross-correlation could be 
performed through a simple scalable data path of multiplexers, 
delay lines, and multipliers. We implemented a 256 pt. FFT 
and computed SCF of size 256x16 (N=256, K=16). The 
implementation complexity is compared with 256 pt. FFT 
energy detector and K=32 cyclostationary detector. Design 
summaries are reported in Table 1. The number of 
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multiplications increases by an order of magnitude with 
respect to energy detector. If the computation of the entire 
SCF (256x256) is required, the number of multipliers would 
increase to 1044. The proposed implementation is scalable to 
any K being power-of-two number in the range from 1 to 256.  

In order to increase detector robustness to sampling offsets 
we implemented a two stage SCF averaging as proposed in 
Section II-B. The first stage averages SCF in the complex 
domain so that features are coherently added and the noise is 
cancelled. The second stage averages magnitude of the output 
of the first stage, and therefore it changes the processing from 
coherent to non-coherent. The output of the detector is 
obtained through integration of the energy in the SCF that lies 
in (α, f) where signal of interest has theoretically predicted 
features. This integration is implemented using a software 
programmable mask. In addition, the number of averages for 
both stages M1 and M2 are controllable through software at the 
run time.  

IV. EXPERIMENTAL RESULTS 
Our experimental study investigates the following: 
A. Sensitivity of feature detectors to sampling clock offsets  
B. Performance of the proposed feature detector 
C. Comparison of the feature detector and energy detector     

in the presence of out-of-band interference  

A. Sensitivity to sampling offsets 
The signal of interest is a 4 MHz QPSK signal upconverted 

to ISM band at 2.485 GHz, and generated by a standard vector 
signal generator. A baseband pulse shaping filter is a square 
root raised cosine with the roll-off β=0.5. The transmitter and 
receiver are connected through a SMA cable in order to 
emulate AWGN channel. The receiver down-converts the 
signal to low IF and samples it using A/D converters at 64 
MHz with 12 bits resolution. The A/D sampling clock is fed 
externally and can be programmed with the desired frequency 
offset. Expected feature of the QPSK signal related to the 
symbol clock corresponds to α=4 MHz. Figure 2a shows the 2 
dimensional SCF with perfect sampling. Number of averages 
in the first stage M1=1000. The diagonal trace correlates each 
FFT bin with itself, thus represents the power spectrum 
density (PSD) of the signal and can be used for energy 
detection. The distinct feature related to α=4 MHz is located 
on the off-diagonal at 4MHz distance from the main diagonal. 
The energy of the feature as well as it width in SCF is related 
to the 0.5 filter roll-off factor. Next, we introduce δ=100 Hz 

offset to a 64 MHz sampling clock. In this experiment, we 
used only the first stage averaging and kept M1=1000. Figures 
2b shows the estimated SCF under these conditions. As 
expected, cyclostationary features of the signal are cancelled 
out. This result shows that feature detectors are highly 
sensitive to sampling offset. If the offset is not corrected, the 
feature detector will fail even in highly positive SNRs. 

B. Feature detector performance 
The proposed feature detector with 2 stage averaging (Figure 

1) is expected to overcome the sampling clock offset issues. 
Now, the question is what the performance degradation with 
respect to perfect sampling is. In addition, we were interested 
to compare this detector with a simple energy detector in 
highly negative SNR regimes. Our interest was to explore if 
this scheme could be used for robust spectrum sensing in 
cognitive radios.  

We measured the required sensing time to meet probability 
of detection of 80% and probability of false alarm of 10% for 
SNRs between -9 and -21 dB. The experimental methodology 
is the same as in [3]. The number of FFT averages 
corresponds to a product of number of averages in stage 1 and 
stage 2. Figure 3 presents the measurement results. Under 
stationary white noise, feature detectors (even with perfect 
sampling) have a performance loss with respect to energy 
detector. This is due to the fact that energy contained in the 
feature is related to the pulse shaping filter roll-off, as 
described by Eq. 13. In case of β=0.5 the loss is approximately 
6 dB. On the other hand, a sampling clock offset of 100 Hz at 
64 MHz makes the detection of signals below -15 dB SNR 
impossible. However, once the proposed 2 stage averaging is 
deployed the detector achieves the desired probability of 
detection and false alarm at the penalty of increase detection 
time. The number of averages in the first stage is chosen from 
the Eq. 12. For SNRs below -15 dB, the number of averages in 

Resources 
Energy 

Detector 
Feature 
Detector 
(K=16) 

Feature 
Detector 
(K=32) 

18x18 Mult 18 82 162 
16 Kb Block RAM 4 83 165 
4 input LUT 10,353 21,200 24,389 
Flip Flop 12,155 20,559 23,609 

Table 1. Implementation complexity comparison 

 
Figure 1. Flexible implementation of feature detector robust to sampling offsets 

 
(a) 

 
(b) 

Figure 2. SCF of 4 MHz QPSK signal a) with perfect sampling, b) with 
100 Hz sampling offset 



the second stage has to be increased with respect to perfect 
sampling feature detection. The proposed scheme performs 
comparable even for sampling offsets of 1 KHz. As a result, 
the proposed feature detection in the presence of sampling 
clock offsets can be used for reliable weak signal detection, 
but the required detection time is significantly larger then 
energy detection. Note, that this results hold only for 
stationary white noise. 

C. Robustness to out-of-band interference 
It has been shown that energy detector is highly susceptible 

for the noise variance uncertainty that is contributed by 
temperature variations and out-of-band interference [3]. To 
test the robustness of feature detectors, we experiment with 
the adjacent channel interference coming from the commercial 
802.11g WLAN with a continuous traffic generated by video 
camera data transfer between two laptops. The interference 
scenario in feature domain is presented in Figure 4.  

Figure 5 shows the performance of both energy and feature 
detectors in the presence of adjacent band interference. Due to 
spectral leakage of the FFT, energy detector suffers from the 
large variation in the noise-plus-interference level. This 
variation progressively degrades the energy detector 
performance and at -18dB SNR detection becomes impossible. 
On the other hand, feature detector robustly detects the weak 
signals and outperforms the energy detector. Note that there is 
a slight degradation in performance of feature detector as well 
due to leakage of the interference signal in SCF domain. We 
are currently investigation windowing techniques that can 
suppress this effect. 

V. CONCLUSIONS 
In this paper we present the complete characterization of 

cyclostationary feature detectors through theoretical analysis, 
implementation, and experiments under real noise and 
interference sources. The real-time system implementation 
allowed us to identify the robustness issue of feature detectors 
with respect to sampling clock offsets. This effect has been 
ignored in all theoretical and simulation studies of the 
cyclostationary signal detection so far. We proposed the 2 
stage averaging scheme to overcome the feature cancellation 
due to sampling offsets. Measurement results quantified the 
performance degradation, but also showed that detector can be 

used in highly negative SNRs. In addition, we compared the 
proposed feature detector with the conventional energy 
detector. In stationary noise channels, feature detectors are 
inferior since the energy in the feature is always smaller than 
the total energy of the signal. However, in the presence of 
strong adjacent channel interferers noise becomes non-
stationary. Then, the energy detector fails to detect weak 
signal while feature detector is not affected. 
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Figure 5. Detection time vs. SNR comparison for energy and feature 
detectors in the presence of out-of-band interference 

 
 Figure 4.  Features of desired QPSK signal and the adjacent 802.11g signal  

 
Figure 3. Detection time vs. SNR comparison for energy and feature 
detectors in AWGN 


