
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010 1

Structure, Property, and Design
of Nonbinary Regular Cycle Codes
Jie Huang, Shengli Zhou, Member, IEEE, and Peter Willett, Fellow, IEEE

Abstract— In this paper, we study nonbinary regular LDPC
cycle codes whose parity check matrix H has fixed column
weight j = 2 and fixed row weight d. Through graph analysis,
we show that the parity check matrix H of a regular cycle
code can be put into an equivalent structure in the form of
concatenation of row-permuted block-diagonal matrices if d is
even, or, if d is odd and the code’s associated graph contains at
least one spanning subgraph that consists of disjoint edges. This
equivalent structure of H enables: i) parallel processing in linear-
time encoding; ii) considerable resource reduction on the code
storage for encoding and decoding; and iii) parallel processing
in sequential belief-propagation decoding, which increases the
throughput without compromising performance or complexity.
On the code’s structure design, we propose a novel design
methodology based on the equivalent structure of H. Finally,
we present various numerical results on the code performance
and the decoding complexity.

Index Terms— LDPC, regular cycle code, Galois field, graph
theory, decoding algorithm, code design.

I. INTRODUCTION

B INARY low-density parity-check (LDPC) codes which
are proposed by Gallager [2] are excellent error-

correcting codes that achieve performance close to the bench-
mark predicted by the Shannon capacity [3]. The extension
of LDPC codes to nonbinary Galois field GF(q) was first
investigated empirically by Davey and MacKay over the
binary-input AWGN channel [4]. Since then, nonbinary LDPC
codes have been actively studied.

In this paper, we focus on the LDPC codes with column
weight j = 2 in their parity check matrix H, termed as cycle
codes [5]. Although the distance properties of binary cycle
codes are not as good as the LDPC codes of column weight
j ≥ 3 [2], it has been shown in [6] that nonbinary cycle
codes over GF(q) can achieve near-Shannon-limit performance
as q increases. Further, numerical results in [6] demonstrate
that nonbinary cycle codes can outperform other LDPC codes,
including degree-distribution-optimized binary irregular LDPC
codes. For high order fields q ≥ 64, the best GF(q)-LDPC
codes decoded by belief propagation (BP) should be ultra
sparse [4], [7], with a good example being the cycle codes

Paper approved by T.-K. Truong, the Editor for Coding Theory and Tech-
niques of the IEEE Communications Society. Manuscript received October
23, 2008; revised May 11, 2009 and September 29, 2009.

This work is supported by the Office of Naval Research grants N00014-
07-1-0429, N00014-07-1-0805, and N00014-09-1-0704. Part of the work in
this paper was presented at the International Conference on ASSP, Las Vegas,
NV, April 2008 [1].

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Connecticut, 371 Fairfield Way U-2157, Storrs, Connecticut
06269 USA (email: jhuang@engr.uconn.edu; shengli@engr.uconn.edu; wil-
lett@engr.uconn.edu).

Digital Object Identifier 10.1109/TCOMM.2010.xxxxx.

that have j = 2. A Fast-Fourier-Transform based q-ary sum-
product algorithm (FFT-QSPA) for decoding LDPC codes over
binary extension fields has been proposed in [8], [9]. A uni-
versal linear-complexity encoding algorithm for any nonbinary
cycle code is available in [10]. With the performance and
implementation advantages, nonbinary cycle codes are very
promising for practical applications.

In this paper we study a special class of cycle codes whose
parity check matrix H has fixed column weight 2 and fixed
row weight d. We call such LDPC code a regular cycle
code. One popular representation of LDPC codes is based on
Tanner-graph [11]. A more compact representation for cycle
codes is an associated graph G with m vertices and n edges,
where each vertex represents one check node corresponding
to one row of H, and each edge represents one variable node
corresponding to one column of H. If the row weight of H for
a cycle code is fixed as d, i.e., the code is a regular cycle code,
then each vertex of G is connected exactly to d edges. Such
graph is d-regular [12]. For any d-regular cycle code, we show
that its parity check matrix can be arranged through row and
column permutations into an equivalent structure in the form
of concatenation of row-permuted block-diagonal matrices if
d is even, or, if d is odd and the code’s associated graph
G contains at least one spanning subgraph that consists of
disjoint edges.

This equivalent structure leads to several promising prop-
erties. First, encoding for nonbinary regular cycle codes can
be performed in parallel in linear time. Second, the storage
requirement for H can be greatly reduced, which is useful
for both encoding and decoding. In addition, this structure
enables parallel processing in sequential BP decoding for
nonbinary regular cycle codes, which improves the decoding
throughput considerably without compromising performance
or complexity.

The design of nonbinary regular cycle codes consists of
code structure design and selection of nonzero entries of H.
On the code structure design, one can design the code based
on known graphs with large girth, such as the Ramanujan
and Cayley graphs as done in [6], [13]. Or, one can rely on
computer search based algorithms, such as the well-known
progressive edge-growth (PEG) algorithm [14]. The research
on the selection of nonzero entries has been widely pursued
[13], [15]–[17]. In this paper, we propose a novel method that
amounts to designing directly the interleavers in the equivalent
structure of H developed herein.

Simulations are carried out to evaluate the performance and
the decoding complexity of nonbinary regular cycle codes.

0090-6778/08$25.00 c© 2010 IEEE

2 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

Our simulations show that nonbinary regular cycle codes con-
structed by the PEG algorithm can outperform binary degree-
distribution-optimized LDPC codes. In addition, we show that
very-high-rate (rate 8/9 and 15/16) nonbinary regular cycle
codes with block length about several thousands of bits can
approach the Shannon limit within 1 dB. Also, the proposed
sequential BP decoding with parallel processing can reduce the
total decoding complexity by about 30 percent with a slightly
better performance than the standard BP decoding. Compared
with codes constructed from know good graphs and by the
PEG algorithm, regular cycle codes with widely varying rates
constructed by the proposed method based on the equivalent
structure can achieve similar performance.

Some of the structure and property results have been pre-
sented in our earlier work [13] for a special class of regular
cycles codes constructed from Cayley graphs. The distinctions
of this paper from [13] are as follows: i) the group-theoretic
analysis adopted in [13] works only for codes based on Cayley
graphs, hence the coverage of [13] is quite limited. In this
paper, we rely on graph-theoretic analysis, and the obtained
results are applicable to a general regular cycle code; and
ii) the results on the sequential BP decoding with parallel
processing and the structure design of regular cycle codes are
not available in [13]. In addition, this paper provides extensive
simulation results on the code performance, with some of them
on very-high-rate codes.

The rest of the paper is organized as follows. Section II
presents the equivalent structure of H for regular cycle codes
using graph-theoretic analysis. Section III specifies the promis-
ing properties of the code structure presented in Section II.
Utilizing the structure results in Section II, we present a novel
method to design the code structure for nonbinary regular
cycle codes in Section IV. Extensive simulation results are
presented in Section V. We draw conclusions in Section VI.

II. STRUCTURE OF NONBINARY REGULAR CYCLE CODES

A cycle code is an LDPC code whose m × n parity check
matrix H has weight j = 2 for each column. As such, it can
be represented by an associated graph G = (V, E) with m
vertices V = {v1, . . . , vm} and n edges E = {e1, . . . , en},
where each vertex represents a check node corresponding
to a row of H, and each edge represents a variable node
corresponding to a column of H [10]. See Figs. 1(a) and 1(b)
for an illustration.

For a regular cycle code with fixed row weight d in H, the
graph G is d-regular in that each vertex is exactly linked to
d edges [12]. Obviously we have 2n = dm. When H is full
row-rank with elements from GF(q), H defines a nonbinary
regular cycle code of rate r = (d − 2)/d.

In this paper, we use graph theory to analyze regular cycle
codes. We first introduce two necessary definitions from [12].

Definitions:
• k-factor: A k-regular spanning subgraph of G that con-

tains all the vertices is called a k-factor of G.
• k-factorable: a graph G is k-factorable if there are edge-

disjoint k-factors G1, G2, . . . , GL such that G = G1 ∪
G2 · · · ∪ GL.

Obviously, a 1-factor is a spanning subgraph that consists
of disjoint edges, while a 2-factor is a spanning subgraph that

consists of disjoint cycles. See illustrations in Figs. 1(c) and
1(d).

For a subgraph G′ of G, let HG′ be the sub-matrix of H
restricted to the rows and columns indexed by the vertices and
edges of G′ respectively, which can be obtained from H by
deleting the rows and columns other than those corresponding
to the vertices and edges of G

′
respectively. We call HG′ the

sub-matrix of H associated with G′. Let us now introduce two
sub-matrices of H associated with an edge and a cycle of the
graph G. For each edge, the sub-matrix is

h̃e =
[
α
β

]
, (1)

where α and β correspond to those two nonzero entries of the
column of H indexed by this edge.

For a length-k cycle C that consists of k consecutive edges
e1, e2, . . . , ek, we can define a k × k matrix as

H̃c =

⎡
⎢⎢⎢⎢⎢⎣

α1 0 0 . . . βk

β1 α2 0 . . . 0
0 β2 α3 . . . 0
...

...
. . .

. . .
...

0 . . . 0 βk−1 αk

⎤
⎥⎥⎥⎥⎥⎦

, (2)

where αis and βis correspond to those two nonzero entries of
the column of H indexed by edge ei.

For two matrices H1 and H2, if H1 can be transformed
into H2 simply through row and column permutations, we
deem H1 equivalent to H2 and denote this relationship as
H1

∼= H2.

A. Main results

Our main results are the following two theorems.

Theorem 1 For a cycle code, if its associated graph G is d-
regular with d = 2ν, then its parity check matrix H of size
m × n has the equivalent form

H ∼= [H̄1,P2H̄2, . . . ,PνH̄ν], (3)

where Pi is m × m permutation matrix, and H̄i is of size
m × m, 1 ≤ i ≤ ν. The matrix H̄i has an equivalent block-
diagonal form

H̄i
∼= diag(H̃c

i,1, H̃
c
i,2, . . . , H̃

c
i,Li

), (4)

where the matrix H̃c
i,l has the form of (2) and is of size ki,l×

ki,l that satisfies m =
∑Li

l=1 ki,l.

Proof of Theorem 1: If G is d-regular with d = 2ν, ν > 0, G
is 2-factorable as can be inferred from Corollary 2.1.5 of [12,
p.33] (also known as the Konig-Hall theorem in graph theory).
Denote the ν edge-disjoint 2-factors of G by G1, G2, . . . , Gν .
Arrange the columns of H in such a pattern that the columns
indexed by the edges of G1 are placed in the first m columns,
followed by the m columns indexed by the edges of G2 until
the m columns which are indexed by the edges of Gν . This
way, H is partitioned to ν sub-matrices of size m × m each.
Arranged as H ∼= [HG1 , . . . ,HGν], where HGi is the sub-
matrix of H associated with Gi.

HUANG et al.: STRUCTURE, PROPERTY, AND DESIGN OF NONBINARY REGULAR CYCLE CODES 3

Now we show that each m × m sub-matrix HGi has an
equivalent block diagonal form as in (4). Each 2-factor Gi

can be decomposed into a set of disjoint cycles. Suppose
Gi consists of Li disjoint cycles Ci,l, 1 ≤ l ≤ Li, where
Ci,l is of length ki,l that satisfy m =

∑Li

l=1 ki,l. Arrange
the rows and columns of HGi in sequence of rows and
columns indexed by Ci,1, Ci,2, . . . , Ci,Li , the resultant matrix
will have a block-diagonal form diag(H̃c

i,1, H̃
c
i,2, . . . , H̃

c
i,Li

),
where H̃c

i,l represents the matrix associated with Ci,l and has
a form as in (2). Thus we have HGi = PiH̄iRi, where H̄i

is defined in (4), and Pi and Ri are permutation matrices,
1 ≤ i ≤ ν.

Therefore, the matrix H can be arranged to have an
equivalent form [P1H̄1R1,P2H̄2R2, . . . ,PνH̄νRν], We
can further permute the rows of H to let P1 be the identity
matrix and permute the columns of HGi to let each Ri be
the identity matrix. The resultant matrix would have a form
like (3). This completes the proof. �

Theorem 2 Consider a regular cycle GF(q) code with d =
2ν+1. If its associated graph G contains at least one 1-factor,
then its parity check matrix H of size m×n has the equivalent
form

H ∼= [H̄1,P2H̄2, . . . ,PνH̄ν ,PeH̄e] (5)

where Pis and Pe are permutation matrices, H̄i is an m×m
block-diagonal matrix having the form as in (4), i = 1, . . . , ν,
H̄e is an m× m

2 matrix having an equivalent block-diagonal
form as

H̄e ∼= diag(h̃e
1, h̃

e
2, . . . , h̃

e
m
2
), (6)

where h̃e
i is a vector having the form as in (1).

Proof of Theorem 2: If G is d-regular with d = 2ν + 1,
ν > 0 and G has a 1-factor M , let G

′
denote the graph

obtained from G by deleting the edges in M . So G
′

is 2ν-
regular. Arrange the columns of H in such a pattern that the
columns indexed by the edges of G

′
are placed in the first νm

columns, followed by the m/2 columns which are indexed by
the edges of M . Arranged as H ∼= [HG′ ,HM], where HG′

is the sub-matrix of H associated with G
′

and HM is the
sub-matrix of H associated with M .

Applying Theorem 1, the sub-matrix HG′ has a form in
(3). Now we show the form of sub-matrix HM . Since M is
a 1-factor of G, M is an union of disjoint edges. Denote the
edges of M by ei, 1 ≤ i ≤ m/2. Arrange the rows and
columns of HM in sequence of rows and columns indexed
by e1, e2, . . . , em/2, the resultant matrix will have the form in
(6). Thus we have HM = PeH̄eRe, where H̄e is defined in
(6), and Pe and Re are permutation matrices.

Therefore, the matrix H would have an equivalent form
like [H̄1,P2H̄2, . . . ,PνH̄ν ,PeH̄eRe], where Pe, Re and
Pis, 2 ≤ i ≤ ν, are permutation matrices. Furthermore, we
can permute the columns of HM to let Re be the identity
matrix. The resultant matrix would have a form like (5). This
completes the proof. �

B. Further Results

In addition to the main results in Section II-A, we have some
further results for 1-factorable graphs and bipartite graphs.

Theorem 3 For a cycle code, if its associated graph G is d-
regular and 1-factorable, then its parity check matrix H of
size m × n has the equivalent form

H ∼= [H̄e
1,P

e
2H̄

e
2, . . . ,P

e
dH̄

e
d] (7)

where H̄e
i , 1 ≤ i ≤ d, are m × m

2 matrices having an
equivalent form as in (6), and Pe

i , 2 ≤ i ≤ d, are permutation
matrices.

Proof of Theorem 3: Denote the d 1-factors of G by
M1, M2, . . . , Md. Arrange the columns of H in such a
pattern that the columns indexed by edges of M1 are
placed in the first m/2 columns, followed by the m/2
columns indexed by the edges of M2 until the m/2 columns
which are indexed by the edges of Md. Thus we have
H ∼= [HM1 ,HM2 , . . . ,HMd

], where HMi is the sub-matrix
of H associated with Mi. As we have shown in the proof
of Theorem 2, the sub-matrix HMi will have an equivalent
form as in (6), that is, HMi = Pe

i H̄
e
iR

e
i , where H̄e

i has
an equivalent form as in (6), Pe

i and Re
i are permutation

matrices. Therefore the matrix H would have an equivalent
form like [Pe

1H̄
e
1R

e
1,P

e
2H̄

e
2R

e
2, . . . ,P

e
dH̄

e
dR

e
d], where Pe

i

and Re
i , 1 ≤ i ≤ d are permutation matrices. Furthermore,

we can permute the rows of H to let Pe
1 be the identity

matrix and permute the columns of HMi to let each Re
i be

the identity matrix. The resultant matrix would have a form
like (7). This completes the proof. �

We now present the results for bipartite graphs. A graph
G = (V, E) is called bipartite if V admits a partition into two
classes X and Y such that every edge in G has exactly one
end in X and one end in Y : vertices in the same partition
class must not be adjacent. To this end, we define a q-ary
permutation matrix Q as a matrix which contains one and
only one nonzero element from GF(q) in each row and each
column. Any q-ary permutation matrix Q can be represented
as Q = PD = D

′
P, where D, D

′
are diagonal matrices with

nonzero elements from GF(q) and P is a permutation matrix
obtained from Q by replacing each nonzero element of Q by
1.

Theorem 4 For a cycle code, if its associated graph G is d-
regular and bipartite, then its parity check matrix H of size
m × n has the equivalent form

H ∼=
[
D1 D2 . . . Dd

D
′
1 P

′
2D

′
2 . . . P

′
dD

′
d

]
(8)

where Di and D′
i, 1 ≤ i ≤ d, are diagonal matrices of size

m
2 × m

2 with nonzero elements from GF(q), and P
′
i, 2 ≤ i ≤ d,

are permutation matrices of size m
2 × m

2 .

Proof of Theorem 4: Let V = X ∪ Y be a bipartition of
G. Since G is d-regular and bipartite, G is 1-factorable
which is a direct consequence of the well-known Hall’s
marriage theorem when applied to regular bipartite graphs;

4 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

see e.g., Theorem 2.1.2 of [12]. Denote the d 1-factors of
G by M1, M2, . . . , Md. As shown in the proof of Theorem
3 we have H ∼= [HM1 ,HM2 , . . . ,HMd

], where HMi is the
sub-matrix of H associated with Mi. Arrange the rows of H
in such a pattern that the rows corresponding to vertices in X
are placed in the upper m/2 rows and the rows corresponding
to vertices in Y are placed in the lower m/2 rows. Since
the m

2 edges in Mi are disjoint and each edge of Mi has
one end in X and one end in Y , so HMi will have a form

like HMi =
[
Qi

Q
′
i

]
, where Qi and Q

′
i are q-ary permutation

matrices of size m
2 × m

2 . The matrix H will have a form like[
Q1 Q2 . . . Qd

Q
′
1 Q

′
2 . . . Q

′
d

]
. We can permute the upper (lower,

respectively) m
2 rows of H to make Q1 (Q

′
1, respectively)

diagonal. Further, we can permute the columns of HMi to
make Qi, 2 ≤ i ≤ d, diagonal. Since any q-ary permutation
matrix Q can be represented as Q = PD where P is a
permutation matrix and D is a diagonal matrix with nonzero
elements from GF(q), so the resultant matrix will have a form
like (8). This completes the proof. �

To summarize, we have the following results for a regular
cycle code with associated graph G.

1) If G is d-regular with d = 2ν, ν > 0, we can apply
Theorem 1. If G is also 1-factorable, then we can apply
Theorem 3.

2) If G is d-regular with d = 2ν + 1, ν > 0, and G has
at least one 1-factor, we can apply Theorem 2. If G is
also 1-factorable, then we can apply Theorem 3.

3) If G is d-regular and bipartite (which implies that G
is 1-factorable), we can further apply Theorem 3 and
Theorem 4.

III. PROPERTIES OF NONBINARY REGULAR CYCLE CODES

Based on the structures presented in Section II, we next
describe several appealing properties of nonbinary regular cy-
cle codes on the encoding, storage requirements and decoding
aspects.

• First, encoding of nonbinary regular cycle codes can be
done in linear time in parallel similar to [13]. This pro-
vides a lot of flexibility in the implementation of efficient
encoders which is quite desirable especially when the
codeword length is large. In contrast, the universal linear-
time encoding algorithm presented in [10] can work only
in a serial manner.

• Second, the storage cost for H matrix contains two parts.
One part corresponds to the nonzero entries of H. The
other part corresponds to the structural information for H
which we term as the structural storage cost. Compared
with a general nonbinary cycle code having the same
code rate and length, the amount of reduction in structural
storage cost for a nonbinary regular cycle code can be
more than 50 percent [13].

• Third, parallel processing can be applied in sequential BP
decoding for the nonbinary regular cycle codes which
increases throughput without compromising the perfor-
mance and complexity.

The descriptions on the encoding and storage advantages can
be found in [13], although they were presented for the special
class of codes based on Cayley graphs. We next present the
decoding aspect for a general regular cycle code in details.

A. Overview on Belief Propagation Updating Schedules

Iterative decoding based on belief propagation (BP) [3],
[18] has received significant attention recently, mostly due
to its near-Shannon-limit error performance for the decoding
of LDPC codes [2] and turbo codes [19]. It works on the
code’s Tanner-graph [11] or factor graph [18] in an iterative
manner through exchange of soft information. As for LDPC
codes, there exist two kinds of processing unit: variable node
processing units and check node processing units correspond-
ing to variable nodes and check nodes respectively, and two
kinds of message are exchanged between variable nodes and
check nodes during iterations: variable-to-check messages and
check-to-variable messages; see details in e.g., [3],[4], [8], [9]
and [20]. Here we consider three different updating schedules
for BP decoding of LDPC codes.

• Parallel updating: Each iteration contains a horizontal
step followed by a vertical step. At the horizontal step,
all check nodes update in parallel the output check-to-
variable messages using the input variable-to-check mes-
sages. At the vertical step, all variable nodes update in
parallel the output variable-to-check messages using the
input check-to-variable messages. The updating schedule
for standard BP is inherently fully parallel.

• Sequential updating: Most recently, a sequential version
of the standard BP is proposed to speed up the con-
vergence of BP decoding which is termed as shuffled
BP in reference [20] and sequential updating schedule
in reference [21]. The updating schedule for sequential
BP is totally sequential. In each iteration, the horizontal
step and vertical step process jointly, but in a column-by-
column manner. It has been shown through simulations
that the average number of iterations of the sequential
BP algorithm can be about half that of the parallel BP
algorithm, where parallel BP and sequential BP decod-
ing achieve similar error performance [20]–[22]. The
complexity per iteration for both algorithms is similar,
resulting in a lower total complexity for the sequential
BP algorithm [20], [21].

• Partially parallel updating: To decrease the decoding
delay of the sequential BP and preserve the parallelism
advantages of the parallel BP, a partially parallel decoding
scheme named “group shuffled BP” is developed in
[20]. In the group shuffled BP algorithm, the columns
of H are divided into a number of groups. In each
group, the updating of messages is processed in parallel,
but the processing of groups remains sequential. Group
shuffled BP (partially parallel BP) algorithm offers better
throughput/complexity tradeoffs in the implementation of
efficient decoders.

With respect to the sequential BP algorithm, if there are
consecutive columns of H which are orthogonal to each other,
i.e., no two columns intersect at a common row, then the
updating for these columns can be carried out simultaneously.

HUANG et al.: STRUCTURE, PROPERTY, AND DESIGN OF NONBINARY REGULAR CYCLE CODES 5

(a) (b)

(c)

v1

v3
v4

v5

v6

v1

v2

v3 v4

v5

v6

v1

v2

v3

v4

v5

v6 v6v1

v2

v3
v4

v5

e 1

e 2

e 3

e 4

e 5 e 6e 7e 8

e 9

e 10

e 11

e 12

e 8

e 11 e 7 e 3

e 9

e 4

e 8

e 11

e 4e 9

e 3

e 7
+

v2

5 0 0 1 0 0 1 0 0 2 0 0
0 3 0 0 3 0 0 5 0 0 3 0
1 0 0 0 0 5 0 2 0 0 7 0
0 0 5 0 6 0 3 0 0 0 0 7
0 0 2 0 0 3 0 0 1 5 0 0
0 2 0 4 0 0 0 0 2 0 0 4

(d)

H =

Fig. 1. Illustration of the concepts of associated graph, 2-factor and 1-factor.
(a) a check matrix over GF(8) with column weight j = 2 and row weight
d = 4; (b) the associated graph; (c) one 2-factor of the associated graph; and
(d) two 1-factors split from the 2-factor in (c).

By performing updating for consecutive orthogonal columns
simultaneously, we can improve the throughput of sequential
BP algorithm without any penalty in error performance or total
decoding complexity. We denote this algorithm as sequential
BP decoding with parallel processing. This is analogous
in principle to a partially parallel BP algorithm where the
columns in each group are orthogonal.

B. Sequential BP With Parallel Processing for Nonbinary
Regular Cycle Codes

For a nonbinary cycle code, a collection of columns of H
are orthogonal if and only if their corresponding edges in
its associated graph G are independent. With the structures
presented in Section II, it is easy to find orthogonal columns
for nonbinary regular cycle codes.

We first present the following facts.
• The columns of H corresponding to edges of a 1-factor

of G are orthogonal.
• If every component of a 2-factor is an even cycle, we call

it an even 2-factor. If a 2-factor is even, its edges can be
partitioned into two orthogonal groups. For example, the
2-factor illustrated in Fig. 1(c) is even which contains one
length-2 cycle C1 = v2e8v3e11v2 and one length-4 cycle
C2 = v1e7v4e3v5e9v6e4v1. Its edges can be partitioned
into two orthogonal groups {e8, e7, e9} and {e11, e3, e4},
as illustrated in Fig. 1(d).

• If a 2-factor is not even, its edges can be parti-
tioned into three orthogonal groups. For example, as
for a 2-factor illustrated in Fig. 2(a) which contains
one length-4 cycle C1 = v1e1v2e2v3e3v4e4v1 and
one length-5 cycle C2 = v5e5v6e6v7e7v8e8v9e9v5, its
edges can be partitioned into three orthogonal groups
{e1, e3, e5, e7},{e2, e4, e6, e8} and {e9} as illustrated in
Fig. 2(b).

Based on the aforementioned facts, we have the following
results for d-regular nonbinary cycle codes.

1) For a d-regular graph G with d = 2ν, it has ν edge-
disjoint 2-factors; if the number of even 2-factors is t,

1v

2v

3v

4v
1e

2e 3e

4e

5v

6v

7v 8v

9v
5e

6e

7e
8e

9e

1v

2v

3v

4v
1e

3e

1v

2v

3v

4v
2e

4e

5v

6v

7v 8v

9v
5e

7e

5v

6v

7v 8v

9v

6e 8e

5v

6v

7v 8v

9v
9e

1v

2v

3v

4v

+ +

(a) (b)

Fig. 2. Group of edges for sequential BP decoding with parallel processing.

then edges of G can be partitioned into 3ν− t = 3
2d− t

orthogonal groups, 0 ≤ t ≤ d
2 .

2) For a d-regular graph G with d = 2ν + 1, if it contains
at least one 1-factor, then it can be decomposed into
ν + 1 edge-disjoint components which consist of one
1-factor and ν 2-factors; denote the number of even 2-
factors as t, then edges of G can be partitioned into
3ν−t+1 = 3

2d−t− 1
2 orthogonal groups, 0 ≤ t ≤ d−1

2 .
3) If the d-regular graph G is 1-factorable, then its edges

can be partitioned into d orthogonal groups.
By running updating for columns in each orthogonal group

simultaneously, we can greatly improve the throughput of
sequential BP decoding algorithm for nonbinary regular cycle
codes by a factor at least 2n

3d , relative to the sequential BP
decoding working in a column by column manner. Note that n
is usually large while d is usually small. Hence, the throughput
improvement is significant, which is very appealing in the
implementation of efficient decoders. We underscore that the
performance and complexity advantages of sequential BP
decoding are not compromised.

IV. DESIGN OF NONBINARY REGULAR CYCLE CODES

Now we look into the design issues of nonbinary regular
cycle codes. Two steps are needed to design nonbinary regular
cycle codes. The first step is to design the code structure that
specifies the locations of nonzero entries in the check matrix.
The code structure is reflected by the associated graph, which
is desired to have good properties such as large girth, small
diameter and good expansion property [23], [24]. The second
step is to determine the nonzero entries of the parity check
matrix.

On the first step, two existing methods are available to find
good associated graphs.

1) One can utilize known regular graphs with good proper-
ties, such as the Ramanujan graphs [25]. Reference [6]
first utilized this kind of promising graphs to construct
cycle codes. Later, reference [13] showed through sim-
ulations that these cycle codes can achieve performance
within 1 dB away from the corresponding Shannon lim-
its, including codes of rate 1/2, 2/3 and 3/4. However,
good known graphs may be very limited in the number
of code choices.

6 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

2) One can resort to computer search algorithms. Computer
search based algorithms have been widely adopted to
construct LDPC codes [14], [26]. Among them the
progressive edge-growth (PEG) [14] algorithm has been
shown efficient and feasible for constructing LDPC
codes with short code lengths and high rates as well
as LDPC codes with long code lengths. We can also
use the PEG algorithm to construct regular cycle codes,
including bipartite regular cycle codes and regular cycle
codes which can be decomposed using Theorem 2 from
Section II 1.

On the second step, references [13], [15]–[17] have ad-
dressed the issue for the selection of nonzero entries for
cycle codes. Essentially, resolvable cycles [10] with short
length correspond to low-weight codewords, which may in-
duce undetected errors during the decoding process [13], [16],
[17]. Therefore, to lower the error floor, it becomes desirable
to make all cycles irresolvable, especially those with short
lengths.

In this paper, we propose a novel design method based on
the structure results presented in Section II.

A. The Proposed Code Structure Design

Based on the structures presented in Section II, we propose
to construct good regular associated graphs through care-
fully designing interleavers. Note that references [27], [28]
have also proposed other LDPC code construction methods
based on interleaver design utilizing different code structure
representations. Reference [27] designed the edge-interleaver
for an arbitrary LDPC code whereas reference [28] designed
an LDPC code with its Tanner graph compromising of an
upper tree and a lower tree which are connected through
an interleaver. We could utilize Theorems 1, 2, 3 and 4
to construct nonbinary regular cycle codes. Next we will
illustrate the code design using Theorem 1.

Following Theorem 1, for a regular cycle code with d = 2ν,
its parity check matrix has an equivalent form as shown in (3).
Correspondingly, its associated graph G can be decomposed
into ν components — G1 to Gν , where each Gu is a 2-factor
corresponding to H̄u, 1 ≤ u ≤ ν. Considering two vertices i
and j in G, let Du(i, j) denote the distance between vertices i
and j in Gu — the associated graph of H̄u. Du(i, j) is defined
as the minimum length of a path traversing from i to j in Gu.
Note that each Gu is comprised of disjoint cycles. Define
Du(i, j) to be infinite if vertices i and j are not connected
in Gu, i.e., when they belong to different cycles. If they are
connected in Gu, i.e., when they belong to the same cycle,
there are exactly two paths traversing from i to j in Gu. In
this case, Du(i, j) is the minimum length of the two paths.

1) Code Design for Rate 1/2: For rate-1/2 code, d = 4 and
n = 2m. According to Theorem 1, the parity check matrix H
can be partitioned as [H̄1,P2H̄2]. Hence, the associated graph

1Although the original PEG algorithm aims to construct a bipartite Tanner
graph, the same principle of PEG can be adopted to construct associated
graphs for regular and bipartite regular cycle codes, including regular cycle
codes which can be decomposed using Theorem 2. Specifically, if d = 2ν+1
and m is even, we can first establish m

2
disjoint edges in G, then apply the

PEG algorithm to obtain a 2ν + 1-regular graph G. In this way, the obtained
G can be decomposed using Theorem 2.

i

j

i

j

k

l

(a). Type I constraint (b). Type II constraint

i

j
k

(d). Type IV constraint

i

j

k

l

(c). Type III constraint

m

n

i

j

(e). Type V constraint

k

l

i

k l
j

m

(f). Type VI constraint

Fig. 3. Illustration of different types of constraints to break cycles in
the code’s associated graph, where black circles represent vertices in the
associated graph and different types of lines represent paths in different Gu—
the associated graph of H̄u.

G can be decomposed into two components, G1 corresponding
to H̄1 and G2 corresponding to H̄2. G1 and G2 share the same
set of vertices of G whereas having disjoint edge sets. Once
G1 and G2 are given, the design problem reduces to the design
of two interleavers π1 and π2. In particular π1 can be chosen
to be the identity interleaver and π2 plays the role of P2.

Except for cycles contained purely in G1 or G2, cycles in G
can also be formed by traversing through paths in G1 and G2

with shared vertices alternatively. Accordingly, the formation
of cycles in G can be categorized depending on the number of
different paths in G1 and G2 traversed by the cycle. The first
three types illustrated in Fig. 3 represent possible formation
of cycles with two components involved (G1 and G2) where
different line types denote paths in different components. The
type I cycle shown in Fig. 3 (a) is formed by a path in G1

followed by a path in G2 where the two paths share the same
two end points. If the target girth g of the associated graph
G is larger than 2, than the following constraint has to be
satisfied for any two different vertices i and j.

D1(π1(i), π1(j)) + D2(π2(j), π2(i)) ≥ g (9)

The type II cycle shown in Fig. 3 (b) is formed by two
paths in G1 and two paths in G2. If the target girth g is larger
than 4, than the following constraint has to be satisfied for
any four different vertices i, j, k and l.

D1(π1(i), π1(j)) + D2(π2(j), π2(k))+

D1(π1(k), π1(l)) + D2(π2(l), π2(i)) ≥ g (10)

The type III cycle shown in Fig. 3 (c) is formed by three
paths in G1 and three paths in G2. If the target girth g is
larger than 6, than the following constraint has to be satisfied
for any six different vertices i, j, k ,l, m and n.

D1(π1(i), π1(j)) + D2(π2(j), π2(k))+
D1(π1(k), π1(l)) + D2(π2(l), π2(m))+

D1(π1(m), π1(n)) + D2(π2(n), π2(i)) ≥ g (11)

HUANG et al.: STRUCTURE, PROPERTY, AND DESIGN OF NONBINARY REGULAR CYCLE CODES 7

This can be generalized to any g. Besides, the same set
of constraints have to be held when the roles of π1 and π2

exchange. To achieve a target girth g, the lengths of cycles
contained purely in G1 and G2 have to be at least g as well.
With these three constraints being satisfied, the maximum girth
that can be achieved for rate-1/2 codes is 8.

2) Code Design for Rate 2/3: For rate-2/3 code, d = 6 and
n = 3m. According to Theorem 1, the parity check matrix H
can be partitioned as [H̄1,P2H̄2,P3H̄3]. Hence, the associ-
ated graph G can be decomposed into three components, G1,
G2, and G3, corresponding to H̄1, H̄2, and H̄3, respectively.
G1, G2 and G3 share the same set of vertices of G whereas
having disjoint edge sets. Once G1, G2 and G3 are given, the
design problem reduces to the design of three interleavers π1,
π2 and π3. In particular π1 can be chosen to be the identity
interleaver, π2 and π3 play the role of P2 and P3, respectively.

Except for those constraints with two components involved,
we also need to consider constraints with three components
involved. The fourth, fifth and sixth types of cycles illustrated
in Fig. 3 (d), (e) and (f) represent possible formation of cycles
with three components involved. The type IV cycle shown in
Fig. 3 (d) is formed by a path in G1 followed by a path in G2

and a path in G3. If the target girth g of the associated graph
is larger than 3, than the constraint corresponding to Fig. 3
(d) is

D1(π1(i), π1(j)) + D2(π2(j), π2(k))+

D3(π3(k), π3(i)) ≥ g (12)

Similarly, if the target girth g is larger than 4, than the
constraint corresponding to Fig. 3 (e) is

D1(π1(i), π1(j)) + D2(π2(j), π2(k))+

D3(π3(k), π3(l)) + D2(π2(l), π2(i)) ≥ g (13)

If the target girth g is larger than 5, than the constraint
corresponding to Fig. 3 (f) is

D1(π1(i), π1(j)) + D2(π2(j), π2(k))+

D1(π1(k), π1(l)) + D2(π2(l), π2(m))+
D3(π3(m), π3(i)) ≥ g (14)

This can be generalized to any g. Besides, the same set of
constraints have to be held when the roles of π1, π2 and π3

exchange. To achieve a target girth g, the lengths of cycles
contained in one or two components of {G1, G2, G3} have
to be at least g as well. With all the six constraints being
satisfied, the maximum girth that can be achieved for rate-2/3
codes is 6.

3) Code Design for Rate Higher Than 2/3: The same
principle can be generalized to code design for any rate
r = ν−1

ν with d = 2ν. Take the code design of rate 3/4
as an example. If the target girth g of the associated graph
is larger than 4, the seventh constraint with four components
involved (not shown in Fig. 3) can be represented as

D1(π1(i), π1(j)) + D2(π2(j), π2(k))+

D3(π3(k), π3(l)) + D4(π4(l), π4(i)) ≥ g (15)

This can be generalized to any g. Besides, the same set of
constraints have to be held when the roles of π1, π2, π3 and

π4 exchange. To achieve a target girth g, the lengths of cycles
contained in one, two or three components of {G1, G2, G3,
G4} have to be at least g as well. With all the seven constraints
being satisfied, the maximum girth that can be achieved for
rate-3/4 codes is 5.

It is feasible to consider higher rate code design and to
include more than four components. With moderate block
length in bits (less than 10, 000), as the code rate increases,
the achievable maximum girth decreases, most likely the
constraints with more than four components will be satisfied.
So it is reasonable to consider at most four components. This
makes the algorithm feasible and efficient for even higher code
rates.

4) Computer Search of Interleavers: Given the constraints
above, we do trial-and-test computer search to find the inter-
leavers, which is similar to the computer search of S-random
interleavers proposed by Dolinar and Divsalar [29] and its
variants [30]–[32].

As an example, the following algorithm is used to find
interleavers for regular cycle codes of rate-2/3.

Algorithm 1
INPUTS: the target girth g, the length of the inter-
leavers N , the maximum trial-and-test number tmax

and the structures of G1, G2 and G3.
OUTPUTS: the three interleavers for a rate-2/3 code.
Set i = 1, t = 1.
LOOP WHILE i ≤ N

1) Generate randomly the i-th entries for the three
interleavers. Make sure that the generated entry
for each interleaver has not been used before.

2) Check whether the corresponding girth con-
straints in eqns (9)–(14) are satisfied or not
a) If satisfied, store the entries and set i =

i + 1, t = 1.
b) If not satisfied, check whether t is smaller

than tmax or not.
i) If t is smaller than tmax, set t = t + 1.

ii) Otherwise, set g = g − 1, t = 1.
END OF LOOP

The structures of G1, G2 and G3 can be determined by hand
to make sure that the lengths of cycles contained purely in G1,
G2 or G3 are no less than the target girth. Furthermore, more
than one runs of Algorithm 1 may be needed before obtaining
good interleavers.

V. SIMULATION RESULTS

In this section, we perform simulations to evaluate the
performance of nonbinary regular cycle codes. In all simula-
tions the codewords are transmitted over the binary AWGN
channel with inputs of ±1 and additive noise of variance
σ2. If one communicates using a code of rate r then it is
conventional to describe the signal-to-noise ratio (SNR) by
Eb/N0 = 1/(2rσ2) and to report this number in decibels
as 10 log10 Eb/N0. Unless other stated, we run simulations
until more than 40 block errors have been observed or up to
one million block decodings for each SNR and the maximum
number of iterations for decoding is set to be 80 for both
binary and nonbinary LDPC codes.

8 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

TABLE I

CYCLE DISTRIBUTION SPECTRUM OF CYCLE CODES IN FIG. 4 WITH

LENGTH 1008 BITS.

Galois Girth Number of cycles of different lengths
Field 4 5 6 7 8 9

Irregular GF(64) 6 0 0 54 235 493 1214
Regular GF(64) 5 0 3 47 227 481 1172
Bipartite GF(64) 4 1 0 112 0 976 0
Irregular GF(256) 5 0 5 74 221 495 1189
Regular GF(256) 5 0 7 72 212 478 1177

For codes with optimized nonzero entries, we adopt the
following two steps to choose the nonzero entries to make as
many cycles irresolvable as possible, especially those having
short lengths: i) given the code’s associated graph, we find out
all the short-length cycles of concern through computer search,
e.g., using depth-first search algorithms; ii) we choose appro-
priate nonzero entries to render as many short-length cycles
irresolvable as possible. Note that the sub-matrix associated
with a length-k cycle is equivalent to H̃c as shown in (2). The
cycle is irresolvable iff H̃c is full-rank, i.e.,

∏k
i=1 α−1

i βi �= 1.
Define γi = α−1

i βi to be the gain of the edge ei. The second
step can be done in a trial-and-test manner to find appropriate
γi. Given γi for an edge ei, the value αi is randomly generated
and βi = αiγi. Note that this procedure applies to any cycle
code.

A. Performance of Regular Cycle Codes

We first investigate the performance of regular cycle codes.
We have constructed regular and irregular cycle codes over
GF(64) and GF(256) where the code rate is 1/2 and the
codeword length is 1008 bits. We have also constructed a
bipartite regular cycle code over GF(64). The parity check
matrices of irregular, regular and bipartite regular nonbinary
cycle codes are constructed by the PEG method. Table I lists
the girth parameter and the cycle distribution spectrum for
these constructed cycle codes. It can be seen from Table I that
the number of cycles increases exponentially as the length of
cycle increases. For example, the number of cycles of length
6, 7, 8 and 9 are 54, 235, 493 and 1214, respectively for
the irregular cycle code over GF(64). It can also be seen
from Table I that all the cycle codes defined over the same
Galois field, including irregular, regular/bipartite regular cycle
codes, have similar cycle distribution spectrum though their
associated graphs may have different girths. Therefore we
would expect that they achieve similar performance.

Fig. 4 shows the performance comparison of these cycles
codes with randomly generated nonzero entries for their
parity check matrices. Also plotted are the performance of a
binary irregular rate-1/2 LDPC code constructed by the PEG
algorithm and that of a rate-1/2 MacKay’s regular-(3,6) code
— “504.504.3.504”, both having a code length of 1008 bits
and decoded by standard BP. The binary irregular code has a
density-evolution-optimized degree distribution pair achieving
an impressive iterative decoding threshold of 0.3347 dB, from
Table II in [33], i.e. the symbol-node edge distribution is
0.23802x+0.20997x2+0.03492x3+0.12015x4+0.01587x6+

1 1.5 2 2.5 3
10 −5

10 −4

10 −3

10 −2

10 −1

10 0

Eb/N0 (dB)

B
lo

ck
 E

rr
or

 R
ate

MacKay regular−(3,6)
PEG optim.deg.seq.binar y
Bipartite PEG cycle, GF(64)
Irre PEG cycle, GF(64)
Reg PEG cycle, GF(64)
Bipartite PEG cycle, GF(64), Opt−1
Bipartite PEG cycle, GF(64), Opt−2
Reg PEG cycle, GF(256)
Irre PEG cycle, GF(256)

Fig. 4. Performance comparison of regular/bipartite regular cycle codes with
irregular cycle codes, including codes with optimized nonzero entries. Also
included are those of a binary degree-distribution-optimized irregular LDPC
code and the MacKay’s (3,6) regular code—“504.504.3.504”; The code length
is 1008 bits.

0.00480x13+0.37627x14 and the check-node edge distribution
is 0.98013x7 + 0.01987x8. It can be seen from Fig. 4 that
regular and irregular cycle codes over GF(256) have similar
performance throughout the whole range of testing SNR, both
outperforming their binary irregular counterpart by about 0.5
dB at BLER of 10−5. It can also be seen from Fig. 4 that the
performance of cycle codes over GF(64) starts to diverge at
BLER of 10−4. Among them the irregular and bipartite regular
cycle codes over GF(64) start to demonstrate error floors at
Eb/N0 of 2.25 dB. These error floors come from the contribu-
tion of undetected errors of weight 6 with randomly generated
nonzero entries. For example, for the bipartite regular cycle
code over GF(64) with randomly generated nonzero entries,
there are 25 undetected errors out of 40 errors at Eb/N0 of
2.25 dB, out of which 24 are of weight 6 and 1 is of weight
8.

This error floor can be effectively lowered by optimizing
the nonzero entries in the check matrix. We have constructed
two optimized codes for the bipartite regular cycle code over
GF(64). For the ‘Opt-1’ code, all cycles of length 4 and 6
are rendered irresolvable. For the ‘Opt-2’ code, all cycles of
length 4, 6, and 8 are rendered irresolvable. Their performance
curves are also shown in Fig. 4. It can be seen from Fig. 4 that
the ‘Opt-2’ code can achieve 0.25 dB gain against the binary
irregular counterpart at BLER of 10−5. Besides, the code’s
error floor has been effectively alleviated by optimizing the
nonzero entries. Actually, for the ‘Opt-1’ code, there are only 5
undetected errors of weight at least 8 out of 25 errors at Eb/N0

of 2.25 dB. For the ‘Opt-2’ code, there are 10 undetected
errors of weight at least 10 out of 24 errors at Eb/N0 of 2.25
dB.

B. Performance of Very-High-Rate Regular Cycle Codes

We now investigate the performance of nonbinary regular
cycle codes of very high rates, e.g., r = 8/9 and r = 15/16.
We have constructed regular cycle codes of rate 8/9 with
lengths around 2000 and 4000 bits and regular cycle codes

HUANG et al.: STRUCTURE, PROPERTY, AND DESIGN OF NONBINARY REGULAR CYCLE CODES 9

TABLE II

CYCLE DISTRIBUTION SPECTRUM OF REGULAR CYCLE CODES OF RATE

8/9 AND 15/16

Rate Galois Length Girth Number of cycles
Field length-2 length-3 length-4

8/9 GF(64) 1998 2 1 866 11089
8/9 GF(256) 2016 2 1 916 11213
8/9 GF(64) 3996 3 0 499 11738
8/9 GF(256) 4032 3 0 714 11270
15/16 GF(64) 4608 2 1 5277 120453
15/16 GF(256) 4352 2 5 5430 122256
15/16 GF(64) 9216 3 0 4782 119121
15/16 GF(256) 8704 2 1 5065 119381

of rate 15/16 with lengths around 4500 and 9000 bits. Their
parity check matrices are constructed by the PEG method.
Table II lists their lengths, girths and their cycle distribution
spectrums. Note that the number of length-4 cycles for all rate
8/9 (15/16, resp.) codes considered are more than 10, 000
(100, 000, resp.).

Fig. 5 shows the simulation results of the constructed
regular cycle codes of rate-8/9 decoded by standard BP
algorithm. Also included is that of MacKay’s ‘s2.94.594’ code
of length 1998 bits [34], [35]. The nonzero entries for all
the cycle codes are optimized. For all codes of rate 8/9, all
cycles of length 2 and 3 are rendered irresolvable. For codes
over GF(64), undetected errors play a significant contribution
at BLER about 10−5. Actually the two codes over GF(64)
start to show error floors at BLER about 10−5 which is due
to the contribution of a large portion of undetected errors.
For example, there exist 14 undetected errors of weight no
less than 4 out of 24 errors for the code of length 1998 over
GF(64) at BLER of 2 × 10−5 (4.6 dB). This becomes even
worse with block length doubled. There are 20 undetected
errors of weight no less than 4 out of 24 errors for the code
of length 3996 over GF(64) at BLER of 2 × 10−5 (4.4 dB).
For codes over GF(256), undetected errors start to contribute
at BLER about 10−5. For example, there exist 4 undetected
errors of weight no less than 4 out of 10 errors for the code
of length 4032 over GF(256) at BLER of 6 × 10−6 (4.1 dB).
Nevertheless, it can been seen from Fig. 5 that the rate-8/9
regular cycle code over GF(256) with block length 2016 bits
achieves about 0.3 dB gain against MacKay’s ‘s2.94.594’ code
at BLER of 10−5. Besides, rate-8/9 regular cycle code over
GF(256) with length about 4000 bits is within 1 dB away from
the corresponding Shannon limit at BLER of 10−5.

Fig. 6 shows the simulation results of the constructed
regular cycle codes of rate-15/16 decoded by standard BP al-
gorithm. Also included is that of MacKay’s ‘4376.282.4.9598’
code of length 4376 bits [34], [35]. The nonzero entries for
all the cycle codes are optimized. For all the codes of rate
15/16, all cycles of length 2 are rendered irresolvable and
only part of cycles of length 3 are rendered irresolvable.
The same observations as for rate-8/9 hold. Besides, we can
seen from Fig. 6 that the error floors for codes of rate-15/16
over GF(64) show up even earlier than that of rate-8/9 over
GF(64) as shown in Fig. 5. This is due to the exponential
increase of the number of short-length cycles as the code

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

10 0

Eb/N0

B
lo

ck
 E

rr
or

 R
ate

s2.94.594, Length = 1998 bits
GF(64), Length = 1998 bits
GF(256), Length = 2016 bits
GF(64), Length = 3996 bits
GF(256), Length = 4032 bits

Fig. 5. Performance of regular cycle codes of rate 8/9=0.8889; MacKay’s
code s2.94.594 of rate 8/9 is also included; The Shannon capacity for rate
8/9 is about 3.1 dB.

4.2 4.4 4.6 4.8 5 5.2
10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

10 0

Eb/N0 (dB)

B
lo

ck
 E

rr
or

 R
ate

4376.282.4.9598, Length = 4376 bits
GF(64), Length = 4608 bits
GF(256), Length = 4352 bits
GF(64), Length = 9216 bits
GF(256), Length = 8704 bits

Fig. 6. Performance of regular cycle codes of rate 15/16 = 0.9375;
MacKay’s code 4376.282.4.9598 of rate 0.936 is also included; The Shannon
capacity for rate 15/16 is about 3.9 dB.

rate increases. Nevertheless, it can be seen from Fig. 6 that
the rate-15/16 regular cycle code over GF(256) with block
length 4352 bits achieves about 0.2 dB gain against MacKay’s
‘4376.282.4.9598’ code at BLER of 10−5. Besides, rate-15/16
regular cycle code over GF(256) with length about 9000 bits
is within 1 dB away from the corresponding Shannon limit at
BLER of 10−5.

Compared with existing codes in literature, regular cycle
codes show performance gain. Fig. 6 in [36] presented an
irregular rate-0.9 LDPC code of length 4550 bits which can
achieve BLER of 10−5 at about 4.6 dB, and is about 1.35
dB away from the capacity. Rate-8/9 regular cycle code over
GF(256) of length 4032 bits shown in Fig. 5 can achieve
BLER of 10−5 within 1 dB away from the capacity which
is 0.35 dB closer than the one presented in [36].

C. Sequential BP Decoding With Parallel Processing

Now we investigate the comparison of different scheduling
schemes for decoding of regular cycle codes. We have done

10 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

1 1.2 1.4 1.6 1.8 2 2.2
0

5

10

15

20

25

Eb/N0 (dB)

A
ve

ra
ge

 It
er

at
io

n
N

um
be

r

Bipartite, GF(64)
Regular, GF(64)
Regular, GF(256)

Standard BP Decoding

Proposed Sequential BP Decoding

Fig. 7. Comparison on the average number of iterations of the proposed
sequential BP decoding with parallel processing and that of standard BP
decoding for those regular cycle codes in Fig.4.

simulations comparing the proposed sequential BP decoding
with parallel processing and the standard BP decoding algo-
rithms for those regular cycle codes shown in Fig. 4. The
proposed sequential BP decoding with parallel processing
achieves slightly better performance than the standard BP
decoding at BLER above 10−5. More importantly, Fig 7
shows the comparison on the average number of iterations
between the proposed sequential BP decoding with parallel
processing and standard BP decoding. It can be seen from
Fig. 7 that the average number of iterations for the proposed
sequential BP decoding is about 30 percent less than that
of the standard BP decoding at high SNR, which translates
into 30 percent reduction on the total decoding complexity.
Moreover, the proposed sequential BP decoding with parallel
processing enables a speedup on the throughput of sequential
BP decoding by a factor at least 2n

3d = 2×126
3×4 = 21 for

the regular GF(256) code and at least 2n
3d = 2×168

3×4 = 28
for the regular and bipartite regular GF(64) codes. Therefore
we can conclude that compared with sequential and standard
BP decoding, the proposed sequential BP decoding with
parallel processing offers better tradeoff between the decoding
complexity and throughput.

D. Code Construction Through Interleaver Design

We now investigate code design by the proposed method
in Section IV.A which utilizes the equivalent structure. Algo-
rithm 1 presented in Section IV.A is used to search for good
interleavers. After obtaining the code structure, the nonzero
entries are further optimized. We have designed codes of rate
1/2, 2/3 and 3/4. The block lengths for rate 1/2, 2/3 and 3/4
are 672, 1008 and 1344 symbols over GF(64) respectively.
Their corresponding associated graphs have 336 vertices.
Table III, IV and V list the corresponding code parameters for
rate 1/2, 2/3 and 3/4 respectively, including the size of the
parity check matrix, the girth of the obtained associated graph,
and the resolvable cycle/cycle distribution spectrum. Codes
constructed by the PEG algorithm are included for comparison
which are labelled as ‘PEG’. Codes labelled as ‘Ramanujan’

TABLE III

CYCLE DISTRIBUTION SPECTRUM OF REGULAR CYCLE GF(64) CODES

OF RATE 1/2 DESIGNED BY THE PROPOSED METHOD

Method Matrix Girth Number of resolvable cycles/cycles
Size length-

7
length-
8

length-
9

length-
10

Ramanujan 336 ×
672

8 0/0 0/252 0/0 0/8064

PEG 336 ×
672

7 0/29 0/443 23/1316 58/3251

Proposed 1 336 ×
672

7 0/14 0/523 15/1389 48/3071

Proposed 2 336 ×
672

7 0/40 0/602 12/1145 51/3243

taken from [13] are also included for comparison which
are constructed from known good graphs — the Ramanujan
graphs. The ‘Ramanujan’ code of rate-1/2 is constructed from
the Ramanujan graph X3,7 [13] whereas the ‘Ramanujan’
code of rate-2/3 is constructed from the Ramanujan graph
X5,7 [13]. For each rate, we have constructed two codes by the
proposed method. For the codes labelled as ‘Proposed 1’, each
component Gu—the associated graph of H̄u, is comprised of
1 length-336 cycle. Each component Gu for the code labelled
as ‘Proposed 2’ of rate 1/2 is comprised of 42 length-8
cycles whereas each component Gu for the codes labelled as
‘Proposed 2’ of rate 2/3 and 3/4 is comprised of 56 length-6
cycles.

We can see from Table III, IV and V that the codes
constructed from Ramanujan graphs always possess the largest
girth and have the best resolvable cycle distribution spectrum.
However, the differences on the resolvable cycle/cycle distri-
bution spectrum for all the codes, including those constructed
by the PEG algorithm and the proposed method are not
significant. In particular, the resolvable cycle/cycle distribution
spectrum for codes constructed by the PEG algorithm and the
proposed method are comparable. This verifies the feasibility
of the proposed method.

Fig. 8 shows the performance of all these codes. A binary
irregular degree-distribution-optimized code of rate 1/2 and
length 4032 is also included in Fig. 8. The degree distribution
for this binary irregular code is the same as the one used
in Section V.A. It can be seen from Fig. 8 that all the
codes achieve similar performance at BLER above 10−5.
This also verifies the feasibility of the proposed method.
Besides, codes of rate 1/2 constructed by the proposed method
can outperform the binary irregular code. For all the codes
constructed by the PEG method and the proposed method,
undetected errors of small weight start to contribute at BLER
about 10−4. In particular, those codes of rate 2/3 and 3/4 start
to experience an error floor at BLER of 10−5. This error floor
can be alleviated by moving to higher order Galois field, say
GF(256). Nevertheless, the codes constructed by the proposed
method of rate 1/2, 2/3 and 3/4 are about 1.3 dB, 1.1 dB
and 1.0 dB away from the corresponding Shannon limits at
BLER of 10−5 respectively.

Compared with existing codes in literature, such as those
in [37], [38], regular cycle codes constructed by the proposed

HUANG et al.: STRUCTURE, PROPERTY, AND DESIGN OF NONBINARY REGULAR CYCLE CODES 11

TABLE IV

CYCLE DISTRIBUTION SPECTRUM OF REGULAR CYCLE GF(64) CODES

OF RATE 2/3 DESIGNED BY THE PROPOSED METHOD

Method Matrix Girth Number of resolvable cycles/cycles
Size length-

4
length-
5

length-
6

length-
7

Ramanujan 336 ×
1008

6 0/0 0/0 0/3360 0/0

PEG 336 ×
1008

4 0/1 0/9 8/1263 81/6288

Proposed 1 336 ×
1008

5 0/0 0/79 11/1570 62/5837

Proposed 2 336 ×
1008

5 0/0 0/96 15/1685 93/5591

TABLE V

CYCLE DISTRIBUTION SPECTRUM OF REGULAR CYCLE GF(64) CODES

OF RATE 3/4 DESIGNED BY THE PROPOSED METHOD

Method Matrix Girth Number of resolvable cycles/cycles
Size length-

4
length-
5

length-
6

PEG 336 ×
1344

4 0/4 12/1291 157/10740

Proposed 1 336 ×
1344

4 0/15 10/1817 154/10350

Proposed 2 336 ×
1344

4 0/13 10/1818 154/10506

method achieve performance gains. In reference [37], a rate-
1/2 128-ary (2032, 1016) quasi-cyclic LDPC code has been
constructed, which has block length of 14224 bits. This code
achieves BLER of 10−5 at Eb/N0 of 2.0 dB. Our rate-1/2
codes over GF(64) achieve BLER of 10−5 at Eb/N0 of 1.5 dB,
which is 0.5 dB better than the 128-ary (2032, 1016) quasi-
cyclic LDPC code reported in [37], even though the block
lengths of our codes are much smaller. In reference [38], a
rate-0.7510 256-ary (1020, 766) quasi-cyclic LDPC codes has
been constructed, which has block length of 8160 bits. This
code achieves BLER of 10−5 at Eb/N0 of 3.6 dB. Our rate-
3/4 codes over GF(64) have similar block length and can
achieve BLER of 10−5 at Eb/N0 of 2.6 dB, which is 1 dB
better than the 256-ary (1020, 766) quasi-cyclic LDPC code
reported in [38].

Compared with other advanced binary irregular LDPC
codes, such as those in [39], [40], our codes have similar
performance. Figs. 1 and 2 in [39] presented a rate-1/2 code
of length 5120 bits which can achieve BLER of 10−5 at about
1.5 dB. Fig. 8 in [40] presented a rate-1/2 code of length 5792
bits which can achieve BLER of 10−5 at about 1.5 dB. Fig. 8
in [40] also presented a rate-3/4 code of length 5792 bits
which can achieve BLER of 10−5 at about 2.6 dB. All these
codes have similar performance as our codes of the same rate
shown in Fig. 8.

VI. CONCLUSIONS

In this paper we focused on a special class of nonbinary
cycle codes—nonbinary regular cycle codes. Through graph-
theoretic analysis, an equivalent structure has been derived for

1 1.5 2 2.5 3
10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

10 0

Eb/N0 (dB)

B
lo

ck
 E

rr
or

 R
ate

PEG
Proposed 1
Proposed 2
Semi−Determinat e
Binary Irregular

Rate 1/2
(4032,2016)

Rate 2/3
(6048,4032)

Rate 3/4
(8064,6048)

Fig. 8. Performance comparison of regular cycle codes designed using
different methods. The Shannon capacities are 0.188, 1.084 and 1.628 dB
for rate 1/2, 2/3 and 3/4 respectively. The ‘Semi-Determinate’ codes are
constructed from Ramanujan graphs and taken from [13].

the parity check matrix H. Encoding utilizing this structure
can be performed in parallel in linear time. The storage
requirements for H can also be reduced. In addition, de-
coding utilizing this structure enables parallel processing in
sequential BP decoding, which considerably increases the
decoding throughput without compromising performance or
complexity. We also presented a novel method to design the
code structure for nonbinary regular cycle codes. Extensive
simulations confirm that nonbinary regular cycle codes have
very good performance. Future research topics include code
design utilizing the equivalent structure with deterministic
interleavers, such as interleavers based on permutation poly-
nomials over integer rings [41].

REFERENCES

[1] J. Huang, S. Zhou, and P. Willett, “Structure of non-binary regular LDPC
cycle codes,” in Proc. IEEE ICASSP, Mar.–Apr., 2008.

[2] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA: MIT
Press, 1963.

[3] D. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, Mar.
1999.

[4] M. C. Davey and D. MacKay, “Low-density parity-check codes over
GF(q),” IEEE Commun. Lett., vol. 2, pp. 165–167, June 1999.

[5] D. Jungnickel and S. A. Vanstone, “Graphical codes revisted,” IEEE
Trans. Inform. Theory, vol. 43, pp. 136–146, Jan. 1997.

[6] X.-Y. Hu and E. Eleftheriou, “Binary representation of cycle Tanner-
graph GF(2b) codes,” in Proc. IEEE International Conf. Commun., June
2004, vol. 27, no. 1, pp. 528–532.

[7] M. C. Davey, “Error-correction using low-density parity-check codes,”
dissertation, University of Cambridge, 1999.

[8] H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC
codes for magnetic recording,” IEEE Trans. Magn., vol. 39, pp. 1081–
1087, Mar. 2003.

[9] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC codes
over GF(2q),” in Proc. IEEE Inform. Theory Workshop, 2003.

[10] J. Huang and J.-K. Zhu, “Linear time encoding of cycle GF(2p) codes
through graph analysis,” IEEE Commun. Lett., vol. 10, pp. 369–371,
May 2006.

[11] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Transa. Inform. Theory, vol. 27, pp. 533–547, Sep. 1981.

[12] D. Reinhard, Graph Theory, 2nd ed. Springer-Verlag, 2000.
[13] J. Huang, S. Zhou, J.-K. Zhu, and P. Willett, “Group-theoretic analysis

of Cayley-graph-based cycle GF(2p) codes,” IEEE Trans. Commun.,
vol. 57, no. 7, pp. 1560–1565, June 2009.

12 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

[14] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,” IEEE Trans. Inform. Theory,
vol. 51, no. 1, pp. 386–398, Jan. 2005.

[15] D. J. C. MacKay, “Optimizing sparse graph codes over GF(q),” Aug.
2003. [Online]. Available: http://www.inference.phy.cam.ac.uk/mackay/

[16] C. Poulliat, M. P. Fossorier, and D. Declercq, “Using binary images of
nonbinary LDPC codes to improve overall performance,” in Proc. 4th
Int. Symp. Turbo Codes Related Topics, Apr. 2006.

[17] D. Kimura, R. Pyndiah, and F. Guilloud, “Construction of parity-check
matrices for non-binary LDPC codes,” in Proc. 4th Int. Symp. Turbo
Codes and Related Topics, Apr. 2006.

[18] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp.
498–519, Feb. 2001.

[19] C. Berrou and A. Glavieux, “Near-optimum error-correcting coding and
decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271,
Oct. 1996.

[20] J.-T. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE
Trans. Commun., vol. 53, pp. 209–213, Feb. 2005.

[21] H. Kfir and I. Kanter, “Parallel versus sequential updating for belief
propagation decoding,” Physica A: Statistical Mechanics Applications,
vol. 330, pp. 259–270, Dec. 2003.

[22] J.-T. Zhang and M. P.C.Fossorier, “Shuffled belief propagation decod-
ing,” in Proc. 36th Asilomar Conf. Signals, Syst. Computers, Nov. 2002,
vol. 1, pp. 8–15.

[23] J. Rosenthal and P. O. Vontobel, “Constructions of LDPC codes using
Ramanujan graphs and ideals from Margulis,” in Proc. 38th Annual
Allerton Conf. Commun., Control, Computing, 2000, pp. 248–257.

[24] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inform.
Theory, vol. 42, pp. 1710–1722, Nov. 1996.

[25] P. S. G. Davidoff and A. Valette, Elementary Number Theory, Group
Theory, and Ramanujan Graphs. Cambridge University Press, 2002.

[26] Y. Mao and A. H. Banihashemi, “A heuristic search for good LDPC
codes at short block lenghts,” in Proc. IEEE Intl. Conf. Commun., June
2001, vol. 1, pp. 41–44.

[27] O. Y. Takeshita, “A compact construction for LDPC codes using
permutation polynomials,” in Proc. IEEE International Symp. Inform.
Theory, July 2006, pp. 79–82.

[28] J. Lu and J. M. F. Moura, “TS-LDPC codes: Turbo-structured codes with
large girth,” IEEE Trans. Inform. Theory, vol. 53, no. 3, pp. 1080–1094,
Mar. 2007.

[29] S. Dolinar and D. Divsalar, “Weight distribution for turbo codes using
random and nonrandom permutations,” TDA Progress Rep. 42-122, Aug.
1995.

[30] S. N. Crozier, “New high-spread high-distance interleavers for turbo-
codes,” in Proc. Biennial Symp. Commun., May 2000, pp. 3–7.

[31] L. Dinoi and S. Benedetto, “Design of fast-prunable S-random inter-
leavers,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2540–2548,
Sep. 2005.

[32] C. Fragouli and R. D. Wesel, “Semi-random interleaver design criteria,”
in Proc. IEEE Globecom, Dec. 1999, vol. 5, pp. 2352–2356.

[33] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans.
Inform. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[34] D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes for
short block length and high rate applications,” in Codes, Systems and
Graphical Models, Springer-Verlag, pp. 113–130, 2000.

[35] D. J. C. MacKay and E. A. Ratzer, “Gallager codes
for high rate applications,” 2003. [Online]. Available:
http://www.inference.phy.cam.ac.uk/mackay/

[36] M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently encodable
moderate-length high-rate irregular LDPC codes,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 564–571, Apr. 2004.

[37] B. Zhou, Y.-Y. Tai, L. Lan, S. Song, L. Zeng, and S. Lin, “Construction
of high performance and efficiently encodable nonbinary quasi-cyclic
LDPC codes,” in Proc. IEEE Globecom, Nov.–Dec. 2006, pp. 1–6.

[38] L. Zeng, L. Lan, Y. Tai, B. Zhou, S. Lin, and K. Abdel-Ghaffar,
“Construction of nonbinary cyclic, quasi-cyclic and regular LDPC
codes: A finite geometry approach,” IEEE Trans. Commun., vol. 56,
no. 3, pp. 378–387, Mar. 2008.

[39] T. Richardson and R. Urbanke, “Multi-edge type LDPC codes.” [On-
line]. Available: http://lthcwww.epfl.ch/papers/multiedge.ps

[40] D. Divsalar and C. Jones, “Protograph LDPC codes with node degrees
at least 3,” in Proc. IEEE GlobeCom, Nov.–Dec. 2006, pp. 1–5.

[41] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using per-
mutation polynomials over integer rings,” IEEE Trans. Inform. Theory,
vol. 51, pp. 101–119, Jan. 2005.

Jie Huang received the B.S. degree in 2001 and the
Ph. D. degree in 2006, from the University of Sci-
ence and Technology of China (USTC), Hefei, both
in electrical engineering and information science.
He is now a research assistant professor with the
Department of Electrical and Computer Engineering
at the University of Connecticut, Storrs.

His general research interests lie in the areas of
communications and signal processing, specifically
error control coding theory and coded modulation
system design. His recent focus is on signal pro-

cessing, channel coding, and network coding for underwater acoustic com-
munications and underwater sensor networks.

Shengli Zhou (M’03) received the B.S. degree
in 1995 and the M.Sc. degree in 1998, from the
University of Science and Technology of China
(USTC), Hefei, both in electrical engineering and
information science. He received his Ph.D. degree
in electrical engineering from the University of
Minnesota (UMN), Minneapolis, in 2002. He has
been an assistant professor with the Department of
Electrical and Computer Engineering at the Univer-
sity of Connecticut (UCONN), Storrs, 2003-2009,
and now is an associate professor.

His general research interests lie in the areas of wireless communications
and signal processing. His recent focus is on underwater acoustic communi-
cations and networking. He received the 2007 ONR Young Investigator award
and the 2007 Presidential Early Career Award for Scientists and Engineers
(PECASE).

Peter Willett (F’03) received his BASc (Engineer-
ing Science) from the University of Toronto in 1982,
and his PhD degree from Princeton University in
1986. Since then, he has been a faculty member
at the University of Connecticut, and since 1998
has been a professor. His primary areas of research
have been statistical signal processing, detection,
communications, data fusion, and tracking.

He is editor-in-chief for the IEEE TRANSAC-
TIONS ON AEROSPACE AND ELECTRONIC SYS-
TEMS. He has been a member of the IEEE AESS

Board of Governors since 2003.

