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Abstract

An (α, β)-spanner of an unweighted graph G is a subgraph H that distorts distances in G up to a
multiplicative factor of α and an additive term β. It is well known that any graph contains a (multiplica-
tive) (2k − 1, 0)-spanner of size O(n1+1/k) and an (additive) (1, 2)-spanner of size O(n3/2). However no
other additive spanners are known to exist.

In this paper we develop a couple of new techniques for constructing (α, β)-spanners. Our first
result is an additive (1, 6)-spanner of size O(n4/3). The construction algorithm can be understood as an
economical agent that assigns costs and values to paths in the graph, purchasing affordable paths and
ignoring expensive ones, which are intuitively well-approximated by paths already purchased. We show
that this path buying algorithm can be parameterized in different ways to yield other sparseness-distortion
tradeoffs. Our second result addresses the problem of which (α, β)-spanners can be computed efficiently,
ideally in linear time. We show that for any k, a (k, k− 1)-spanner with size O(kn1+1/k) can be found in
linear time, and further, that in a distributed network the algorithm terminates in a constant number of
rounds. Previous spanner constructions with similar performance had roughly twice the multiplicative
distortion.

1 Introduction

An (α, β)-spanner of an undirected graph G is a subgraph H such that for all vertices u, v:

δH(u, v) ≤ α · δG(u, v) + β

where δG is the distance in graph G. In other words, an (α, β)-spanner guarantees that for pairs of vertices
far apart in G, their distance in the spanner is stretched by roughly an α factor, which would ideally be close
to 1. We call a (1, β)-spanner an additive β-spanner. If β = 0 this definition reverts to the usual definition
of a multiplicative α-spanner [46, 9].

Spanners (and related structures) are useful in many contexts. They are the basis of space-efficient rout-
ing tables that guarantee nearly shortest routes [4, 53, 49, 23, 24, 48], schemes for simulating synchronized
protocols in unsynchronized networks [47], and parallel and distributed algorithms for computing approxi-
mate shortest paths [20, 21, 27]. A recent application of spanners is the construction of labeling schemes
and distance oracles [54, 14, 50, 11], which are data structures that can report approximately accurate
distances in constant time. In all of these applications the quality of the solution ultimately depends on
an efficient algorithm for computing a low distortion sparse spanner. The main open problem in this area
is to understand the inherent tradeoffs between these three measures of efficiency: distortion (α and β),
sparseness, and construction time. Even ignoring construction time, there are only a handful of cases where
the distortion-sparseness tradeoff is fully understood.

∗Partially supported by the Future and Emerging Technologies program of the EU under contract number IST-1999-14186
(ALCOM-FT).

†Email: sbaswana@cse.iitk.ac.in
‡Email: kavitha@csa.iisc.ernet.in
§Email: mehlhorn@mpi-inf.mpg.de
¶Email: pettie@umich.edu.

1



Multiplicative Spanners. The early work on spanners established the basic tradeoff between sparseness
and multiplicative distortion. If the spanner size is fixed at O(n1+1/k) the multiplicative distortion can be
no better than Θ(k) [46]. We let n and m be the number of vertices and edges in the input graph. Althöfer
et al. [9] proposed a greedy algorithm for producing an (2k − 1)-spanner whose size is at most m2k+1(n),
where mg(n) is the maximum number of edges in a graph with girth at least g.1 Moreover, they observed
that m2k+1(n) is precisely the best possible bound for a (2k − 1)-spanner. If one removes any edge from
a graph with girth 2k + 1 the distance between its endpoints jumps from 1 to at least 2k. Thus, the only
(2k − 1)-spanner of such a graph is the graph itself. A trivial upper bound on m2k+1(n) and m2k+2(n) is
O(n1+1/k). It has been conjectured, by Erdős [34] and others that this bound is asymptotically tight, though
the conjecture has only been proved for k = 1, 2, 3, and 5; weaker lower bounds are known for all other k;
see [56, 54]. In other words, finding the exact tradeoff between sparseness and multiplicative distortion is at
least as hard as proving or disproving the girth conjecture.

The fastest implementations of the Althöfer et al. algorithm run in time O(min{kn2+1/k, mn1+1/k})
[9, 51], though there are several more efficient (2k − 1)-spanner constructions. Halperin and Zwick [38, 45]
compute an O(n1+1/k)-size (2k− 1)-spanner in linear time. However, unlike the algorithm of Althöfer et al.,
the Halperin-Zwick algorithm only works on unweighted graphs. For weighted graphs Baswana and Sen [12]
give a randomized construction of such a spanner with size O(kn1+1/k). The Baswana-Sen algorithm has
since been derandomized by Roditty et al. [50].

Beyond Purely Multiplicative Distortion. The girth bound exactly characterizes the optimal tradeoff
between sparseness and multiplicative distortion but arguments based on girth only apply to adjacent ver-
tices. In unweighted graphs the girth argument could just as easily be interpreted as bounding the additive
distortion, or some combination of additive and multiplicative distortion. In particular, if the girth conjec-
ture is true we can only say that an (α, β)-spanner of size O(n1+1/k) has α + β ≥ 2k − 1. It is conceivable
that there exist additive (2k − 2)-spanners with size O(n1+1/k), for any k. Before our work, however, only
one such additive spanner was known. Aingworth et al. [6] (with followup work in [25, 30, 55]) showed that
there exist O(n3/2)-size additive 2-spanners. On the lower bound side, Woodruff [57] recently proved that
any spanner with size O(k−1n1+1/k) cannot do better than an additive distortion of 2k − 2, independent of
whether the girth conjecture is true or not.

The current research trend is to optimize distortion as a function of the distance being approximated,
rather than fixate on adjacent vertices and the girth conjecture. Elkin and Peleg [29] showed that the girth
bound (on multiplicative distortion) fails to hold even for vertices at distance 2. They gave a construction
for (k − 1, 2k − O(1))-spanners with size O(kn1+1/k), with a number of refinements for short distances.
They also showed [30] that for any k ≥ 2, ε > 0, there exist (1 + ε, β)-spanners with size O(βn1+1/k),
where β = klog log k−log ε is independent of n. In other words, the size can be driven close to linear and the
multiplicative stretch close to 1, at the cost of a large additive term in the distortion. Thorup and Zwick [55]
give a sparseness-distortion tradeoff that is in some ways stronger than Elkin and Peleg’s. Their (1 + ε, β)-
spanners have size O(kn1+1/k) and β = O(d1 + 2/εek−2), where ε plays no role in the construction and can
be chosen as a function of the distance d being approximated. For ε−1 = d1/(k−1), the spanner has additive
distortion O(d1−1/(k−1) + 2k). That is, the multiplicative distortion tends to 1 as the distance increases,
whereas the Elkin-Peleg spanners tend to 1 + ε, for an ε chosen a priori. See Figure 1 for a summary of
existing spanners constructions.

Our Results. Our first result is that every graph contains an additive 6-spanner with size O(n4/3) and
that such a spanner can be computed efficiently. This result is a far cry from a full spectrum of tradeoffs
between sparseness and additive distortion. However, our approach is completely new and is generic enough
to be applied in other ways. We view a spanner construction as an economic agent that assigns a cost
and value to paths in the graph. Affordable paths are purchased (included in the spanner) and expensive
ones ignored. Different cost and value combinations lead to spanners with different properties. Besides
constructing a 6-spanner, our path buying algorithm can be parameterized to find an additive 2-spanner of
size O(n3/2), matching [6, 25, 30, 55], and an additive (n1−3δ)-spanners of size O(n1+δ), for any constant

1Girth is the length of the shortest cycle. Note that since every graph has a bipartite subgraph with at least half the edges,
1

2
m2k+1(n) ≤ m2k+2(n) ≤ m2k+1(n).
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WEIGHTED GRAPHS, MULTIPLICATIVE SPANNERS

α Size Time Notes
1
2n1+1/k O(mn1+1/k) [9, 7]
1
2n1+1/k O(kn2+1/k) [51, 7]

O(kn1+1/k) O(km) (rand.) [12]
2k − 1

O(kn1+1/k) O(km) [50]

UNWEIGHTED GRAPHS, (α, β)-SPANNERS

(α, β) Size Time Notes

(2k − 1, 0) n1+1/k O(m) [38]

(k − 1, 2k −O(1)) O(kn1+1/k) O(mn1−1/k) [29]
(k, k − 1) O(kn1+1/k) O(km) new

(1 + ε, 4) O(ε−1n4/3) O(mn2/3) [30]

(1 + ε, β) O(βn1+1/k) O(n2+1/t) [30], β = β(k, ε, t)
(1 + ε, β′) O(β′n1+1/k) O(mnρ) [27], β′ = β′(k, ε, ρ)

(1 + ε, β′′) O(kn1+1/k) O(kmn1/k) [55], β′′ = β′′(k, ε)

(1, n1−2δ) O(n1+δ) poly(n) [15], δ = Θ(1)
(1, n1−3δ) O(n1+δ) poly(n) new, δ = Θ(1)

O(n3/2) O(m
√

n) [30, 6, 55]
(1, 2)

Õ(n3/2) Õ(n2) [25]

(1, 6) O(n4/3) O(mn2/3) new

Figure 1: State-of-the-art in (α, β)-spanners. The parameter k ≥ 2 is always an integer. In the (1 + ε, β)-
Spanner of [30], β is roughly kmax{log log k−log ε,log t,3}. In [27] it is required that ρ > 1/2k; the expression
for β′ here is quite complicated. In [55] β′′ = 2d1 + 2/εek−2; however the construction and spanner are
independent of ε, meaning it works for all ε simultaneously. Some slower spanner constructions are omitted
from the figure.

δ ∈ (0, 1/3). The latter result improves the sparseness of [15] by a polynomial factor. We can also show
that graphs with high girth (or, in general, those with few edges on short cycles) contain sparse additive
spanners. For example, graphs with girth greater than 4 have 4-, 8-, and 12-spanners with sizes on the order
of n4/3, n5/4, and n6/5. Other examples are given in Figure 4 in Section 2.1.

Our second result addresses those sparseness-distortion tradeoffs that can be computed by an efficient
algorithm. We show that a (k, k − 1)-spanner of size O(kn1+1/k) can be constructed in O(km) time. Since
the decisions made by the algorithm are very local, it can easily be implemented in modern models of
computation. For instance, in the cache-oblivious model [36], the PRAM model [42], or in a synchronized
distributed network [45], our algorithm is close to optimal under the relevant measures. Previous spanners
with equal or better distortion [29, 30, 27, 55] have construction times of the form O(mnΩ(1)) and the result
that is most comparable to ours, Elkin and Peleg’s (k − 1, 2k − O(1))-spanner, requires time O(mn1−1/k)
to compute. If we restrict our attention to linear or near-linear time constructions, all the existing spanners
with size O(kn1+1/k) [38, 12, 50] had multiplicative distortion 2k−1. Whereas our (k, k−1)-spanners can be
computed in O(k) rounds in a distributed network, all previous constructions with equal or better distortion
required Ω(nΩ(1)) rounds [32].

1.1 Related Work

Spanners are part of a large body of work on metric embeddings [41, 40], where one wants a mapping
φ : S → T from a given (finite) source metric2 (S, δS) to a target metric (T, δT ) that does not distort
interpoint distances by too much. (Distortion here is usually defined as purely multiplicative distortion.)
In our case (S, δS) is some unweighted graph metric and φ is the identity function; the problem is to find

2Recall that (S, δS) is a metric if for u, v, w ∈ S, δS(u, u) = 0, δS(u, v) = δ(v, u) ≥ 0, and δS(u, v) ≤ δS(u, w) + δS(w, v).
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a metric (T, δT ) corresponding to a sparse subgraph. We only survey metric embeddings where the target
metric is some kind of graph.

Roditty, Thorup, and Zwick [49] construct multiplicative spanners for directed graphs under the roundtrip
metric, where the distance between two vertices is the length of the shortest cycle (not necessarily simple)
that contains both. The sparseness-distortion tradeoffs in [49] are slightly worse than those obtained for
undirected graphs. Bollobás et al. [15] and Coppersmith and Elkin [22] studied spanners that preserve,
without distortion, the distance between some pairs of vertices. In [15] it is shown that there exist O(n1+δ)-
size spanners that preserve distances greater than n1−δ, and that this tradeoff is optimal. In [22] it is shown
that for any set P of pairs of vertices, there is a distance preserver for P with size O(n + |P | √n) edges, and
that this bound is optimal in some circumstances. In particular, if |P | = ω(

√
n) then a size of O(n) cannot

be guaranteed. Dor, Halperin, and Zwick [25] considered emulators, which may contain both graph edges
and additional weighted edges, and observed that there are additive 4-emulators with O(n4/3) edges. Thorup

and Zwick [55] generalized this construction to emulators with O(kn
1+ 1

2k
−1 ) edges and additive distortion

O(kd1− 1
k−1 ), where d is the distance being approximated. One well known application of (multiplicative)

spanners is in the construction of approximate distance oracles; see [54] and [14, 50, 11, 43] for more efficient
distance oracles.

The sparsest spanner is a tree, but it is impossible to guarantee that a tree spanner has any non-
trivial worst case distortion.3 A number of weaker notions of distortion have been defined to deal with
tree spanners. A probabilistic embedding with distortion t is a distribution over tree metrics such that
ET [δT (φ(u), φ(v))/δS(u, v)]} ≤ t, where it is assumed that δT (φ(u), φ(v)) ≥ δS(u, v). Elkin et al. [28] showed
that for any graph there is a probabilistic embedding into its spanning trees with distortion O(log2 n log log n).4

Fakcharoenphol et al. [35] proved that any metric can be probabilistically embedded in a tree metric (not
necessarily a spanning tree) with distortion O(log n). These probabilistic embeddings have surprisingly di-
verse applications; see [8, 10, 35, 52, 58] and the references therein. The distinction between embedding into
a spanning subtree vs. any tree metric was explored by Bǎdoiu, Indyk, and Sidiropoulos [16], who showed
that the distortion of the best spanning subtree is between Ω(log n/ log log n) and O(log n) times the distor-
tion of the best tree metric. They also give an algorithm to approximate the best embedding from a given
metric into a tree metric.5

A number of recent papers look at spanners with ε-slack, meaning the stated distortion (a function of ε)
may fail to hold for an ε fraction of the vertex pairs. Such a spanner is gracefully degrading if it has ε-slack
for all ε. Chan, Dinitz, and Gupta [17] give a linear size, gracefully degrading spanner with multiplicative
distortion O(log ε−1). See [1, 2, 3] for standard and probabilistic embeddings into tree metrics with ε-slack.

For geometric graphs, where the vertices are points in R
d, it is known that for any constants d, ε, there are

efficiently constructible linear size (1+ε)-spanners [37, 44]. Geometric graphs fall into a larger class of metrics
with constant doubling dimension.6 It was recently shown that even these metrics have (1+ ε)-spanners with
size O(n), for constant ε and dimension d [19, 18, 39].

Organization In Section 2 we introduce the path-buying technique and an algorithm for finding additive
6-spanners. In Section 2.1 we show how the path-buying algorithm can be parameterized to compute other
additive spanners. Section 3 contains our linear time algorithm for constructing (k, k − 1)-spanners and in
Section 3.1 we show how it can easily be adapted to other models of computation. In Section 4 we conclude
with some open problems.

2 Additive Spanners

Our construction for additive 6-spanners works in two phases, the first of which involves standard clustering
techniques. In phase one we choose a collection of disjoint vertex sets C = {C1, C2, . . . , Cn2/3}; each Ci is a

3For example, consider a cycle of n vertices.
4They actually show this distortion holds for adjacent vertices, which is stronger.
5Notice the difference between absolute vs. relative distortion. Most results give an absolute guarantee on the distortion

(perhaps in expectation) whereas [16] compare the distortion of their embedding against the optimal one. See [33, 31] for other
(in)approximability results for different spanner problems.

6A metric has doubling dimension d if the ball of radius 2r centered at any point can be covered by 2d balls of radius r.
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cluster with a center vertex that is adjacent to all other vertices in its cluster. The set H0 (which is a subset
of our spanner) consists of a radius-one spanning tree of each cluster and all edges that are incident to at
least one unclustered vertex. In Section 3 we give two linear time algorithms for constructing C and H0 such
that |H0| ≤ n4/3. Let C(v) be the cluster containing v, if any, and if Z is a subgraph let C(Z) be the set of
clusters that intersect Z.

Notice that since H0 contains all edges incident to unclustered vertices we can focus our attention on
shortest paths whose endpoints are both clustered. The objective of phase two is to show that on any
shortest path P = 〈u, . . . , u′〉, where both u and u′ are clustered, there exists a short path Q in the spanner
from u to u′ that passes through some C∗ ∈ C(P ). We guarantee, in particular, that the portions of Q from
C(u) ; C∗ and C∗

; C(u′) are no longer than their counterparts in P . Property 2.1 formalizes this idea,
and Lemma 2.2 states that any subgraph with this property is an additive 6-spanner.

Property 2.1 A subgraph H ⊇ H0 is happy if for any two clustered vertices u, u′, there exists a shortest
path P = 〈u . . . , u′〉 in G and a C∗ ∈ C(P ) such that:

δH(C(v), C∗) ≤ δP (C(v), C∗) for both v ∈ {u, u′}.

Lemma 2.2 Any happy subgraph of G is also an additive 6-spanner of G.

Proof: Let H be the happy subgraph, and u, u′, P, and C∗ ∈ C(P ) be as in the statement of Property 2.1;
see Figure 2. We can bound the distance from u to u′ in H as:

PSfrag replacements

C(u) C∗ C(u′)

u u′

Figure 2: The clusters C(u), C∗, and C(u′) indicated by ovals. The shortest inter-cluster paths in H are
indicated by dashed curves.

δH(u, u′) ≤ diamH(C(u)) + δH(C(u), C∗) + diamH(C∗) + δH(C∗, C(u′)) + diamH(C(u′))

≤ δP (C(u), C∗) + δP (C∗, C(u′)) + 6

≤ δG(u, u′) + 6

where diamH(Z) represents the maximum distance between vertices in Z in the subgraph H . The second
inequality follows directly from Property 2.1. 2

In phase two we find a subgraph H0 ∪ P1 ∪ P2 ∪ · · · ∪ Pp where P1, . . . , Pp are paths purchased by the
path buying algorithm in Figure 3. The algorithm is parameterized by cost and value functions. It evaluates
some shortest path between each pair of vertices and purchases the path if twice its value exceeds its cost.
If the path is bought this will influence the cost of value of other paths.

The following cost and value functions give rise to an additive 6-spanner. In Section 2.1 we show that
different costs and values lead to other sparseness-distortion tradeoffs, including a new 2-spanner of size
O(n3/2) that is quite different from previous constructions [6, 25, 30, 55].

value(P ) = |{{C, C ′} ⊆ C(P ) : δP (C, C ′) < δH(C, C ′)}|
cost(P ) = |P\H |

Note that the cost and value of a path is with respect to a subgraph H , which is our spanner under
construction. The cost of a path is the number of its edges not already included in the spanner. The value
function represents, roughly, how much the inter-cluster distances would be improved if P were included in
the spanner.
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Our path buying algorithm (Phase 2) is given in Figure 3. It refers to a set P of shortest paths between all
pairs of vertices with the following restrictions. If P ∈ P then all subpaths of P are also in P . Furthermore,
for every three consecutive vertices 〈u1, u2, u3〉 in a path P ∈ P , if C(u1) = C(u3), then u2 is the center of
C(u1). This helps to reduce the cost of paths since 〈u1, u2, u3〉 ⊆ H0.

H ← H0 {edges chosen in clustering}
For each shortest path P ∈ P

If 2 · value(P ) ≥ cost(P ) {if the path is a bargain}
then H ← H ∪ P {then buy it!}

Return H

Figure 3: The path buying algorithm. P is a set of
(

n
2

)

shortest paths between all pairs of vertices.

The remainder of the proof is structured as follows. In Lemma 2.3 we argue that in the sum of values
of paths purchased, the number of times any cluster pair is counted is bounded by a constant. This implies
that the sum of values is O(n4/3), since |C| = n2/3, and by our criterion for purchasing paths, that the sum
of costs is also O(n4/3). In Lemma 2.4 we relate the cost of a path to the number of clusters intersecting it.
Finally, and most importantly, Lemma 2.5 shows that if any shortest path is too expensive to be purchased
then the existing spanner edges already guarantee a path with additive distortion at most 6.

In the following lemmas value(P ) and cost(P ) represent the value and cost of P at the time it was
considered by the path buying algorithm in Figure 3.

Lemma 2.3 Let H = H0∪P1∪P2∪· · ·∪Pp, where Pi is the ith path bought in the path buying phase. Then
∑p

i=1 value(Pi) ≤ 5
(

|C|
2

)

< 5
2n4/3.

Proof: Let Hi = H0 ∪ P1 ∪ · · · ∪ Pi. For any two clusters C, C ′ ∈ C let P (C, C ′) = {Pj(1), Pj(2), . . . , Pj(r)}
be those purchased paths such that

δPj(k)
(C, C ′) < δHj(k)−1

(C, C ′) for k ∈ [1, r].

By the definition of the value function,
∑p

i=1 value(Pi) =
∑

{C,C′}⊆C |P (C, C ′)|. Since Pj(1) is a shortest

path in G we have that: δPj(1)
(C, C ′) ≤ diamG(C) + δG(C, C ′) + diamG(C ′) ≤ δG(C, C ′) + 4. This implies

that |P (C, C ′)| ≤ 5 since δG(C, C ′) ≤ δPj(r)
(C, C ′) < δPj(r−1)

(C, C ′) < · · · < δPj(1)
(C, C ′) ≤ δG(C, C ′) + 4.

That is, after Pj(1) is purchased the distance from C to C ′ can only be improved four more times. 2

Lemma 2.4 If P ∈ P then either |C(P )| = 1 or there exists a subpath P ′ ⊆ P such that C(P ′) = C(P ) and
cost(P ′) ≤ 2 |C(P ′)| − 3.

Proof: Let P = 〈u, . . . , u′〉 and P ′ ⊆ P be minimal such that C(P ) = C(P ′). (This means that if the first
or last cluster of P has two or three vertices in common with P then only the innermost one appears in P ′.)
The only edges in P ′ that might not be in H ⊇ H0 are those between clustered vertices. Furthermore, if
three consecutive vertices u1, u2, u3 belong to the same cluster then 〈u1, u2, u3〉 ⊆ H0. Thus the total number
of inter-cluster edges and intra-cluster edges that are not in H are bounded by |C(P ′)| − 1 and |C(P ′)| − 2.
2

Lemma 2.5 The subgraph H returned by the path buying algorithm is happy.

Proof: Let P = 〈u, . . . , u′〉 ∈ P be the shortest path from u to u′ in G. By the statement of Property 2.1
we can dispense with several trivial cases and assume that P was not purchased in phase two, that both u
and u′ are clustered and that C(u) 6= C(u′). Let P ′ ⊆ P be the subpath guaranteed by Lemma 2.4. The case
when P ′ is included in H is also trivial. Thus we have the following inequalities:

(1) 2 · value(P ′) < cost(P ′) ≤ 2 · |C(P ′)| − 3

where the first inequality follows from the fact that P ′ was not included in H and the second from Lemma
2.4. Define A as the set of cluster pairs:

A =

{

{C0, C1} :
C0 ∈ {C(u), C(u′)}, C1 ∈ C(P ′)\{C0}
and δP ′(C0, C1) < δH(C0, C1)

}

.

6



The cluster pairs counted in A are also counted in value(P ′) so |A| ≤ value(P ′). By the inequalities of Eqn. 1
value(P ′) ≤ |C(P ′)| − 2. Notice that the maximum number of cluster pairs counted by A is 2 |C(P ′)| − 3.
This means that for at least |C(P ′)| − 1 of these cluster pairs, their distance in the spanner is no worse than
their distance in P ′. By the pigeonhole principle there must be some cluster C∗ ∈ C(P ′) = C(P ) satisfying
both

δH(C(u), C∗) ≤ δP ′(C(u′), C∗)

and
δH(C∗, C(u′)) ≤ δP ′(C∗, C(u′)).

Since C(P ) = C(P ′) it also follows that P has this property. 2

Lemma 2.6 If H is the subgraph purchased by the path buying algorithm then |H | < 6 · n4/3.

Proof: One can easily see that |H | = |H0|+
∑

i cost(Pi). By construction we have |H0| ≤ n4/3. It follows
from Lemma 2.3 that

∑

i cost(Pi) ≤ 2 ·∑i value(Pi) < 5 · n4/3. 2

Theorem 2.7 There exists an additive 6-spanner of any graph with size O(n4/3).

Proof: Follows from Lemmas 2.2, 2.5, and 2.6. 2

2.1 Parameterizing the Path Buying Algorithm

Our 6-spanner construction can be generalized to larger additive distortion. However, we can only guarantee
that a β-spanner (β > 6) has o(n4/3) edges if the graph satisfies additional requirements. Let Γk(G) be the
number of edges in G that lie on some cycle with length at most 2k. Theorem 2.8 generalizes Theorem 2.7
and provides an efficient construction algorithm.

Theorem 2.8 For any graph G and integer parameters k ≥ 1 and ` ∈ [0, k], there exists an additive

(2k + 4`)-spanner with size O(Γk(G) + n1+ 1
k+`+1 ). Furthermore, the spanner can be constructed in time

O(mn1− `
k+`+1 ).

Theorem 2.8 says that if the graph is not too far from having girth greater than 2k then we can construct a
number of additive spanners with different size-distortion tradeoffs. Notice that when k = 1, Γ1(G) = 0 since
all graphs have girth at least 3. As special cases, Theorem 2.8 gives 2- and 6-spanners with size O(n3/2) and
O(n4/3). (This 2-spanner construction is slower and more complicated than earlier ones but it does illustrate
the applicability of the path buying algorithm.) Figure 4 lists some of the corollaries of Theorem 2.8 for
graphs with girth greater than 4 and greater than 6.

The spanners provided by Theorem 2.8 are constructed with a path buying algorithm, with the following
differences. First, it uses a generalized clustering scheme that produces clusters of two radii: k and `. Second,
it uses a value function that measures how well the spanner under construction approximates the distance
between cluster pairs C, C ′, where C has radius ` and C ′ radius k.

Before running the path buying algorithm we compute an appropriate clustering and initial set of edges
Hk,`, which plays the same role as H0 in our 6-spanner. This clustering procedure that produces Hk,` is very
similar to the randomized clustering procedure presented later in Section 3, though the analysis of these two
schemes is sufficiently different to justify two expositions. We begin by selecting vertex sets V` and Vk where
V` is a random sample of V of size n1−`ε and Vk is a random sample of V` of size n1−kε, where ε will be
chosen later. We find two clusterings C`, Ck, where Ci consists of a set of disjoint subsets of V . Each C ∈ Ci

is centered at some vertex in Vi and a vertex v is contained in some C ∈ Ci if and only if δ(v, Vi) ≤ i; in
particular, the distance from v to the center of its cluster is at most i. Hk,` consists of a radius-i spanning
tree of each C ∈ Ci and i ∈ {k, `}, as well as every edge incident to a vertex that does not appear in both
clusterings C` and Ck. The number of edges contributed by the spanning trees is only 2n so we are mainly
concerned with the expected number of the remaining edges.

Lemma 2.9 Given a graph G with m edges, the subgraph Hk,` can be constructed in O(m) time and
E[|Hk,`|] = O(Γk(G) + n1+ε).
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Add. Dist. Spanner Size Construction Time Notes

2 O(n3/2) O(mn) k = 1, ` = 0, cf. [6, 25, 30, 55]

6 O(n4/3) O(mn2/3) k = ` = 1

GRAPHS WITH GIRTH > 4

0 O(n3/2) — [56, 54]
4 O(n4/3) O(mn) k = 2, ` = 0

8 O(n5/4) O(mn3/4) k = 2, ` = 1
12 O(n6/5) O(mn3/5) k = ` = 2

GRAPHS WITH GIRTH > 6

0 O(n4/3) — [56, 54]

6 O(n5/4) O(mn) k = 3, ` = 0
10 O(n6/5) O(mn4/5) k = 3, ` = 1

14 O(n7/6) O(mn2/3) k = 3, ` = 2

18 O(n8/7) O(mn4/7) k = ` = 3

Figure 4: Additive spanners derived from Theorem 2.8. See [56] for constructions of graphs with girth > 4
and > 6, and [54] for references to earlier constructions of high-girth graphs.

Proof: To simplify the analysis we imagine constructing Hk,` by selecting vertex sets V = V0 ⊇ V1 ⊇ · · · ⊇
Vk, where Vi is a random sample of Vi−1 of size n1−iε. We construct the clusterings C0, . . . , Ck iteratively.
Let c ∈ C ∈ Ci−1, where c ∈ Vi−1 is the center of a cluster C. If c also appears in Vi then every vertex
incident to C appears in some cluster in Ci. In particular, c’s cluster in Ci consists of C and some subset of
the vertices incident to C that join C. (A vertex may be eligible to join multiple clusters and can choose
any one.) Suppose that we decide to include all edges in Hk,` that have at least one endpoint unclustered in
any of C0, . . . , Ck. Let v be some vertex that has appeared in all the clusterings C0, . . . , Ci−1 and consider the
effect on v of randomly choosing the subset Vi. Suppose v is incident to s clusters in Ci−1, say C1, . . . , Cs.
The probability that v is included in Ci is at least7 1− (1− n−ε)s. The effect of v not appearing in Ci is to
include in Hk,` all edges incident to v, which could be significantly larger than s and nε. Let {C1, . . . , Cs′}
be those clusters connected to v by at most one edge (this would be exactly one edge, except for the one
cluster that actually contains v.) Every edge (v, w) connecting v to a cluster C appearing in {Cs′+1, . . . , Cs}
lies on a cycle of length at most 2i ≤ 2k: the one consisting of (v, w), a path from w to w′ ∈ C passing
through the center of C, and the edge (w′, v). Such a w′ exists because v is connected to C by at least
two edges. If v is unclustered in Ci then the contribution of the edges from v to Cs′+1, . . . , Cs is counted
in the Γk(G) term. Excluding these edges, the expected number of edges contributed by v is at most
(s′ − 1) · Pr[v does not appear in Ci] ≤ (s′ − 1)(1− n−ε)s < nε.8 2

We now turn to the proof of Theorem 2.8.

Proof: (of Theorem 2.8) First notice that the only edges missing from Hk,` are those with both endpoints
present in both clusterings C`, Ck, so we can restrict our attention to shortest paths between clustered vertices.
Let Ci(v) be the Ci cluster containing v and Ci(Z) be the set of clusters in Ci intersecting the subgraph Z.
After running the path buying algorithm with appropriate cost and value functions we end up with a spanner
H that is happy under a new definition of happiness.

Property 2.10 A subgraph H of G that contains Hk,` is happy if for any u, u′ ∈ V`, there is a shortest
path P (w.r.t. G) from u to u′ and a cluster C∗ ∈ Ck(P ) such that: δH(u, C∗) ≤ δP (u, C∗) and δH(u′, C∗) ≤
δP (u′, C∗).

7This would be the exact probability if Vi were selected from Vi−1 by sampling each element with probability n−ε. Selecting
Vi as a random subset of Vi−1 with size n1−iε only improves v’s chance of being clustered in Ci.

8For the last inequality, observe that s′(1 − 1/x)s′ ≤ x(s′/x)e−s′/x ≤ x, for any positive x.
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It follows that any happy subgraph H is also an additive (2k + 4`)-spanner. To see this, consider a
shortest path between any two vertices v, v′ and let u and u′ be the center of the C` clusters containing v
and v′, respectively. Let P be the shortest path between u and u′. By the happiness of H there exists a
cluster C∗ ∈ Ck(P ) such that

δH(u, u′) ≤ δH(u, C∗) + diam(C∗) + δH(C∗, u′) ≤ δ(u, u′) + 2k.

PSfrag replacements

kk

` `

u u′

v v′

C∗

C`(u) C`(u′)

Figure 5: The clusters C`(u), C`(u′), and C∗ ∈ Ck, are indicated by ovals. Dashed curves represent paths in
the spanner H . The shortest paths in G connecting v to v′ and u to u′ are indicated.

Using this bound on the distance from u to u′ in H , we can bound δH(v, v′) as:

δH(v, v′) ≤ δH(v, u) + δH(v′, u′) + δH(u, u′) ≤ 2` + δ(u, u′) + 2k ≤ δ(v, v′) + 2k + 4`.

Let P be a set of shortest paths between all pairs of vertices. We only consider shortest paths in
P and insist that it satisfy two properties. First, any subpath of a path in P is also in P . Second, if
〈u0, u1, . . . , u2k〉 ∈ P and Ck(u0) = Ck(u2k), then uk is the center of Ck(u0) and 〈u0, . . . , u2k〉 is contained in
the spanning tree of Ck(u0) included in Hk,`. Let P (u, u′) ∈ P be the shortest path between u and u′.

We use the same cost function as before: cost(P ) = |P\H |, where H now represents the spanner under
construction. However, the value function is only defined on paths connecting vertices in V`. Letting
P = P (u, u′), where u, u′ ∈ V`, we define value(P ) as:

value(P ) = |{(v, C) : v ∈ {u, u′}, C ∈ Ck(P ), and δP (v, C) < δH(v, C)}| .

The path buying algorithm below has a few differences from the 6-spanner algorithm. We only consider
shortest paths between vertices in V` and the criterion for purchasing a path P is slightly stronger: 2k ·
value(P ) (rather than 2 · value(P )) must be at least cost(P ).

H ← Hk,` {edges chosen in clustering}
For each {u, u′} ⊆ V` let P = P (u, u′)

If 2k · value(P ) ≥ cost(P ) {if the path is a bargain}
then H ← H ∪ P {then buy it!}

Return H

Figure 6: Constructing an additive (2k + 4`)-spanner.

Let P1, . . . , Pp be the paths purchased. It follows that the size of H is exactly |Hk,`| plus
∑

1≤i≤p cost(Pi) ≤
2k

∑

1≤i≤p value(Pi) ≤ 2µk |V` × Vk| = 2µkn2−(k+`)ε, where µ is the maximum number of times that any
pair (v, C), where v ∈ V`, C ∈ Ck could be counted in

∑

i value(Pi). One can see that µ = 2k + 1. When
(v, C) is first counted, say when Pi is purchased, we have δPi(v, C) ≤ δ(v, C)+diam(C) = δ(v, C)+2k. After
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Pi is purchased the distance between v and C in H can only be improved 2k more times. Thus, the size of
H is O(Γk(G) + n1+ε + k2n2−(k+`)ε). Setting nε = (k2n)1/(k+`+1), the total size is O(Γk(G) + n1+1/(k+`+1)).

It only remains to show that H is happy and in particular, that if a path P = P (u, u′) is not purchased
then δH(u, u′) ≤ δ(u, u′) + 2k. We first bound cost(P ) then show that if P is not purchased, there must be
some C∗ ∈ Ck(P ) satisfying Property 2.10

Consider any cluster C ∈ Ck(P ) and let z, z′ be the first and last vertices in P that belong to C. An
edge is internal to C if it lies on the subpath 〈z, . . . , z′〉. (Note that not all vertices between z and z′

are necessarily in C.) It follows from our choice of shortest paths P that either |〈z, . . . , z ′〉| ≤ 2k − 1 or
〈z, . . . , z′〉 ⊆ Hk,` ⊆ H . Thus, the total number of internal edges in P\H is at most (2k− 1) |Ck(P )| and the
number of remaining edges in P\H is at most |Ck(P )| − 1. In total we have cost(P ) ≤ 2k |Ck(P )| − 1. If we
fail to purchase P then 2k · value(P ) ≤ cost(P )− 1 ≤ 2k |Ck(P )| − 2, implying that value(P ) ≤ |Ck(P )| − 1.
Since there are 2 |Ck(P )| cluster pairs of the form (v, C) where v ∈ {u, u′} and C ∈ Ck(P ), our bound on
value(P ) implies that for at least one C∗ ∈ Ck(P ), δH(u, C∗) ≤ δP (u, C∗) and δH(u′, C∗) ≤ δP (u′, C∗).
Therefore H is an additive (2k + 4`)-spanner.

We now turn to an efficient construction algorithm. Recall from Lemma 2.9 that Hk,` can be found in lin-
ear time. In the path buying phase it is rather time consuming to maintain the actual distance in H between
pairs (v, C) ∈ V` × Ck, which would be required to compute the value function exactly. Instead, we keep an

upper bound δ̂H(v, C), which is the minimum distance between v and C in a path already purchased. We also
ignore the cost function and consider the valid upper bound cost(P ) ≤ 2k |Ck(P )|−1. (Clearly these changes
do not affect the correctness of the algorithm.) At the beginning of the path buying phase we construct, in
O(m |C`|) time, a shortest path tree originating at each vertex in V`. In such a tree a relevant vertex is one in
V` or one that has at least two V` vertices in different subtrees, that is, a branching vertex in the subtree con-
necting V` nodes. For u ∈ V` let Ru be the set of relevant vertices in u’s shortest path tree. We consider, in
non-decreasing order by length, the shortest paths between pairs (u, u′) where u ∈ V` and u′ ∈ Ru. For a path

P = 〈u0, u1, . . . , uq〉, where u0 ∈ V`, let ν(u0, uq) =
∣

∣

∣

{

(u0, C) : C ∈ Ck(P ) and δP (u0, C) < δ̂H(u0, C)
}∣

∣

∣
.

We assume that after P is considered we have computed ν(u0, ui) and |Ck(〈u0, . . . , ui〉)|, for all relevant
vertices ui ∈ Ru0 . When we consider an extension of P , say P ′ = 〈u0, . . . , uq, . . . , uq+r〉, where uq+r is the
first relevant vertex on the extension, we can easily update |Ck(P ′)| and ν(u0, uq+r) in just O(k + r) time. If
uq+r ∈ V` then we need to decide whether to purchase P ′. We check if ν(u0, uq+r) + ν(uq+r, u0) ≥ |Ck(P ′)|,
which serves the same purpose as checking the inequality 2k · value(P ′) ≥ cost(P ′). If the inequality holds
we buy P ′ and update ν(u, u′) where u ∈ {u0, uq+r} and u′ ∈ Ru. This amounts to checking, for each pair
(u0, C) counted in ν(u0, uq+r) and each path P ′′ = 〈u0, . . . , u

′〉, whether δP ′(u0, C) ≤ δP ′′(u0, C). If so,
the pair (u0, C) should no longer be counted in ν(u0, u

′), if it was counted there at all. The total time for

these updates is O(k · |C`|2 · |Ck|) = O(n3− 2`+k
k+`+1 ) and the total time for performing breadth first searches

is O(m · |C`|) = O(mn1− `
k+`+1 ). We can safely assume that m ≥ n1+ 1

k+`+1 ; if not we could simply return
the original graph as a trivial additive 0-spanner. For m above this threshold the two time bounds are both

O(mn1− `
k+`+1 ). 2

The first obstacle to improving Theorem 2.8 is dealing with graphs with lots of 3- and 4-cycles. It is
strange that short cycles should impede the discovery of more additive spanners since high-girth graphs
are the most difficult instances when optimizing for multiplicative distortion. The recent lower bounds of
Woodruff [57] provide some circumstantial evidence that short cycles really do complicate the problem. His
hard instances are actually composed entirely of complete bipartite graphs, where each edge appears on a
huge number of 4-cycles.

Theorem 2.8 generalizes the 6-spanner construction by considering clusterings with wider radii. Another
direction for generalization is to consider more hops between clusters. Theorem 2.11 follows from a small
adjustment to the 6-spanner algorithm.

Theorem 2.11 Every graph on n vertices contains an additive O(n1−3ε)-spanner with size O(n1+ε), for any
constant ε ∈ (0, 1

3 ).

Proof: The algorithm is nearly identical to the 6-spanner construction. We find a radius-1 clustering C
containing n1−ε clusters, and let H0 contain all edges incident to at least one unclustered vertex and a
spanning tree of each cluster. We run the path buying algorithm from Figure 3 using the same cost function
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but a different value function:

value(P ) = n−1+3ε · |{{C, C ′} ⊆ C(P ) : δP (C, C ′) < δH(C, C ′)}| .

The rationale for this value function is simple. If there are n1−ε clusters and our desired spanner size is
O(n1+ε), each cluster pair can only afford to be charged the cost of buying O(n−1+3ε) edges, that is, a
small fraction of a single edge. Let P be some shortest path and P ′ and P ′′ be the prefix and suffix of
P containing n1−3ε distinct clusters. If P is not purchased then, by the same reasoning used before, there
must be three not necessarily distinct clusters C ′, C∗, C ′′ where C ′ ∈ C(P ′), C ′′ ∈ C(P ′′), and C∗ ∈ C(P )
such that δH(C ′, C∗) ≤ δP (C ′, C∗) and δH(C ′′, C∗) ≤ δP (C ′′, C∗). That is, the subpath of P connecting C ′

to C ′′ is approximated by H to within an additive distortion of 6. To get from the first vertex of P to C ′

and from C ′′ to the last vertex of P we use any standard multiplicative O(ε−1)-spanner with size O(n1+ε).
The total additive distortion is therefore 6 + O(ε−1(cost(P ′) + cost(P ′′))) = O(n1−3ε). The size of H0 and
the multiplicative spanner is O(n1+ε) and the number of edges included by the path buying algorithm is
∑

i cost(Pi) ≤ 2
∑

i value(Pi) = O(n−1+3ε ·
(

|C|
2

)

) = O(n1+ε). 2

Theorem 2.11 is not particularly impressive, but, again, it illustrates the flexible nature of the path buying
technique. The previous best additive spanner with size O(n1+ε) had distortion roughly O(n1−2ε) [15] and
was substantially more complicated to construct.

3 A Simple (k, k − 1)-Spanner in Linear Time

In this section we will first show how to construct a (2k − 1, 0)-spanner of size O(kn1+1/k) in O(km)
deterministic time. Then we will extend this method to construct a (k, k− 1) spanner of size O(kn1+1/k) in
O(km) deterministic time.

The input graph is G = (V, E). A cluster is simply a set of vertices and a clustering is a set of disjoint
clusters. A vertex is (un)clustered in a clustering C if it appears (does not appear) in some cluster of C. In a
clustering C, for any clustered vertex u, denote by C(u) the cluster of C that contains u. For clusters C and
C ′, let E(C, C ′) = (C × C ′) ∩ E(G) be the set of edges between C and C ′. Let E(v, C) be the set of edges
between the vertex v and vertices in C. A vertex v is adjacent to a cluster C if E(v, C) 6= ∅. In a similar
manner, two clusters C and C ′ are adjacent to each other if E(C, C ′) 6= ∅.

Our constructions in this section are based on a set of k +1 clusterings, C0, C1, . . . , Ck, where C0 = {{v} :
v ∈ V (G)}, Ck = ∅, and |Ci| ≤ n1−i/k. Below, we give two methods for constructing appropriate sequences
of clusterings. The edge set of our (2k − 1)-spanner S is defined by the following two rules:

Rule R1. For each cluster C ∈ Ci, there exists a tree in S that spans C and has radius9 at most i.

Rule R2. For each vertex v that is unclustered in Ci and each cluster C ∈ Ci−1 adjacent to v, some edge
from E(v, C) appears in S.

The construction of Theorem 3.1 is slightly weaker than that of [38]; however it is the starting point for
our (k, k − 1)-spanner.

Theorem 3.1 A (2k − 1)-spanner of size O(kn1+1/k) can be constructed in O(km) deterministic time.

Proof: We first prove that Rules R1 and R2 give a (2k − 1)-spanner; we then prove the size and time
bounds. Let (u, v) be an arbitrary edge in the original graph. If δS(u, v) ≤ (2k− 1)δG(u, v) then S is clearly
a (2k − 1)-spanner. Let ` be minimum such that either u or v was unclustered in C` and without loss of
generality let the unclustered vertex be u. By Rule R2 there must be an edge in S from u to C`−1(v); call
this edge (u, w). By Rule R1 there must be a path in S from w to v of length at most 2(` − 1), twice the
radius of C`−1(v). Since ` ≤ k it follows immediately that δS(u, v) ≤ 2k − 1.

Given the clustering Ci we show how to compute Ci+1 such that the number of edges added to the spanner
due to Rules R1 and R2 are at most n and n1+1/k, respectively (This construction is a simplified version
of one described by Elkin [26].) Initially Ci+1 = ∅. We define the priority of a cluster C ∈ Ci to be the

9Recall that maximum distance between any two vertices in a subgraph is at most twice the radius of that subgraph.
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number of adjacent vertices that are unclustered with respect to Ci+1. We repeatedly choose a cluster C ∈ Ci

with maximum priority. If priority(C) ≥ n(i+1)/k we add a new cluster to Ci+1 consisting of C and all
unclustered vertices adjacent to C. (If C has radius i then the cluster added to Ci+1 clearly has radius i+1.)
It follows that |Ci+1| ≤ n1−(i+1)/k and that the number of edges included in the spanner due to Rule R2 is
∑

C∈Ci
priority(C), which is at most |Ci| (n(i+1)/k − 1) < n1+1/k. The number of edges added due to Rule

R1 is at most the number of clustered vertices in Ci+1, i.e. at most n. The clustering Ci+1 can easily be
generated in linear time using a priority queue consisting of n buckets. 2

The randomized construction of [13] constructs the clusterings in an even simpler manner. Rather than
carefully selecting clusters from Ci for inclusion in Ci+1, they randomly sample all clusters from Ci with
probability n−1/k. The alternative (2k− 1)-spanner construction based on this method is given in Figure 7.
With this algorithm the expected size of the spanner is O(kn1+1/k).

Initially S = ∅ and C0 = {{v} : v ∈ V (G)}

For i from 1 to k

– Let Ci be sampled from Ci−1 with prob. n−1/k (If i = k let Ck = ∅)
– For each vertex v which does not belong to any cluster in Ci do (concurrently):

(R1) If v is adjacent to some C ∈ Ci, add v to C and add some edge of E(v, C) to S.

(R2) Otherwise, add to S some edge from E(v, C), for each C ∈ Ci−1 adjacent to v.

Return the (2k − 1)-spanner S

Figure 7: A randomized (2k − 1)-spanner construction.

We next improve our (2k − 1)-spanner construction to obtain a (k, k − 1)-spanner. All the edges that
we put in the (2k − 1)-spanner S are of the form E(v, C). Now let us also add edges of the form E(C, C ′),
which will consist of edges from clusters of one clustering to clusters of another clustering.

Rule R3. For each i with 0 ≤ i ≤ k − 1 and for each pair of adjacent clusters C, C ′ with C ∈ Ci and
C ′ ∈ Ck−1−i, some edge from E(C, C ′) appears in S.

Rule R4. For each i ≥ k/2 and each pair of adjacent clusters C, C ′ with C ∈ Ci and C ′ ∈ Ci−1, some edge
from E(C, C ′) appears in S.

The number of edges included due to Rule R3 is bounded by n1−i/kn1−(k−1−i)/k = n1+1/k, for each i.
Similarly, at most n1−i/kn1−(i−1)/k = n2−2i/k+1/k edges are included due to R4, which is at most n1+1/k

since i ≥ k/2. Our entire (k, k − 1)-spanner construction is given in Figure 8. It consists of just those edges
included by Rules R1–R4.

(R1–2) Compute a (2k − 1)-spanner S with our construction.

(R3) Add to S one edge from E(C, C ′) for each adjacent pair
C ∈ Ci and C ′ ∈ Ck−1−i, for i from 0 to k − 1.

(R4) Add to S one edge from E(C, C ′) for each adjacent pair
C ∈ Ci, and C ′ ∈ Ci−1, for i from dk/2e to k − 1.

Figure 8: A simple linear time algorithm for constructing a (k, k − 1)-spanner.

Implementing Rules R3 and R4 takes linear time for any fixed i. Once it is proved that Rules R1–R4
yield a (k, k − 1)-spanner we can conclude with the following theorem.
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Theorem 3.2 A (k, k − 1)-spanner of size O(kn1+1/k) can be computed in O(km) deterministic time.

We now show that S is a (k, k−1)-spanner. Let t = bk/2c. To simplify the exposition we first analyze the
case of odd k. The case of even k is slightly different and is analyzed later. We need some more definitions.
Call a vertex i-(un)clustered if it appears (does not appear) in clustering Ci. The center of a cluster C ∈ Ci
is a vertex c ∈ C such that the distance from c to any other vertex in C is at most i, the radius of C. If v is
i-clustered let ci(v) be the center of Ci(v).

Let us first indicate our overall proof strategy. In analyzing the stretch of a shortest path 〈u0, u1, . . . , uq〉
we imagine a (k + 1)× (q + 1) matrix where the columns correspond to vertices and the rows to clusterings.
The (i, j)th matrix entry is marked if uj is i-clustered. Clearly Ck’s row is totally unmarked and C0’s row
is totally marked. However the rest of the array can be arbitrary. A particularly easy case is when all of
the ui’s are t-clustered. We obtain a path from u0 to uq via ct(u0), ct(u1), . . . , ct(uq), which, in the array
representation, is represented as a straight line through Ct’s row. In general we have to use clusters with
radius larger than t, though to establish a multiplicative stretch of k we cannot do this too often. We show,
using an inductive argument, that there always exists a spanner path of the proper length that, in the array
representation, is composed of a sequence of zig-zags like the one depicted in Figure 10. We achieve an overall
multiplicative stretch of k by perfectly balancing detours and shortcuts corresponding to the diagonals above
and below Ct’s row.

The proof makes extensive use of the following notations.

fi(v) =

{

v if v is i-unclustered

ci(v) if v is i-clustered
ri(v) =

{

0 if v is i-unclustered

i if v is i-clustered

It follows from the definitions that δS(v, fi(v)) ≤ ri(v). We will prove the following theorem by induction
for any path 〈u0, ..., uq〉 in G.

Theorem 3.3 δS(u0, ft(ui)) ≤ ki + rt(ui).

Observe that Theorem 3.3 immediately implies that S is a (k, k − 1)-spanner. If uq is t-clustered then
there is a path of length kq + t from u0 to ct(uq). Together with the path from ct(uq) to uq of length at most
t, we have a path of length kq + 2t = kq + k − 1 from u0 to uq in S. If uq is t-unclustered then ft(uq) = uq

and rt(uq) = 0, implying a path of length kq from u0 to uq.
We now prove Theorem 3.3. The statement is true for i = 0 since δS(u0, ft(u0)) ≤ rt(u0). For the

induction step, assume i > 0 and δS(u0, ft(us)) ≤ ks+ rt(us) for all s < i. We distinguish cases according to
which of ui−1 and ui are t-clustered. If ui−1 is t-unclustered then we have ft(ui−1) = ui−1 and rt(ui−1) = 0,
which means that δS(u0, ui−1) ≤ k(i−1). Since ui−1 is t-unclustered it also follows that δS(ui−1, ui) ≤ 2t−1
(see the proof of Theorem 3.1). Hence,

δS(u0, ft(ui)) ≤ δS(u0, ui−1) + δS(ui−1, ui) + δS(ui, ft(ui))

≤ k(i− 1) + (2t− 1) + rt(ui)

≤ ki + rt(ui)

Similarly, if both ui−1 and ui are t-clustered, then by Rule R3, S contains an edge between Ct(ui−1) and
Ct(ui) since t = k − 1− t. So there is a path of length 2t + 1 = k between ct(ui−1) and ct(ui) in S. Again
we have δS(u0, ct(ui)) ≤ ki + t using the induction hypothesis that δS(u0, ct(ui−1)) ≤ k(i− 1) + t.

We now come to the final and most interesting case: ui−1 is t-clustered and ui is t-unclustered. Consider
the k× (q + 1) table M where rows represent clusterings and columns represent the vertices u0, . . . , uq. The
entries of M are 0 or 1 where M [`, j] = 0 means that vertex uj is `-unclustered and M [`, j] = 1 means that
vertex uj is `-clustered, where 0 ≤ ` ≤ k − 1 and 0 ≤ j ≤ q. Note that row 0 of M consists of only 1’s since
each vertex is a singleton cluster in C0. We are considering the case that M [t, i− 1] = 1 and M [t, i] = 0.

We want to claim the existence of a vertex ui−j such that M [t− j, i− j] = 1 while M [t, i], M [t− 1, i−
1], ..., M [t−j +1, i−j +1] are all 0 (as in Figure 9). While following the diagonal sequence of 0’s in the table
M starting from the location M [i, j], if we do not reach the starting vertex u0, then we have to meet such a
ui−j since the bottom row of the table M consists of all 1’s. If we reach the zeroth column before finding a 1,
then we have proved our induction step for i because every vertex between u0 and ui was `-unclustered for
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some ` ≤ t. So without loss of generality, let us assume that such a ui−j exists. Then the following lemma
holds.

Lemma 3.4 δS(ct−j(ui−j), ui) ≤ kj − (t− j)− σ(j), where σ(j) =
∑j

l=1 2l.

Proof: We have a path 〈ui, ..., ui−j+1, ui−j〉 in G, where each ui−` is (t − `)-unclustered, for 0 ≤ ` < j.
Suppose (u, v) ∈ E and v is (t− `)-unclustered. Then there is a path of length at most 2(t− `)− 1 < k− 2`
between u and v in S (from the proof of Theorem 3.1.) We apply this observation for each consecutive
pair of vertices in the path 〈ui, ..., ui−j+1, ui−j〉. This implies the existence of a path of length at most
∑j−1

`=1(k − 2`− 1) = k(j − 1)−∑j−1
`=1 2`− (j − 1) between ui and ui−j+1 in S. In addition, since ui−j+1 is

(t− j)-unclustered and because it is adjacent to Ct−1−j(uj), there is an edge from ui−j+1 to Ct−1−j(uj) (by
Rule R2). So, there is a path of length at most 1+ (t− 1− j) = k− 2j− (t− j) from ui−j+1 to ct−1−j(ui−j).

Hence, there is a path of length at most kj − (t− j)− (j − 1)−∑j
`=1 2` between ui and ct−1−j(ui−j) in S.

2

Note that the above lemma says that we have a path from ui to ct−j(ui−j) that is shorter, by t−j +σ(j),
than we were already prepared to pay for. We will use these savings to pay for a path from u0 to ct−j(ui−j)
that is longer than we could ordinarily afford. A remarkable feature of our analysis is that we amortize over
paths of length Ω(k2) yet the spanner construction itself never makes decisions within this wide a horizon.

We now need to exhibit a path in S from ct−j(ui−j) to u0 whose length is no more than k(i− j) + (t−
j) + σ(j). We will first show a path in S from ct−j(ui−j) to ft+j(ui−j−1), using Rules R1–3, then show
another path from ft+j(ui−j−1) to ft(ui−2j−1), which uses Rules R1–2 and R4 (see Figure 10). Finally, we
invoke the induction hypothesis for i− 2j − 1.

Lemma 3.5 Let (u, v) ∈ E be an edge and suppose that v is (t− j)-clustered. Then

δS(ft+j(u), ct−j(v)) ≤ k + 2j + (t− j)− rt+j(u).

Proof: If u is (t + j)-unclustered then there is a path of length at most 2(t + j) − 1 < k + 2j in S from
u to v. Since there is a path of length ≤ t − j from v to ct−j(v) in S, there is a path of length at most
k + 2j + (t− j) from u to ct−j(v) in S, which is exactly what we want since ft+j(u) = u and rt+j(u) = 0.

The other case is when u is (t + j)-clustered. By Rule R3 there is an edge in S between Ct+j(u) and
Ct−j(v). This gives us a path of length 1 + (t + j) + (t− j) = k between ct+j(u) and ct−j(v). This is again
exactly what we want since 2j + (t− j)− rt+j(u) = 0. 2

Lemma 3.6 Let 〈us, ..., us+j〉 be a path in the graph G. Then

δS(ft(us), ft+j(us+j)) ≤ kj + rt+j(us+j)− rt(us) + σ(j − 1),

where as defined earlier, σ(j − 1) =
∑j−1

l=1 2l.
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Proof: Consider two successive vertices us+`−1 and us+` in the above path. Depending upon whether us+`−1

and us+` appear in clusterings Ct+`−1 and Ct+`, respectively, we have four cases: both are unclustered, both
are clustered, us+`−1 is clustered but us+` is not and vice-versa. It is simple to check that in all the four
cases δS(ft+`−1(us+`−1), ft+`(us+`)) ≤ k + rt+`(us+`)− rt+`−1(us+`−1)+2(`− 1). So, summing this over all
pairs (us+`−1, us+`), as ` ranges from 1 to j, we get that δS(ft(us), ft+j(us+j)) ≤ kj + rt+j(us+j)− rt(us) +
∑j

`=1 2(`− 1). 2

Using Lemmas 3.5 and 3.6, it is now easy to complete our proof. We have the desired vertex ui−j .
Lemma 3.4 provides us with a path of length at most kj − (t − j) − σ(j) between ui and ct−j(ui−j) in
S, Lemma 3.5 provides us with a path of length at most k + 2j + (t − j) − rt+j(u) between ct−j(ui−j)
and ft+j(ui−j−1) in S, and Lemma 3.6 with s = i − 2j − 1 provides us with a path of length at most
kj + rt+j(ui−j−1)− rt(us) + σ(j − 1) from ft(us) to ft+j(ui−j−1). In summary:

δS(ct−j(ui−j), ui) ≤ kj − (t− j)− σ(j)

δS(ft+j(ui−j−1), ct−j(ui−j)) ≤ k + 2j + (t− j)− rt+j(ui−j−1)

δS(ft(ui−2j−1), ft+j(ui−j−1)) ≤ kj + rt+j(ui−j−1)− rt(ui−2j−1) + σ(j − 1).

So, adding the above 3 inequalities and using σ(j − 1) + 2j = σ(j), we get that there is a path of length at
most k(2j + 1)− rt(us) from ft(us) to ui where s = i− 2j− 1. We know from the induction hypothesis that
there is a path of length at most ks+ rt(us) from u0 to ft(us). So, we have a path of length at most ki from
u0 to ui, which proves our induction step because we are in the case where ft(ui) = ui and rt(ui) = 0.

Note that we have made the assumption that i− 2j − 1 ≥ 0, which is always true when i ≥ k. However,
we did not explicitly consider the possibility that ui−j = u0, or that ui−j−1 = u0, or that before we came to
ui−2j−1 we met the starting vertex. It is easy to check that these three cases can be handled as corollaries
to Lemmas 3.4, 3.5, and 3.6, respectively. This finishes the proof of Theorem 3.3 for the case when k is odd.

The case when k is even. Let us now consider the case of even k. In this case, t = bk/2c implies k = 2t.
Rule R3 now connects clusters of Ct with adjacent clusters of Ck−1−t, which is Ct−1. So, if we consider a path
〈u0, ..., uq〉 in G and each ui is t-clustered, then this does not translate to a path of length at most kq +k−1
between u0 and uq in S, when k is even. If every u2i is (t − 1)-clustered and every u2i−1 is t-clustered,
then δS(ft−1(u2i), ft(u2i−1)) ≤ k and δS(ft−1(u2i), ft(u2i+1)) ≤ k. Combining these paths, we get a path of
length at most kq + k − 1 from u0 to uq.

Coming back to the general case, our approach is the same as when k is odd. But there we had used
level t as a reference and proved that δS(u0, ft(ui)) ≤ ki + rt(uq). Now we need to alternate between t and
t−1 as our reference for odd and even indexed vertices, respectively, in the path 〈u0, ..., uq〉. So we introduce
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some more notations:

h(i) =

{

t− 1 if i is even

t if i is odd
r′(i) =

{

t− 1 if ui is h(i)-clustered

0 if ui is h(i)-unclustered

We will show the following theorem here.

Theorem 3.7 δS(u0, fh(i)(ui)) ≤ ki + r′(i).

This theorem immediately implies that S is a (k, k − 1)-spanner because if uq is h(q)-unclustered, then
there is a path of length at most kq from u0 to uq. If uq is h(q)-clustered, there is a path of length kq + t− 1
from u0 to ch(q)(uq) and there is a path of length at most t from ch(q)(uq) to uq. So, we have a path of
length at most kq + t− 1 + t = kq + k − 1 from u0 to uq.

Our proof will follow the same strategy as the proof of Theorem 3.3. We will prove the above theorem
by induction. Since h(0) = t − 1, the base case holds. We assume that δS(u0, fh(s)(us)) ≤ ks + r′(s) for
all s < i and we will prove the induction step for i. If ui−1 is h(i − 1)-unclustered, then we have a path of
length at most 2h(i− 1) − 1 ≤ 2t− 1 from ui−1 to ui and there is a path of length at most r′(i) + 1 from
ui to fh(i)(ui). Hence, using the induction hypothesis for ui−1 and combining it with the above paths to ui

and fh(i)(ui), we get that there is a path of length at most k(i− 1) + 2t− 1 + r′(i) + 1 = ki + r′(i) from u0

to ui.
Similarly, if ui−1 is h(i − 1)-clustered and ui is h(i)-clustered, since h(i − 1) + h(i) = k − 1, we would

have put an edge between Ch(i−1)(ui−1) and Ch(i)(ui) (by Rule R3). This gives us a path of length at most
h(i−1)+1+h(i) = 2t = k between ch(i−1)(ui−1) and ch(i)(ui). So, using this path along with the induction
hypothesis, we get a path of length at most ki + t− 1 from u0 to ch(i)(ui).

The non-trivial case is again when ui−1 is h(i − 1)-clustered and ui is h(i)-unclustered. Here, there is
one easy sub-case. If h(i) = t, then in the table M (refer Figure 9), we have the desired 1− 0 pattern right
at our doorstep. We have M [t − 1, i − 1] = 1 and M [t, i] = 0. So, this gives us a path of length at most
1 + t− 1 from ui to ct−1(ui−1). And the induction hypothesis tells us that there is a path of length at most
k(i − 1) + t − 1 from u0 to ct−1(ui−1). Hence there is a path of length at most ki from u0 to ui, which is
what we want to show.

So, the only case left is when ui−1 is h(i− 1)-clustered and ui is h(i)-unclustered and h(i) = t− 1. Then
as in the proof of Theorem 3.3, we want to claim that there exists a vertex ui−j such that, in the table M ,
M [t−1− j, i− j] = 1 while M [t−1, i], M [t−2, i−1], ..., M [t− j, i− j+1] are all 0. Either such a ui−j exists
(since the bottom row of the table M consists of all 1’s) or while following the diagonal path of 0’s in the
table M , we reach the starting vertex u0. In the latter case, we have proved our induction step for i, because
every vertex ui−` in 〈u0, ..., ui〉 is (t− 1− `)-unclustered. Then, there is a path of length ≤ 2t− 1 < k in S
between every consecutive pair of vertices in 〈u0, ..., ui〉. So, without loss of generality, let us assume that
such a ui−j exists.

We need lemmas which are analogous to Lemma 3.4, Lemma 3.5, and Lemma 3.6. The proofs of Lemma
3.8 and Lemma 3.9 are identical to those of Lemma 3.4 and Lemma 3.5 respectively.

Lemma 3.8 δS(ct−1−j(ui−j), ui) ≤ kj − (t− j)− σ(j) − (j − 1), where σ(j) =
∑j

l=1 2l.

Lemma 3.9 Suppose (u, v) ∈ E. Suppose v is (t− 1− j)-clustered. Then

δS(ft+j(u), ct−1−j(v)) ≤ k + 2j + (t− j)− rt+j(u).

Lemma 3.10 Let 〈us, ..., us+j〉 be a path in the graph G. Then

δS(ft(us), ft+j(us+j)) ≤ kj + j + rt+j(us+j)− rt(us) + σ(j − 1),

If us is t-unclustered, then

δS(us, ft+j(us+j)) ≤ kj + j − 1 + rt+j(us+j) + σ(j − 1).

where as defined earlier, σ(j − 1) =
∑j−1

l=1 2l.
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Proof: 〈us, ..., us+j〉 is a path in G. Consider two successive vertices us+`−1 and us+` in the above path.
Depending upon how us+`−1 and us+` appear in clusterings Ct+`−1 and Ct+` respectively, we have four cases:
both are unclustered, both are clustered, us+`−1 is clustered but us+` is not and vice-versa. It is simple to
check that in all the four cases δS(ft+`−1(us+`−1), ft+`(us+`)) ≤ k+1+rt+`(us+`)−rt+`−1(us+`−1)+2(`−1).
So, summing this over all pairs (us+`−1, us+`), as ` ranges from 1 to j, we get that δS(ft(us), ft+j(us+j)) ≤
kj + j + rt+j(us+j)− rt(us) +

∑j
`=1 2(`− 1).

If us is t-unclustered, then there is a path of length at most 2t − 1 from us to us+1 and a path of
length at most rt+1(us+1) from us+1 to ft+1(us+1), which gives us an upper bound of k + rt+1(us+1)
for δS(us, ft+1(us+1) instead of k + 1 + rt+1(us+1) for the 〈us, us+1〉 path. This path, when combined
with the 〈us+1, ..., us+j〉 path obtained from the previous paragraph shows that δS(ft(us), ft+j(us+j)) ≤
kj + j − 1 + rt+j(us+j) +

∑j
`=1 2(`− 1). 2

So, as in the proof of Theorem 3.3, we use the path given by Lemma 3.8 to go from ui to ct−1−j(ui−j) and
then use the path given by Lemma 3.9 to go from ct−1−j(ui−j) to ft+j(ui−j−1) and then use the path given
by Lemma 3.10 to go from ft+j(ui−j−1) to ft(ui−2j−1). So, if we can show that h(i− 2j − 1) = t, then we
can use the induction hypothesis to claim that there is a path of length at most k(i− 2j− 1)+ r′(i− 2j− 1)
from u0 to ft(ui−2j−1).

Lemma 3.11 h(i− 2j − 1) = t.

Proof: This is simple to show. Since h(`) = t if and only if ` is odd, we need to show that i− 2j− 1 is odd.
We know that i must be even since h(i) = t− 1. Hence, i− 2j − 1 is odd. 2

So, we can use the induction hypothesis that there is a path of length ≤ k(i−2j−1)+ r′(i−2j−1) from
u0 to ft(ui−2j−1). Suppose ui−2j−1 is h(i−2j−1)-clustered. Then r′(i−2j−1) = t−1. And we get a path
from u0 to ui in S of length at most k(i− 2j − 1) + t− 1 + kj + j + rt+j(ui−j−1)− t + σ(j − 1) + k + 2j +
(t− j)− rt+j(ui−j−1) + kj− (t− j)−σ(j)− (j− 1) = ki. If ui−2j−1 is t-unclustered, then we use the second
part of Lemma 3.10 to upper bound the 〈ui−2j−1, ..., ui−j−1〉 path. So, there is a path of length at most
k(i−2j−1)+kj+j−1+rt+j(ui−j−1)+σ(j−1)+k+2j+(t−j)−rt+j(ui−j−1)+kj−(t−j)−σ(j)−(j−1) = ki
between u0 and ui in S. This proves our induction step.

Again, the three cases that ui−j = u0 or ui−j−1 = u0 or before we came to ui−2j−1, we see the starting
vertex, can be handled as corollaries to Lemmas 3.8, 3.9, and 3.10 respectively. This finishes the proof of
Theorem 3.7 for the case when k is even. Recall that Theorem 3.3 which shows the correctness for odd k
was already proved. Thus Theorem 3.2 is completely proved.

3.1 Implementation in other models of computations

Our algorithm (Figure 8) for (k, k−1)-spanners can be adapted quite easily to other models of computation.
The complexity of each of these algorithms is close to optimal under relevant measures.

• In the external memory model [5] and the cache oblivious model [36], a (k, k−1)-spanner of O(kn1+1/k)
size can be computed using the same number of I/O operations as that of sorting km items. Sorting
is one of the most primitive tasks in both models and optimal algorithms are known.

• In the CRCW PRAM model [42], a (k, k−1)-spanner of expected size O(kn1+1/k) can be computed in
O(k log∗ n) time and O(km) work. The algorithm employs primitive parallel subroutines like computing
the smallest element, semisorting, and multiset hashing.

• In the synchronous distributed model [45], a (k, k − 1)-spanner of expected O(kn1+1/k) size can be
computed in O(k) rounds with total message volume O(k2m).

In order to convey to the reader the ease with which the algorithm is adapted in these models, we provide
below the execution of the (k, k − 1)-spanner construction in distributed environment. Adaptation of the
algorithm in the external-memory and CRCW PRAM environment as mentioned above is similar to the
adaptation of (2k − 1)-spanner algorithm of Baswana and Sen [12] in these models.
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3.2 Distributed algorithm for (k, k − 1)-spanner

Rules R3 and R4 of our algorithm (Figure 8) can be executed in O(k) rounds of communication in a
distributed network, and, using the randomized algorithm from Figure 7, Rules R1 and R2 can also be
executed in O(k) rounds. The main result in this section is Theorem 3.12. Before we prove it, let us
elaborate a little on our model of distributed computation. In a synchronized distributed network the nodes
of the network solve a problem by exchanging messages in discrete rounds. In each round one message may
be sent across each link in each direction. We are interested in three measures: the number of rounds,
the maximum length of any message sent (measured in units of O(log n) bits) and the total length of all
messages sent. Clearly any protocol requiring R rounds, maximum message length L and total volume V
can be converted to one with parameters RL/U , U , and V , for any any U ≥ 1. That is, Theorem 3.12 can
be adapted to any synchronized network with a fixed maximum message length.

Theorem 3.12 In a synchronized distributed network G, a (k, k − 1)-spanner of G whose expected size is
O(kn1+1/k), can be constructed in O(k) rounds of communication. The total message volume is O(k2m) and
the maximum message length is O(n1/2+1/2k).

Proof: We compute the clusters C0, C1, . . . , Ck = ∅ using the randomized algorithm from Figure 7. Each
vertex is the center of its cluster in C0 = {{v} : v ∈ V (G)}. With probability n−1/k each center in Ci declares
itself to also be a center in Ci+1. These random choices are made before the first round of communication.

After Ci is computed, every vertex tells its neighbors whether it is clustered in Ci and if it is, the identity
of its center in Ci and the highest j ≥ i for which that center is also a center in Cj . For each vertex w that
has a neighbor v already clustered in Ci+1, w declares (w, v) to be a spanner edge (Rule R1) and declares
its center in Ci+1 to be that of v. Every vertex w that did not become clustered in Ci+1 declares one edge
from E(w, C) to be in the spanner (Rule R2), for each C ∈ Ci adjacent to w. Rules R1 and R2 require k− 1
rounds of communication, plus one more to let clustered vertices in Ck−1 inform their neighbors of this fact.
Each message sent so far has unit length.

Once C0, . . . , Ck−1 are computed, we implement Rules R3 and R4. Consider Rule R3, a fixed i ≥ 0, and
a fixed cluster C ∈ C(k−1)/2−i.

10 Rule R1 has created a tree T of spanner edges rooted at the center of C.
This tree is used to inform the center of C of all incident clusters in C(k−1)/2+i, and for each such cluster,
one connecting edge. Once the center decides which edges to select for Rule R3 it broadcasts its choices back
through T . The number of rounds for Rule R3 is clearly O(k). The maximum necessary message length
(for fixed i) is |C(k−1)/2+i| since duplicate edges connecting the same clusters can be ignored. With high

probability |C(k−1)/2+i| = O(n1/2+1/2k−i/k). Summing over i ≥ 0, the maximum message length is bounded

by O(n1/2+1/2k). For even k, i is always at least 1/2, so in this case the maximum message length is O(
√

n).
The total message volume for Rule R3 is O(k2m) since each edge can participate for k/2 values of i and for
each, contribute O(k) units of message volume. The implementation and analysis of Rule R4 is very similar
to R3.

2

4 Conclusion

The main existential question in the field of spanners is whether, for any given size bound O(n1+ε), there exist
additive β(ε)-spanners and if not, which additive spanners do exist? For ε < 1/3 our additive spanners are
the best known, but they have additive distortion that depends heavily on n. In this paper we introduced
a general construction technique that might help to resolve the question of additive spanners for general
graphs.

In Section 3 we addressed the problem of computationally efficient spanner constructions and gave partial
answers to two problems of practical significance: what is the highest quality spanner that can be constructed
in linear time? and which spanners can be constructed distributively in O(1) rounds? It seems implausible
that any additive or (1 + ε, β)-spanners admit such efficient constructions.

One promising direction for future research is to develop approximate distance oracles for unweighted
graphs whose distortion improves with distance. The ultimate goal would be to have oracles with constant

10If k is odd then i is an integer. For even k, i is a half-integer.
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additive distortion, though any improvement over the purely multiplicative distortion of [54, 13, 43, 11]
would be a start. For example, there is no known (3− ε, β)-distance oracle with size O(n3/2) whose query
time is reasonably fast.

Acknowledgment. We would like to thank Uri Zwick, Mikkel Thorup, and Michael Elkin for some helpful
comments on an earlier draft of this paper.
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[16] M. Bǎdoiu, P. Indyk, and A. Sidiropoulos. Approximation algorithms for embedding general metrics into trees.
In Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[17] H. T.-H. Chan, M. Dinitz, and A. Gupta. Spanners with slack. In Proc. 14th Annual European Symposium on
Algorithms (ESA), pages 196–207, 2006.

[18] H. T.-H. Chan and A. Gupta. Small hop-diameter sparse spanners for doubling metrics. In Proc. 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 70–78, 2006.

[19] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing in doubling metrics. In Proc. 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 762–771, 2005.

[20] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. Comput., 28:210–236,
1998.

19



[21] E. Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest-paths. J. ACM,
47:132–166, 2000.

[22] D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In Proc. 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 660–669, 2005.

[23] L. J. Cowen. Compact routing with minimum stretch. J. Algor., 28:170–183, 2001.

[24] L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. J. Algor., 50(1):79–95, 2004.

[25] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM J. Comput., 29(5):1740–1759, 2000.

[26] M. Elkin. Private communication. 2004.

[27] M. Elkin. Computing almost shortest paths. Transactions on Algorithms, 1(2):283–323, 2005.

[28] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng. Lower-stretch spanning trees. In Proc. 37th Annual ACM
Symposium on Theory of Computing (STOC), pages 494–503, 2005.

[29] M. Elkin and D. Peleg. (1+ε, β)-Spanner constructions for general graphs. In Proc. 33rd Annual ACM Symposium
on Theory of Computing (STOC), 2001.

[30] M. Elkin and D. Peleg. (1 + ε, β)-spanner constructions for general graphs. SIAM J. Comput., 33(3):608–631,
2004.

[31] M. Elkin and D. Peleg. Approximating k-spanner problems for k ≥ 2. Theoretical Computer Science, 337(1–
3):249–277, 2005.

[32] M. Elkin and J. Zhang. Efficient algorithms for constructing (1+ ε, β)-spanners in the distributed and streaming
models. Distributed Computing, 18(5):375–385, 2006.

[33] Y. Emek and D. Peleg. Approximating minimum max-stretch spanning trees on unweighted graphs. In Proc. 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 261–270, 2004.
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