Regular Languages: Properties

Pumping Lemma: Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string w in L satisfying $|w| \geq n$, we can break w into three strings $w=x y z$, such that
(a) $y \neq \epsilon$,
(b) $|x y| \leq n$
(c) For all $k \geq 0$, the string $x y^{k} z$ is also in L.

Examples:
Let $L=\left\{a^{m} b^{m} \mid m \geq 1\right\}$.
Then L is not regular.
Proof: Let n be as in Pumping Lemma.
Let $w=a^{n} b^{n}$.
Let $w=x y z$ be as in Pumping Lemma.
Thus, $x y^{2} z \in L$, however, $x y^{2} z$ contains more a 's than b 's.

Let $L=\left\{a^{i} b^{j} \mid i<j\right\}$.
Then L is not regular.
Proof: Let n be as in Pumping Lemma.
Let $w=a^{n} b^{n+1}$.
Let $w=x y z$ be as in Pumping Lemma.
Thus, $x y^{3} z \in L$, however, $x y^{3} z$ contains more a 's than b 's.

Let $L=\left\{a^{p} \mid p\right.$ is prime $\}$.
Then L is not regular.
Proof: Let n be as in Pumping Lemma.
Let $w=a^{p}$, where p is prime, and $p>n$.
Let $w=x y z$ be as in Pumping Lemma.
Thus, $x y^{k} z \in L$, for all k.
Choose $k=$. Thus, $x y^{k} z=a^{r}$, where r is not a prime number.

Proof of Pumping Lemma

Suppose $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA which accepts L.
Let n be number of states in Q.
Suppose $w=a_{1} a_{2} \ldots a_{n} \ldots a_{m}$ is as given, where $m \geq n$.
For $i \geq 1$, let $q_{i}=\hat{\delta}\left(q_{0}, a_{1} \ldots a_{i}\right)$.
Then, by Pigeonhole principle, there exists $i, j \leq n, i<j$, such that $q_{i}=q_{j}$.
Let $x=a_{1} \ldots a_{i}, y=a_{i+1} \ldots a_{j}, z=a_{j+1} \ldots a_{m}$.
As $\hat{\delta}\left(q_{i}, y\right)=q_{i}$, we have: for all $k, \hat{\delta}\left(q_{i}, y^{k}\right)=q_{i}$.
Thus, $\hat{\delta}\left(q_{0}, x y z\right)=\hat{\delta}\left(q_{0}, x y^{k} z\right)$, for all k.
QED

Closure Properties

- If L_{1}, L_{2} are regular, then so is $L_{1} \cup L_{2}$.
- If L_{1}, L_{2} are regular, then so is $L_{1} \cdot L_{2}$.
- If L is regular, then so is $\bar{L}=\Sigma^{*}-L$.
- If L_{1}, L_{2} are regular, then so is $L_{1} \cap L_{2}$.
- If L_{1}, L_{2} are regular, then so is $L_{1}-L_{2}$.
- If L is regular, then so is L^{R}.
- Let h be a homomorphism. If L is regular, then so is $h(L)$.

Homomorphism: $h(a) \in B^{*}$, where B is an alphabet set.
$h(\epsilon)=\epsilon$.
$h\left(a_{1} a_{2} \ldots\right)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots$.

Decision Problems on Regular Languages

$$
\begin{aligned}
& L=\emptyset ? \\
& L=\Sigma^{*} ? \\
& w \in L ?
\end{aligned}
$$

