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ABSTRACT 

The Edgebreaker is an efficient scheme for compressing 
triangulated surfaces. A surprisingly simple implementation of 
Edgebreaker has been proposed for surfaces homeomorphic to a 
sphere. It uses the Corner-Table data structure, which represents 
the connectivity of a triangulated surface by two tables of 
integers, and encodes them with less than 2 bits per triangle. We 
extend this simple formulation to deal with triangulated surfaces 
with handles and present the detailed pseudocode for the 
encoding and decoding algorithms (which take one page each). 
We justify the validity of the proposed approach using the 
mathematical formulation of the Handlebody theory for surfaces, 
which explains the topological changes that occur when two 
boundary edges of a portion of a surface are identified. 

Categories and Subject Descriptors 
E.4 [Coding and Information Theory]: Data compaction and 
compression. 

General Term 
Algorithms. 

Keywords 
Triangle meshes; Connectivity Graph; 3D Compression; 
Handlebody Theory. 
 

1. INTRODUCTION 
The Edgebreaker compression and decompression algorithms [9] 
may be used to encode the connectivity of any simply connected 
manifold triangle mesh with a guaranteed worst case code of 1.80 
bits per triangle [3]. In practice, the Edgebreaker encoding may 
often be further compressed  to less than one bit per triangle 
through the use of Entropy codes [10]. But the true value of 
Edgebreaker lies in the efficiency and surprising simplicity of the 
algorithms [11], which fit in a couple of pages and use only a few 
arrays of integers as sole data structure. Because of its simplicity, 
Edgebreaker is viewed as the emerging standard for 3D 
compression [13] and may provide an alternative for the current 

MPEG-4 standard that is based on Rossignac's previous work 
with Gabriel Taubin [15]. This simple implementation of 
Edgebreaker, as a state machine, is publicly available through the 
web [3] and has been recently enhanced to support meshes with 
an arbitrary number of handles (also called through-holes). The 
main objective of this paper is to provide a detailed description of 
this extension, imbedding it in a theoretic setting of the 
Handlebody theory, and including formal proofs.  The principal 
innovation of this simplified algorithm is the introduction of the 
handle stream, which plays a fundamental role in the surface with 
handles decompression. 

An important topological property of boundary 
representations (abbreviated B-Reps) [1] is the Euler-Poincaré 
formula, dated from the turn of the century [8], which states that 
an orientable connected triangulated surface S without boundary 
is uniquely identified by its Euler characteristic 
χ(S)=|V|−|E|+|F|, where |V|,|E| and |F| indicate respectively the 
number of vertices, edges and faces of S. The Euler characteristic 
classifies S according to the Euler formula that is χ(S)= 2 − 2g 
(where g is the genus of the surface, or in other words, the 
number of through-holes). From this two equations, the genus of 
a connected triangulated surface without boundary may be 
expressed as          g = 1 – (|V|–|E|+|F|)/2.  

The Handlebody theory [8,13] refines the traditional Euler-
Poincaré theory by bringing several new topological invariant for 
n-dimensional smooth manifolds. Its fundamental problem is to 
study the topological changes generated by handle attachments to 
manifolds with boundary. 

The paper is organized as follows. Section 2 describes the 
Handlebody Theory. Section 3 presents some definitions of 
combinatorial topology to precisely establish our notation. 
Section 4 presents the Handle Operators for triangulated surfaces, 
which consists in a set of topological operators to build and un-
build surfaces with or without boundary. Section 5 describes the 
Corner-Table data structure. Section 6 and 7 introduce, 
respectively, the Edgebreaker simplified compression and 
decompression algorithm for surfaces with handles. 

2. HANDLEBODY THEORY 
In classical Handlebody theory, the object of study is taken to be 
a compact n-dimensional manifold with or without boundary. 
The main purpose of this section is to give a brief introduction to 
this theory, in particular for the 2-dimensional case.  

A set V ⊂ mR is an n-dimensional manifold with boundary 
if each point in V has an open neighborhood homeomorphic to 
either nR or nR+ . 
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Let Di be the i-dimensional disk. The boundary of a set P is 
denoted by ∂P. Notice that D0, D1, and D2 correspond, 
respectively, to a point, to a line, and to a disk. Moreover, the set 
∂D0 is an empty set, the set ∂D1 consists in two points, and the set 
∂D2 is a circle. Let R and S be two topological spaces, then  R×S 
corresponds to the set obtained by the usual Cartesian product, 
which means that R×S is the set of all pairs elements (r,s) such 
that r∈R and s∈S. 

There are three types of handles for 2-manifold and they will 
be distinguished by an index λ that varies from 0 to 2. 

Definition 2.1:  A  handle  of  index λ, denoted by Hλ, is  a  pair 
of  topological  spaces (Aλ , Bλ) such that Bλ ⊆ ∂Aλ, , Aλ=Dλ×D2-

λ and Bλ=∂Dλ×D2-λ. 
According to this definition, one can observe that for λ=0, the set 
A0=D0×D2  is a 2-disk and B0=∂D0×D2

  is the empty space, since 
∂D0 is ∅. The set A1=D1×D1

 is a square (Cartesian product of 
two intervals) and B1=∂D1×D1 is defined to be two opposite sides 
on the boundary of A1, since ∂D1 is composed by two points and 
D1 is an interval. Finally,  in the case where λ=2, the set 
A2=D2×D0 

 is a 2-disk and  B2=∂D2×D0 is the circle that is exactly 
the boundary of A2.  

To attach a handle Hλ=(Aλ, Bλ) to the boundary of a 2-
manifold S means to identify by a homeomorphism the set Bλ⊆ 
∂Aλ with a subset I contained in the boundary of S. 

The next theorem is the main mathematical tool in which 
this work is based [12].  
Theorem 2.2 (Handlebody Decomposition): For every 
manifold S there is a finite sequence of surfaces {Si}i=1..N such 
that S0=∅, SN=S and the manifold Si is obtained by attaching a 
handle Hλ=(Aλ,Bλ) to the boundary of Si-1. This sequence is 
called the Handlebody Decomposition of S. 

Figure 1 illustrates the handlebody decomposition of a torus.  
 

S0=∅ 
 

S1= S0+ H0  =  
 

S2= S1+ H1 =  ≈  
 

S3= S2+ H1 = ≈  
 

S4= S3+ H2 =  
 

Figure 1: Handlebody decomposition of a torus. 
Handles can be attached to an orientable 2-manifold with 
boundary in such a way to preserve its orientability, i.e., the 
identification has to be coherent. If one starts with an orientable 
2-manifold, then after attaching a handle it is again orientable, 
that is, it doesn’t contain a Moebius strip [12]. The test to know 
if the handle is attached coherently is simple: check the number 

of boundary curves, if this number is changed, then it is coherent; 
if else, a Moebius strip has been added to the previous manifold. 

When a handle Hλ is attached coherently to the boundary of 
Si-1 to obtain Si,, a topological change is generated and such 
change depends only on the index λ.  

The topological change generated by a handle attachment of 
index 0 is a creation of a new 2-manifold component (see S1 in 
Figure 1). 

When the handle H1  is coherently attached to a 2-manifold, 
three situations can occur:  
1. The set B1  may be attached to disjoint intervals on the same 

boundary curve component. In this case, the topological 
change is an inclusion of a new boundary curve component 
(see S2 in Figure 1).  

2. The set B1 may be attached to intervals on different 
boundary curve components of a 2-manifold component. 
The topological change is here characterized by increase of 
the genus. In addition, the number of boundary curve 
components decreases  (see S3 in Figure 1). 

3. The set B1 may be attached to intervals on different surface 
components. Here, one boundary curve component and one 
surface component are removed. 
Handles of index 2 close a boundary curve component  (see 

S4 in Figure 1). 
Thus, there are five different situations in which a handle 

can be attached coherently to the boundary of a 2-manifold. 
The Edgebreaker encoding/decoding algorithms for 

triangulated surfaces with or without genus also defines a 
sequence of topological changes that the surface undergoes 
during the reconstruction process. In this work, the relation of 
these algorithm with the handlebody decomposition will be 
clarified. But first, some definitions of combinatorial topology 
must be invoked to precisely establish our notation. 

3. BASIC CONCEPTS 
A simplex σp of dimension p (p-simplex, for short) is the convex 
hull of p+1 linearly independent points in mR , called its 
vertices. A simplex σk  is a face of a simplex τp, k ≤ p,  when each 
vertex of σ  is a vertex of τ. This relation is denoted by σ < 
τ.  The empty simplex is a simplex. 

An n-dimensional simplicial complex K is a finite collection 
of i-dimensional simplexes (i = 0,...,n) in  mR , under the 
following conditions: 
1. If σ ∈Κ and τ <σ then τ∈Κ 
2. If σ and τ ∈Κ then (σ ∩ τ) < σ and (σ ∩ τ) < τ. 

If a collection of simplexes L⊂  K is a simplicial complex, 
then it is called a subcomplex of K. Two k-simplexes σ and τ ∈ 
K  are adjacent when σ ∩ τ ≠∅. If ξ  is a face of a simplex 
τ then they are said to be incident to each other. A complex K is 
connected if it cannot be represented as a union of two non-
empty disjoint subcomplexes L and M without common 
simplexes. A component of a simplicial complex K is a 
connected subcomplex that is not contained in a larger 
subcomplex of K. The star of a vertex v is a subcomplex of K 
composed by the union of simplexes that are incident to v, and is 
denoted by star(v). The link of a vertex v, denoted by link(v), is 
the frontier of star(v). The open star of a vertex v is the set 
star(v)-link(v). 



An n-dimensional simplicial complex M, |M| ⊂ mR , is a 

combinatorial n-manifold with boundary if the following two 
conditions are satisfied: 
1. A (n–1)-simplex in M is incident to one or two n-simplexes 

of M. 
2. The open star of a vertex in M is homeomorphic to an open 

subset of either nR or nR+ . 

The subcomplex formed by the (n–1)-simplexes in a 
combinatorial n-manifold M incident to only one n-simplex is 
called the boundary of M and is denoted by ∂M. The simplexes 
of M that belongs to ∂M are called boundary simplexes otherwise 
they are called interior cells. The boundary of a combinatorial n-
manifold is a combinatorial (n–1)-manifold without boundary. 

A combinatorial n-manifold is orientable when it is possible 
to choose a coherent orientation on its n-simplexes, i.e., two 
adjacent n-simplexes induce opposite orientations on their 
common (n–1)-simplexes.  

From now on, a surface and a curve will always mean, 
respectively, a 2 and 1 dimensional connected oriented 
combinatorial manifold with or without boundary. The set of 2,1 
and 0 dimensional simplexes of a surface S will be called, 
respectively, triangles, edges and vertices and they are denoted by 
T(S), E(S) and V(S). 

The Triangle-Edge connectivity graph of a surface S, 
denoted by GTE(S) = (N,L), is defined to be the graph whose  
nodes and lines are, respectively, their triangles and edges. Let 
N(GTE) and L(GTE) be the set of nodes and lines of GTE. Then, 
two one-to-one functions nTE: T(S)→N(GTE) and lTE: 
E(S)→L(GTE) are defined in such a way that each edge e ∈ E(S) 
that is incident to the triangles u and v corresponds to a line 
l∈L(GTE) that connects the nodes nTE (u) and nTE (v)). The 
Vertex-Edge connectivity graph of a surface S, denoted by GVE 
(S), is defined to be the graph whose  nodes and lines are, 
respectively,  the surface vertices and edges. Two other one-to-
one functions, named  nVE: V(S)→N(GVE) and lVE: E(S)→L(GVE), 
are defined in such a way that each edge e ∈ E(S) that is incident 
to the vertices u and v corresponds to a line l∈L(GVE) that 
connects the nodes nVE (u) and nVE (v). Here, N(GVE) and L(GVE) 
denote the set of nodes and lines of GVE. 

4. HANDLE OPERATORS 
Section 2 described the Handlebody theory for 2-manifolds. In 
this section, we introduce a set of operators that allows the 
implementation of the handlebody decomposition for triangulated 
surfaces (for more details, see [6]). 

Given a surface S with or without boundary, we would like 
to construct a finite sequence of combinatorial surfaces {Si}i=0...n, 
in which S0=∅ and Sn=S.  To build such sequence, we propose a 
set of operators, called Handle operators, and we study the 
topological changes caused by their actions. 

In a combinatorial point of view, three types of operators are 
now be defined to represent the handle attachments. 

4.1 Handle Operator of type 0   
This operator creates a new surface component with only one 
triangle (see Figure 2). 
 

NIL

 
Figure 2: Handle operator of type 0 – triangle creator. 

 

4.2 Handle Operators of type 1   
The purpose of this  operator is to  identify two given boundary 
edges with no vertices in common. There are three situations for 
this group. They are distinguished according to the answer of the 
following questions:  

• Are those edges on the same surface? 
If not, the handle operator will attach the two different surfaces 
and remove one boundary curve component (see Figure 3(a)). 
Otherwise, the next question will identify the remaining two 
cases. 
• Are those edges on the same boundary curve component? 
If so, then the operator will split the boundary curve into two 
different components (see Figure 3(b)). Otherwise,  it will 
increase the number of genus on the surface and reduce in one 
the number of boundary curve components of the surface (see 
figure 3(c)). Interior edges are drawn in yellow, and different 
boundary curves have different colors. 
 
 

 
(a) The edges belong to different surfaces. 

 

 
(b) The edges belong to the same boundary curve of a surface. 

 
(b) The edges belong to different boundary curves of a 

surface. 

Figure 3: Handle operators of type 1. 



 
 

 
(a) The boundary edges have two vertices in common. 

 
(b) The boundary edges have one vertex in common. 

Figure 4: Handle operators of type 2. 

4.3 Handle Operators of type 2  
In this group there are two operators used to identify two given 
boundary edges with vertices in common, which could be one or 
two. Those operators will be used only in the Zipping part of the 
Edgebreaker decompression algorithm. When they have two 
vertices in common, the operator closes one boundary curve 
component and transform those boundary vertices into two 
interior vertices (see Figure 4(a)). Otherwise, it zips the two 
boundary edge and generates one interior vertex on the surface 
(see Figure 4(b)). 

4.4 Inverse Handle Operators 
The inverse operators are naturally defined by exchanging the 
direction of the arrows in Figures 2, 3 and 4.  

The inverse action of a Handle Operator of type 0 is the 
destruction of a triangle.  

The direct Handle Operators of type 1 and 2 identify two 
boundary edges to create an interior edge. On the other way 
round, an inverse Handle Operator splits an interior edge into two 
boundary edges.  

The inverse Handle operators of type 2 are distinguished 
according to the number of interior vertices incident to a given 
interior edge. If the edge to be operated has two interior vertex 
then it creates a new boundary curve component on the surface 
(invert the arrow in Figure 4(a)). If the edge has only one 
incident interior vertex, then the operator adds this vertex to the 
boundary (invert the arrow in Figure 4(b)). 

Inverse Handle  operators of type 1 are applied when its two 
incident vertices are on the boundary. If those vertices are on 
different boundary curve components then it joins the two 
boundary curves (invert arrow in Figure 3(b)). Otherwise, the two 
incident vertices are on the same boundary curve and in this case  
the boundary curve is separated in two components and after the 
edge split either the surface disconnects (invert arrow of Figure 
3(c)), or  a genus is removed (invert arrow in Figure 3(c)).  

5. CORNER-TABLE DATA STRUCTURE 
The purpose of this section is to describe the data used in the 
Edgebreaker compression and decompression algorithms. 

The Corner-Table (CT) is a very compact data structure for 
triangular surfaces, introduced by Rossignac, Safonova and 
Szymczak in [11]. It uses the concept of a corner that represents 
the association of a triangle with one of its incident vertices. In 

the CT data structure, the corners, the vertices and the triangles 
are indexed by non-negative integers.  

The frontier of a triangle is implicitly represented by an 
oriented cycle of three corners, whose identification is given by 
three consecutive indices. By definition, corners with indexes 0, 
1 and 2 correspond to the first triangle frontier, the corners of 
indexes 3,4 and 5 correspond to the second triangle frontier  and  
so  on.  As  a  consequence,  a  corner  with  index  c  is  
associated with  the  triangle of  index   c.t = (c DIV 3).  

In a triangulated surface, every corner has a vertex and an 
opposite corner associated to it. This information is stored in two 
integer arrays, called the V and O tables. The dimension of both 
tables is three times the number of faces, which corresponds to 
the number of corners on the surface. 

The notation c.v, which is a short for V[c], corresponds to 
the value stored in the V table whose entry is c and returns the id 
of the vertex associated with corner c.  

Assuming that a counter-clockwise orientation has been 
opted for the surface, then for a given corner c, the next (c.n) and 
previous (c.p) corners on its triangle frontier cycle are obtained 
by the use of the following expressions: c.n = 3×c.t + (c+1) MOD 
3, and c.p = 3×c.t + (c+2) MOD 3. 

The notation c.o, stands for O[c] and returns the id of the 
corner opposite to c. To be precise, c.o is the only integer b for 
which: c.n.v = b.p.v and c.p.v = b.n.v.  

In practice, the O table needs not be stored, because it may 
be easily derived in linear time from the V table using a hashing 
sort of triples (min(c.n.v, c.p.v), max(c.n.v, c.p.v), c) for all 
corners c. Entries that correspond to opposite corners are 
consecutive in the stored list. For convenience, the left and right 
corners c.l and c.r are, respectively, defined as c.p.o and c.n.o. 
All corner relations and notations are illustrated in Figure 5.  

c.v

c.rc.l

c.o

c.t

c.n c.p

c

 
Figure 5: Corner notations. 

The coordinates of the vertex with index i are stored in the row i 
of a matrix, called G (for geometry). The  dimension of G is 
|V|×Ν, where |V| is the number of vertices and N is the dimension 
of the space where the surface is embedded. Usually N=3.The 
notation c.v.g is used to access the geometry of the vertex and 
stands for G[V[c]]. 

6. EDGEBREAKER COMPRESSION  
The Edgebreaker is a state machine that encodes a combinatorial 
surface without boundary M. At each state, a decision is made to 
move from a triangle Y to an adjacent triangle X. To perform this 
decision, all visited triangles and their incident vertices are 
marked. 
Let Left and Right denote the other two triangles that are incident 
upon X. Let v be the vertex common to X, Left, and Right. Five 
situations are distinguished according to the Table 1. Those cases 
are denoted by the letters C,L,E,R and S (arranged for the 
mnemonic “Claire’s”). The arrow in Figure 6 indicates the 
direction to the next triangle. Previously visited triangles are 
filled. The edge that crosses from Y to X will be called the gate.  



6.1 The Algorithm 
The compression algorithm (see [3]) is composed of an 

initialization InitCompression followed by a call to Compress. 
The initial corner c may be chosen randomly. The initialization 
encodes and marks the three vertices of the first triangle, marks 
the triangle as visited, assigns an Id for each corner and calls 
Compress. The “visited” mark flags for triangles and vertices are, 
respectively, stored in the arrays U and M. 

 C L E R S 

Vertex   v Not 
Visited 

Visited Visited Visited Visited 

Left Triangle Not 
Visited 

Visited Visited Not 
Visited 

Not 
Visited 

Right Triangle Not 
Visited 

Not 
Visited 

Visited Visited Not 
Visited 

Table 1: Edgebreaker state machine. 

C

Y

V

L

Y

V

R

Y

V

E

Y

V

C

Y

V

S

Y

 
Figure 6: Edgebreaker clers cases. 

Compress is a recursive procedure that traverses the surface 
M  in a spiraling spanning tree of triangles. The recursion starts 
only at triangles that are of type S and compresses the branch 
adjacent to the right edge of such a triangle. When the 
corresponding E triangle is reached, the branch traversal is 
complete and the routine returns from the recursion to pursue the 
left branch. At this point, two situations are distinguished. If the 
Left triangle has not been visited during the right branch traversal 
(case of normal S), we move to the left neighbor and continue our 
encoding of the left branch. Otherwise  (case of a handle S) the 
pair of opposite corners separated by the left edge of the S 
triangle are stored in the stream or file called handle and the 
routine returns. These edges will have to be attached together 
during decompression to form handles.  The encounter of an E 
that does not match an S terminates the compression process.  

For C, L, E and R triangles, an U array entry stores the flag 
that indicates whether a triangle has been visited (1) or not (0). 
Since any S triangle is a potential handle S, its U entry stores an 
integer that corresponds to the corner id that will be assigned to 
the c.p corner in the decompression algorithm. The value of this 
integer may be later saved on the handle stream.  

The Compress routine starts testing for handle attachment, 
i.e., whether the triangles to the left and to the right are adjacent 
to a previously visited S triangle. If so, it saves in the handle 
stream the pair of opposite corners. 

Next, if the tip vertex of a new triangles has not yet been 
visited (“IF c.v.m != 1”), we are on a C triangle and we encode 
the information necessary for decoding the location of that 
vertex. Typically, this information is a residue vertex that the 
decoder will add to an estimation of c.v.g computed from 
neighboring vertices. Here, we are using the simplest 
Edgebreaker code, we encode a 0 in the clers string to indicate a 
C triangle and the vertex coordinates are directly stored in the 
vertices stream or file. 

When the tip of the new triangle has been visited, we 
distinguish four  other cases, based on the status of the 
neighboring (left and right) triangles. They correspond to the 
labels L, R, E and S as indicated in Table 2. To test whether the 
left and right adjacent triangles have been visited we use, 
respectively, the commands (“IF c.l.t.u > 0”) and (“IF c.r.t.u > 
0”). The L,R,E and S labels are each encoded using 3 bits.  For 
so, the following convention are defined: 110 for L, 111 for E, 
101 for R, and 100 for S (for more details, see [10]).  

In conclusion, the Edgebreaker algorithm traverses the 
surface in a very particular order to better encode it. However, a 
modification of such algorithm can be used to compute a shelling 
of a surface [2], which has been considered an important area of 
research in computational geometry. Notice that our traversal 
usually is not a shelling because of all the split operations caused 
by the S triangles. 

6.2 The torus example 
To illustrate the algorithm, consider the surface given by the 
model for a triangulated torus illustrated in Figure 7(a). 
Identifying the edges indicated by the arrows on the opposite 
sides of the rectangle, one can build a simplicial complex in R3 
whose polyhedron is homeomorphic to the torus (see Figure 
7(b)). Figure 8 illustrates the labels of all triangles of the torus 
defined by the Edgebreaker compression algorithm. At the end of 
the algorithm, the clers string obtained for this surface is 
CCCCRCCCRCCRCCRSCRSCRSRLSEERSEE. As one can observe, 
in this example, there are five triangles labeled with S. In the 
string sequence, the last three S are normal, since their right and 
left branches are traversed in the compression algorithm. On the 
other hand, the left branches of the first and of the second S 
triangles are not traversed since their left adjacent triangle have 
been visited during their right branch traversal. Therefore, the 
two pairs of opposite corners marked with dots are saved in the 
handle stream.  

                          
         (a) triangulated rectangle                    (b) torus                      

Figure 7: Torus example and its triangulation. 
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Figure 8: clers sequence for the torus example. 

6.3 Why does it work? 
The Edgebreaker compression algorithm moves from one triangle 
to an adjacent one that has not been previously visited until it 
passes through all triangles. As a consequence, it generates a 



spanning tree on the triangle-edge connectivity graph GTE(M), 
which is denoted by TTE(M).  

A line l belongs to TTE(M) if and only if its corresponding 
edge lTE

-1(l) is a gate for a triangle. Notice that for a tree, the 
number of nodes minus the number of lines is equal to one. Thus, 
we can assert that the number of triangles minus the number of 
gates is equal to one.  

Define that an edge e∈E(M) belongs to a set Γ(M) if nTE(e)∉ 
TTE(M), i.e., e is not a gate. 

The symbols #C and #G denote, respectively, the number of 
C triangles and the number of edges that are gates. And the 
operator |A| means the cardinality of a set A. One can observe 
that the number of vertices of M is equal to the #C plus 3 (the 
three vertices of the starting triangle) [9].  

Let us consider the set Ψ(M) of edges composed by the two 
non-gate edges of the starting triangle and all non-gate edges of a 
C triangle (black edge of the C triangle in Figure 7). As an 
immediate consequence |Ψ(M)| = #C+2. We are now to study the 
several other import properties of this set.   

Notice that Ψ(M) is a subset of Γ(M), since an edges in 
Ψ(M) is not a gate by definition. There is no vertex of M that is 
not incident to an edge in Ψ(M), since the Edgebreaker visit all 
vertices through the C triangles. As a consequence, we have the 
following lemma  [9]. 
Lemma 6.1: The edges of Ψ(M) form a spanning tree, denoted 
by TVE, on the triangle-edge connectivity graph GVE (M).  

The next lemma calculates the cardinality of Γ(M) − Ψ(M), 
which is denoted by the number h.  
Lemma 6.2: The number of non-gate edges that are not incident 
to a C triangle is twice the number of genus on the surface M, 
i.e., |Γ(M)| − |Ψ(M)| = 2g. 
Proof: For a resume of the facts observed above, we can write the 
following equations: |T(M)| = #G + 1; |V(M)| = #C + 3; |E(M)| = 
#G + |Γ(M)| ; |Γ(M)| = |Ψ(M)| + h; |Ψ(M)| = #C + 2. Thus, we can  
express the Euler characteristic of M in terms of h  as follows: 

χ(M) =|V(M)|−|E(M)|+|T(M)| 
          = (#C + 3) − (#G  + #C + 2 + h) + (1 + #G) 
          =  2 − h. 
Substituting the equation above in the Euler formula χ(M)=2−2g, 
we can conclude that h = 2g.  

When M is homeomorphic to a sphere (g=0) we have Γ(M) 
= Ψ(M), which means that the edges in the implicitly defined 
spanning-tree TVE of GVE together with the spanning-tree TTE of 
GTE contains all edges of M.  
Lemma 6.3: If we cut the surface M without boundary along the 
edges of the TVE spanning tree by the use of the inverse handle 
operators, then the resulted surface has an unique boundary 
curve component and has no  interior vertex. 
Proof: When the first edge is cut, we have to apply the inverse 
handle operator of type 2 which creates a new boundary curve 
component by splitting an interior edge with no incident 
boundary vertices (see Figure 4(a)). Since TVE is a tree, we can 
take the edge incident to one vertex on this boundary curve to 
apply the inverse handle operator. In this case, we have to apply 
the inverse handle operator of type 2 that split an interior vertex 
with one incident boundary vertex (see Figure 4(b)), i.e., it 
simply “unzips” the boundary. This edge couldn’t have two 
incident boundary vertices otherwise TVE is not a tree. We can 

continue this process until all edges are cut. Since the TVE is a 
spanning tree, it contains all vertices of M, then after operating all 
edges with the inverse handle operators, there will be no interior 
vertices on the resulted surface.  

Notice that TTE can be obtained by decoding the clers 
sequence and the edges defined on graph TVE can be completely 
recovered by the Zip procedure [10], which will be discussed in 
the next section. In conclusion, if the surface has no genus (g=0), 
the clers string is sufficient for the Edgebreaker algorithm 
presented in [10] to reconstruct the connectivity of the surface. 

However, when the surface has g genus (g > 0), Lemma 6.2 
affirms that if we consider all edges of TTE and TVE there will be 
2g edges missing. In our algorithm we store these 2g edges in the 
handle stream, as one can observe in the next lemma.  
Lemma 6.4:. Suppose that M has g genus. An edge belongs to 
Γ(M) − Ψ(M) if and only if its corresponding pair of corners are 
stored in the handle file. 
Proof: (⇐) When the left adjacent triangle to an S has been 
visited during the right branch traversal, the pair of opposite 
corners to the left edge e are stored in the handle stream. In this 
case, the left adjacent triangle to the handle S, obviously, cannot 
be a C. In addition, e is not a gate in both incident faces. Thus, e 
∈Γ(M) − Ψ(M). (⇒) By definition, if e ∈ Γ(M) − Ψ(M), then e is 
not a gate and it couldn’t be incident to a C triangle. Suppose, by 
contradiction, that the opposite corners of e are not stored in the 
handle file. Thus, e also couldn’t  be incident to an S triangle. So, 
one can observe that e has to be a non-gate edge of an E,R or L 
triangle,  which must be incident to a C [9] that is an absurd.  
 The transmittance of the edges that belongs to the set Γ(M) − 
Ψ(M) is the main innovation of the compression algorithm 
presented in this work. It will allow us to recover totally the 
surface connectivity just like we usually do for surfaces 
homeomorphic to the sphere, i.e., by the use of the Zip 
procedure. 

As a consequence of Lemmas 6.3 and 6.4, we can proclaim 
the following theorem. 
Theorem 6.5: If the surface has g genus, the Edgebreaker clers 
string together with the 2g pairs of corners in the handle file are 
sufficient to reconstruct the connectivity of the surface.  

Section 7 will talk about the decompression algorithm. 
There,  an analysis based on the Handlebody theory will be done 
to explain the topological meaning of the edges in Γ(M) − Ψ(M).  
Such analysis (section 7.3) can be used as a sketch of the proof 
for the above theorem. 

6.4 Compression analysis 
Since in a zero-genus surface there are twice more triangles than 
vertices and since each vertex is associated with a different C 
triangle, half of the triangles are labeled with a C. Consequently, 
the Edgebreaker cost for encoding the connectivity of a mesh 
with no handles is guaranteed not to exceed two bits per triangle, 
regardless of the simplicity or irregularity of the mesh. With 
slightly more complex codes, a tighter bounds of 1.80 bits per 
triangle can be guaranteed [4]. For large meshes, entropy codes 
yield less than 1.0 bits per triangle [10]. When the mesh is 
sufficiently regular, i.e., has a large number of vertices with 
exactly six incident triangles, we can guarantee an encoding of  
0.811 bits per triangle [14]. 

When the mesh has g genus, we must encode, in addition to 
the clers string, 2g entries according to Theorem 6.5. Each entry 



identifies the pair of opposite corners that cannot be identified 
from the clers string alone. Each identifier requires log(3T) bits. 

7. EDGEBREAKER DECOMPRESSION  
The decompression algorithm (available in [3]), which follows 
[10], builds the  V and O arrays of the corner Corner-Table and 
the G table of vertex locations, by reading the data stored in the 
clers, vertices and handle files. Note that an alternative 
decompression [5] reconstructs the mesh in reverse order. 

7.1 The Algorithm 
The InitDecompression routine initializes the first triangle and 
reads all pairs of corners in the handle file and store them in a 
queue (H array). Each pair of opposite corner are then assigned in 
the O table. The decompression starts when the recursive 
procedure Decompress is called with corner 1 as parameter. To 
completely build all topological connectivity, the Zip routine is 
called starting with the corner with index 0.  

In the Decompress routine, Edgebreaker appends a new 
triangle to a previously visited triangle at each iteration of the 
loop, it reads the binary encoding of the next symbol from the 
clers string. The steps necessary to attach this new triangle based 
on its type are now to be described. 
1. C triangle (binary code 0): Edgebreaker associates the label  

–1 with the corner opposite the left edge. This temporary 
marking is stored in the O table. It will be replaced with the 
correct reference to the opposite corner by a subsequent Zip 
operation that will be later discussed. Finally, the 
coordinates of the new vertex are read from the vertices file. 

2. L triangle (binary code 110): Edgebreaker tests the value 
stored in O table entry for the corner opposite to the left 
edge. When this value is equal to –3, a different label –2 is  
stored. Otherwise, it means that this corner has been 
previously assigned, i.e., it is in the handle file.  

3. R triangle (binary code 101): the O table entry for the corner 
opposite to the right edge is assigned –2 only when the 
opposite right edge is not part of a handle. Then, 
Edgebreaker goes to the left triangle.  

4. E triangle (binary code 111): each one of its boundary edges 
is labeled –2 when it is not part of a handle. 

5. S triangle (binary code 100): this case forks a recursive call 
to Decompress, which will construct and zip a subset of the 
mesh that is incident to the right edge of the current triangle. 
If the corner associated to the left edge is not part of a 
handle, then the reconstruction proceeds to decode and build 
the branch attached to the left edge of the current triangle. 
Otherwise, the routine returns to continue the surface 
decoding. 
The corners in the O table whose value is equal to –1, are 

the two opposite corners to the non-gate edges of  the starting 
triangle plus all non-gate edges of a C triangle. Notice that all 
those corners have already the information about their incident 
vertices. Moreover, their opposite edges form the TVE tree. On the 
other hand, the corners in the O table marked with –2 have no 
information about its incidence and they should be associated 
with an corner whose opposite is marked as –1. 

The Zip routine starts by finding consecutive pairs of edges 
in the boundary curve whose labels are in order equal to –1 and   
–2. The initial edge in the zipping process is the opposite edge of 
the  corner with index 2 and it will continue as long as exists a 
pair of free edges. To find the next pair, the 
NextCWBoundaryEdge is called. This procedure performs a walk 

over the surface until a CW oriented boundary edge (O entry 
equal to –1) is found.  

7.2 The torus example 
To illustrate the algorithm, consider the compressed triangulated 
torus illustrated in Figure 7. After updating the  O table with two 
pairs of opposite corners saved on the handle file, the resulted 
surface obtained after decoding the clers string is shown in 
Figure 9. In this figure the boundary edges are in green and the 
edges that have been identified by a handle are in red. The next 
step is to perform the Zip operation, to close the unique boundary 
curve component.  
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Figure 9: Torus surface decoded before Zipping. 

7.3 Edgebreaker Handlebody Decomposition 
In resume, the Edgebreaker decompression algorithm decodes  
the compressed surface adding a new triangle one by one until all 
symbols stored in the clers file are read. In addition, the 
InitDecompression updates the O table by assigning the opposite 
corners of the 2g edges saved in the handle file. The surface 
generated by the Decompress call is homeomorphic to the 
original surface M inverse handle operated over the edges in the 
spanning tree TTE(M). The next decompression step is the Zip 
process, which closes the unique boundary curve to finalize the 
reconstruction of the surface connectivity and geometry. 

All those steps are, in fact, defining a handlebody 
decomposition for the surface M. The finite sequence {Mi}i=0...n of 
combinatorial surfaces, such that M0=∅ and Mn= M, generated by 
the Edgebreaker decompression algorithm can now be analyzed 
by the use of handle operators. Where n corresponds to the 
number of handle operators we shall use to build the surface. In 
this section, we will show that this number is 2|T(M)|+|V(M)|+2g.  

Notice that the identification of two boundary edges is 
performed in the Corner-Table data structure by setting in the O 
table the corresponding two opposite corners.  

The Edgebreaker decompression algorithm initializes with a 
triangle. In this case, a Handle operator of index 0 is applied to 
create such triangle that corresponds to M1.  

In the next step, the Edgebreaker begins to decode the clers 
string. The notation clersi will be used to access the ith symbol of 
the clers string. Notice that the clers sequence has |T(M)|-1 
symbols.  

When the clersi symbol is read, a new triangle is created 
(Handle operator of type 0) and one of the edges of this new 
triangle is attached to the gate edge of the surface Mi (Handle 
operator of type 1 illustrated in Figure 3(a)). The surface M2i+2 is  
defined to be the surface resulted by the  application of those two 
Handle operations. The Euler characteristic of the surface M2i+2 is 
the same of M2i, for i in [0...|T(M)|]. Since M2i+2 has one more 



triangle, two more edges and one more vertex than Mi. As a 
conclusion,  the surface M2|T(M)|+1 is a connected surface 
homeomorphic to a disk (with a unique boundary curve 
component) with no interior vertex, i.e., χ(M2|T(M)|+1)=1. 

If the handle file is empty (g=0), then we can go directly to 
the Zip part of the Handlebody decomposition. Otherwise, we 
have to identify the 2g pairs of boundary edges represented by 
the corners stored in the handle file.  

For each genus, we identify the first pair of boundary edges 
to generate the surface M2|T(M)|+2 by the use of a Handle operator 
of index 1 illustrated in Figure 3(b).  Notice that those edges have 
no vertices in common and belong to the same boundary curve 
component. Notice that this operator splits the boundary curve 
into two components. Next, we identify the second pair of 
boundary edges, which belong to different boundary curves, by 
the use of the handle operator of index 1 of Figure 3(c) to 
generate the surface M2|T(M)|+3. This operator adds a genus to the 
surface and concatenates two boundary curves. The Euler 
characteristic of M2|T(M)|+3 is calculated according to the 
following expression:   
χ(M2|T(M)|+3) = (|V(M2|T(M)|+1)| –2) – (|E(M2|T(M)|+1)| –1)  

     + |T(M 2|T(M)|+1| = χ( M2|T(M)|+1) –1 = 1–2 = –1. 
This process is repeated until all pairs of boundary edges in 

the handle file are identified. As a consequence, the surface 
M2|T(M))|+1+2g is a connected surface with genus g that has an 
unique boundary curve component and no interior vertex. Its 
Euler characteristic is χ(M2|T(M))|+1+2g) = χ(M2|T(M))|+1)–2g = 1–2g. 

Next, the Zip routine is called to identify |V(M)| – 1 pairs of 
adjacent boundary edges with indexes –1 and –2. Those edges, 
after the identification, will correspond to the TVE spanning tree. 
When the first pair is found, a Handle operator of index 2 is 
applied  (Figure 4(b)).  This operator identify those two boundary  
edges that have only one vertex in common to create one interior 
vertex on the surface M(2|T(M))|+1+2g)+1. It doesn’t change the Euler 
characteristic of surface. Therefore, the resulted surface is 
homeomorphic to M2|T(M))|+1+2g.  

The Zip routine continues to search recursively and builds a 
new surface for each pair found. The recursion will stop when the 
last pair of boundary edges with indices –1 and –2 is reached 
(notice that all the |V(M)|-2 boundary edges pairs initially found 
by the Zip procedure have only one vertex in common). Thus, the 
surface M(2|T(M))|+1+2g)+|V(M)|-2 is still homeomorphic to 
M2|T(M))|+1+2g, and χ(M2|T(M))|+2g+|V(M)|-1) = 1–2g.  

Finally, the last pair of boundary edges existent in the 
surface is identified by the Handle operator of type 2 shown in 
Figure 4(a), which removes the boundary curve component. We 
can conclude that M2|T(M))|+2g+|V(M)| is the original surface without 
boundary M whose Euler characteristic is χ(M)=2–2g. 

8. CONCLUSIONS 
In conclusion, we have extended the simple Implementation of 
Edgebreaker to the connectivity graphs of triangle meshes that 
represent topological manifolds with handles. The compression 
and decompression algorithms use extremely simple data 
structures and each require only a couple of pages of simple 
code. In addition to the clers string, the compression produces a 
list of pairs of opposite corners, which encode how to turn a 
simply connected triangulated polygon into a surface with a 
single bounding loop, which, when zipped, will produce a 
surface with genus. 

We believe that this new implementation of Edgebreaker is 
well positioned to become the defacto standard in transmitting 
compressed triangle meshes, which may represent full resolution 
3D models, lowest-resolution models to be followed by 
resolution refinements in a progressive transmission scheme, or 
the coarse polygons that control the shape of subdivision 
surfaces. 
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