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ABSTRACT 
In this paper, we describe a system for detecting duplicate images 
and videos in a large collection of multimedia data. Our system 
consists of three major elements: Local-Difference-Pattern (LDP) as 
the unified feature to describe both images and videos, Locality-
Sensitive-Hashing (LSH) as the core indexing structure to assure the 
most frequent data access occurred in the main memory, and multi-
steps verification for queries to best exclude false positives and to 
increase the precision. The experimental results, validated on two 
public datasets, demonstrate that the proposed method is robust 
against the common image-processing tricks used to produce 
duplicates. In addition, the memory requirement has been addressed 
in our system to handle large-scale database.   

Categories and Subject Descriptors: I.4.9 [Image 
Processing and Computer Vision]: Application 

General Terms Algorithms, Experimentation  

Keywords 
Duplicate, Feature, Indexing, Query, Database, Local-Similarity-
Pattern, Locality-Sensitive-Hashing 

1. INTRODUCTION 
One of the major issues encountered in the new century for internet 
is the shear growth in volume of multimedia data, as seen by the 
growth of the media-acquired hardware.  This growth in data also 
increased the importance of duplicate data detection from the 
perspectives of data storage, data mining and search engines.  

1.1 Duplicate Data  
What constitutes a duplicate could have several different 
definitions.  For instance, a duplicate can be defined as the exact 
syntactic terms and sequence, with or without formatting 
differences.  Thus, there are either no-differences, i.e. identical, or 
only formatting differences, and the content of the data is exactly 
the same.  In such a restrictive definition of duplicates, we can 
calculate a unique hash value or each data item and then examine 
for duplications by looking up the hash value (checksum) in either 
an in-memory hash or a persistent lookup system. Specific to 
images/videos, a duplicate is often not an identical copy but rather a 
transformed copy of the original source of images/videos using 
digital photometric or geometric transformations. In the literatures, 

the transformed copies are sometimes referred to as near duplicates 
of the source images/videos. While some of the transforemations are 
quite exotic – to ensure that each variant is unique and thus would 
not be detected by existing algorithms using cryptographic hash of 
the data, but visually all variants are very similar to the source 
image and to each other. Some real examples are shown in Figure 1.  

 

Near duplicates in two replica videos selected from MUSCLE-VCD-2007 [1], a 
corpus used for CIVR 2007 video copy detection evaluation.  

 

Near duplicates selected from the Art Image Database [2], a public dataset for 
evaluation of image copy detection purpose. Left to right, four techniques (framing, 
down-sampling, rotating and cropping) used to produce duplicates. 

Figure 1: Near duplicates of image/video in the real world 

1.2 Applications 
The ability of finding near duplicates efficiently in large data 
collections is of strong demand for several applications:    

 Reduce redundant contents on web: recent reports indicate 
that a high percentage, up to 40%, of the web contents is 
duplicates. This fact results in a huge waste of storage spaces 
and a longer retrieval time for a search query.  

 Image spam detection: Much of the recent increase in 
undetected spam can be attributed to the emergence of new 
and more sophisticated forms of image spam. Early anti-spam 
attempts to detect image spam included creation of a 
cryptographic hash for images in spam e-mails, so that, the 
same images could be detected when they are sent again. 
However, this technique was easily cracked by the spammers 
who create a unique variant of the spam image for each 
recipient by automatically adding some random visual effects 
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to each source image. Therefore, identifying duplicates is core 
task for image spam detection.  

 Illegal use of images/videos: Some studies reveal a large 
portion of the data on the internet is used illegally and infringe 
the copyrights. In fact, any image used on a website is a 
potential copyright infringement unless it is a personal photo, 
a graphic file generated by the owner of the source, or an 
image acquired from a photobank. Detection of duplicates in 
conjunction with a web crawler can be used to automate the 
detection of online copyright infringements. 

2. OVERIVEW  

2.1 Related Work 
2.1.1 Duplicate-Image Detection 
Detection of near-duplicate images has been investigated for years. 
In [3], Zhang et al. proposed near-duplicate detection by using the 
Stochastic Attribute Relational Graphing technique. With an image-
to-image comparison scheme, they show good results in terms of 
robustness and discrimination; however, the high computational cost 
limits its application to large-scale databases. In [4], Meng et al. 
employed the traditional Content-Based-Image-Retrieval (CBIR) 
framework for duplicate detection in a large data collection. 
Although their system is able to handle large-scale database, the 
proposed global image representation, e.g. color/texture feature, is 
not fully optimized on near-duplicate detection problem. Recent 
surveys [6][7] conducted an extensive comparison between global 
feature and local feature in near duplicate detection application. 
Both works conclude that local image descriptors are in general 
superior to global image descriptors in terms of accuracy, while at 
the cost of higher complexity of computing the features and more 
space for storing them.  
The design of using local image descriptors for duplicate detection 
was originated in [5] which has attracted good attentions since its 
publication. The success of their framework results from its three 
core features: using PCA-SIFT as a compact and distinctive local 
descriptor [8] to characterize the images, using Locality-Sensitive 
Hashing (LSH) [9] to cope with the large number of local image 
features, and using L2 distance and RANSAC [10] as the post-
verification steps to further eliminate false-matched features. To 
further speed up the query response, the authors proposed a 
hierarchically storage scheme to fit the core indexing structure, i.e. 
the Hash Tables, into the main-memory. However, their scheme 
requires a large number of hash tables (they used 20 hash tables in 
their experiments) in order to achieve the desirable level of accuracy. 
This requirement results in significant increase in both storage space 
and computation time, which in turn limit its application to large 
databases.  Our system is mostly inspired by Ke et al’s system [5], 
but particularly addresses the scalability limitation in their approach. 
Our unique feature design and efficient indexing structure allow us 
to handle 20X larger database compared to Ke et al’s method.  
Recent frameworks employing local feature and Locality Sensitive 
Hashing have been reported in [20, 23] with focus of accuracy other 
than addressing the scalability problem.   

2.1.2 Duplicate-Video Detection 
The explosive growth in broadcasting digital video content through 
internet to various end-user devices accelerates the demand for 
search of video copies in large video databases. MUSCLE-VCD-

2007 [1], a public video copy detection benchmark which contains 
about 100 hours of video materials assembled from a number of 
different sources, provides researchers an ideal driver for research 
and for evaluation of the various techniques with respect to the same 
data and settings. This live benchmark was organized during the 
ACM International Conference on Image and Video Retrieval 
(CIVR2007) in which a number of research teams participated in 
the public evaluation using this benchmark.  
For video duplicate detection, it has also been reported that local-
feature-based methods outperform the global-feature-based 
approaches in terms of accuracy [11]. For example, the near-
duplicate video detection system reported in [12], an enhancement 
from its earlier version of [13], demonstrated that the elaborated 
local spatiotemporal feature, combined with their specific matching 
algorithm, is robust with respect to the most complex and 
challenging transformations such as cropping and inserting. 
However, the system still suffers from the high overhead of 
computation time and storage space which limits its deployment to 
large databases and real-time applications.  

2.1.3 Discussions & Summary 
The choice of an image representation and an indexing structure 
affects both the amount of data stored per image and the time 
complexity of database search. In this section, we will give a brief 
summary of these two key issues that need to be addressed for 
building a near duplicate detection system.  

 Data Representation: There exist many known features for 
describing an individual image. An effective representation 
utilizes a set of features that can effectively capture the 
“essence” of any source image and that is sufficiently robust 
in presence of random noises. In particular, our application 
requires a design of image/video features which are relatively 
invariant with respect to the typical transformations applied to 
images/videos for producing near duplicates. In addition, the 
descriptor should be as compact as possible in order to address 
the scalability issue for handling large multimedia databases. 
Prior studies have concluded that local-feature-based methods 
consistently outperform global-feature-based methods, 
especially for duplicates resulting from complex 
transformations.  

 Indexing Structure: An efficient indexing structure is the 
most important factor for addressing the scalability problem of 
a database design.To our knowledge, one of the best-known 
and popular indexing methods is the Locality Sensitive 
Hashing (LSH) [9] which achieves high efficiency with very 
little compromise in accuracy for the duplicate detection 
applications [5].   

2.2 Our System 
The near duplicate detection system proposed in this paper, 
illustrated in Figure 2, adopts a local-feature-based framework along 
with a hierarchical indexing structure using the LSH technique. We 
represent an image or a video-frame using a set of local image 
patches. For each local patch, we design a descriptor, called Local-
Difference-Pattern (LDP), which is further encoded as a binary bit-
string for hashing. The database indexing follows a hierarchical 
structure which consists of three individual tables: the “File Table” 
and the “Feature Table” are stored in the hard disk to index the large 
collection of images/videos, and the “Hash Table”, the core part of 
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the indexing structure, is stored in the memory and is used for quick 
selection of candidate features for further L2/RANSAC verification 
during the search. The experimental results on two public datasets 
widely used for duplicates detection evaluation show that the 
proposed system can achieve a detection accuracy comparable to 
the best results reported in the literatures, while using significantly 
less processing time and storage space than the prior approaches, 
Overall, the key strengths of the proposed system can be 
summarized as follows:       

 Our unique feature, Local-Difference-Pattern (LDP), is the 
key contributor for the significant reduction in both 
computation cost and storage space. The LDP feature is 
encoded using only 72 binary-bits which facilitates very 
efficient hashing. In contrast, the feature used in Ke’s system 
[5] requires 9180 binary-bits for hashing. 

 Based on the LSH technique, the hierarchical indexing 
structure assures that the most frequent data access to the hash 
table occurs in the main memory. Only a small subset of 
“candidate” features are selected from the feature set for 
further L2/RANSAC verification which typically involves 
hard-disk access.  This design greatly reduces I/O costs yet 
still capable of finding near duplicates accurately.  

 The proposed framework is directly applicable to both still 
images and videos. To the best of our knowledge, this is the 
first system which reports results on both image and video 
datasets without special modification and customization with 
respect to specific media types while, at the same time, 
achieving an accuracy level comparable to the best prior 
results reported in the literatures for each media type.  

  Figure 2: Our system for near duplicate detection 

In the remainder of the paper, we first introduce the design of our 
features for characterizing images and its extension to video 
sequences, followed by the details of our indexing structure and the 
query process. We present the experimental results on two public 
datasets in Section 6 and conclude with a short discussion. 

3. FEATURE DESIGN 
Ideally, an image descriptor should be distinctive (for reliably 
distinguishing one image of interest from others), compact (to 
minimize storage space), and robust with respect to small shifts and 
random noises.  In this section, we first describe details of the Local-
Difference-Pattern (LDP) feature, followed by a discussion on its 

strengths and suitability for solving the target problem of duplicate 
detection. Finally we conduct a comparison, between the PCA-SIFT 
feature [8] used in [5] and our feature, using some real data to 
validate the power of the proposed LDP feature.    

3.1 Local-Difference-Pattern (LDP)  
We depict the key extraction steps of the Local-Difference-Pattern 
(LDP) feature in Figure 3 with the following details:  

Image Patch Detector: First we detect a set of interest points across 
the target image using the key-point localization algorithm 
described in [14] where the Scale-space extreme detection and the 
Orientation assignment are used to assure that the feature descriptors 
to be extracted are scale-rotation invariant.    

Image Patch Descriptor: We divide each detected image patch into 
a 3х3 equal-sized grid and compute the sum of the differences (SD) 
between corresponding pixels for each pair of grids. Then we 
compute the Average Difference Per Pixel (ADPP) by dividing SD 
by the number of pixels in a gird to construct a symmetric 9х9 
average difference matrix, each entry of which corresponds to the 
ADPP derived from a pair of grids. After discarding the diagonal 
entries (which have a value of zero) and the entries in the lower part 
of the matrix (as they are identical to the upper part in this 
symmetric matrix), we have our LDP descriptor of 36 dimensions. 
By employing the Integral Image [15] calculation technique, these 
features can be derived very efficiently – approximately 10X faster 
than the time required for extracting the original PCA-SIFT 
descriptor.        

Quantization and Encoding: We further quantize each of the 36 
LDP feature value into two binary-bits with respect to a threshold T: 
if the feature value is between T and 255, it will be encoded as ’11’. 
Similarly, it will be encoded as ‘10’, ‘01’ and ‘00’ if the feature 
value is in the ranges of  (0, T), (0, -T), and (-T, -255) respectively. 
As a result, the 36-dimensional descriptor is encoded into a 72-bit 
string, i.e. 9-byte long.  
It should be noted that if we encode each feature value by only one 
bit (i.e. “1” for a positive feature value and “0” for a negative 
feature value), the resulting 36-bit string will be nicely embedded 
into a Hamming space. In a Hamming space, the number of bits 
with different bit values between two bit-strings is directly 
proportional to the L1 distance between the two corresponding 
image descriptors. This special property is used in the development 
of the Locality-Sensitive-Hashing technique when designing our 
indexing structure. We will discuss this point in Section 4. 
Quantizing a feature value into two bits, instead of just one bit, 
offers greater discriminating power for the resulting encoded 
features. While the bit-string will no longer perfectly fit into the 
Hamming space, the bit-count difference of two bit-strings is still, 
statistically, strongly correlated to the L1 distances between the two 
feature descriptors.  
Extension for Video Sequences: As illustrated in Figure 3, we 
further extend the ADPP operation to two consecutive frames (thus, 
dealing with two 3x3 grids which results in 18x18 pairs of grids). 
This straightforward extension which establishes a temporal-spatial 
descriptor across the video frames only increases the size of the 
resulting bit-string from 72 bits to 288 bits without altering the 
process of computing the descriptor. With this straightforward 
extension, our indexing structure can be used for both image and 
video databases.       
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}

}
 

Figure 3: Extraction of Local-Difference-Pattern (LDP) and encoding. (a) At an image pixel. (b) At a video pixel. 
1)The keypoint localization algorithm described in SIFT paper[14] to detect a set of scale-rotation invariant image patches; 2)Applying ADPP 
operation to the pairs of a 3x3 equal-sized grid to construct a average difference matrix(ADM) . Integral image technique is employed in this 
step to speed-up the process; 3) Constructing  LDP feature based on  ADM; 4) Quantizing  each of the LDP value into two binary-bits with 
respect to a threshold T to form a bit-string for the following hashing indexing. 
 

3.2 Motivations and Strengths  
Our feature design was mostly inspired by the direct observations 
made on the duplicates commonly seen in practice. Most of the 
common transformations (color/contrast adjustments, blurring, 
down-sampling, etc.) can be simply compensated by computing the 
difference between two sub-regions. While noises added to the 
source image change some of its characteristics (color, intensity and 
even quality) as a whole, some of the intrinsic structures within the 
image are often not changed. The closet work to our LDP feature is 
self-similarity descriptor proposed by Eli and Michal in [16]. “self-
similarity descriptor” was designed to efficiently capture the 
internal self-similarities of any interest point within a target image. 
In their approach a local area was divides into grids and “Sum of 
Square Differences” between the center grid and the others was 
computed. However their particular design is not applicable for our 
application due to two reasons: First, the Integral Image technique 
cannot be applied to their “Sum of Square Differences” operation 
and thus their feature extraction process cannot be easily sped up to 
meet our needs. In addition, they simply concatenated all the 
difference values into one big feature vector without any 
quantization/encoding. Therefore, their feature descriptor is not 
compatible with the Locality-Sensitive-Hashing indexing structure.  

3.3 Invariant to Transformations 
For making a direct comparison between our LDP feature and the 
PCA-SIFT feature [8] used in [5], we designed two experiments 
based on the traditional image-matching task. The database used for 
this comparison contains 150 source images randomly selected from 
cgfa art image database [2] and 6000 duplicates (produced by 
applying 40 different transformations to each source).    

The first experiment was inspired by the matching scheme proposed 
in the original SIFT paper [14]. In their work, for each query feature, 
they calculate the ratio between its 1st and 2nd nearest-neighbors 
with respect to a collection of existing features. If the ratio is smaller 
than a pre-selected threshold, the 1st nearest-neighbor is considered 
as a match of the query. The rationale behind this rule is that a 
match to the query feature must have a sufficiently small distance to 
it. Such a scheme avoids the need for a threshold T to determine a 
match, and is also efficient for excluding the outliers. In our 
experiment, we first filter out the matches with the ratio between its 
1st and 2nd nearest-neighbors below a threshold (0.8 suggested in 
[14]) to find matched candidates of a source image to its 40 
transformed copies. For further removing false matches, we apply 
RANSAC [10] as post-verification step. A matched-point-ratio, 
defined as the number of matched features to the total number of 
features detected in a source image, is calculated for each source 
image. A good feature design which is robust with respect to various 
transformations should have a high matched-point-ratio for all 
source images. In the experiment, we compute the average ratio 
over all 150 source images with respect to each of the 40 
transformations. Figure 4 shows the comparison of the two ratio 
curves between the PCA-SIFT feature and the LDP feature. Overall, 
the LDP feature consistently achieves comparable matched-point-
ratio to that of the PCA-SIFT feature, and for some transformations 
the LDP performs even better than PCA-SIFT feature. 
The second experiment directly examines the L2 distance between 
the PCA-SIFT feature and the LSP feature under the same scenario. 
We simply calculate the pair-wise L2 distances between the feature 
set derived from the source image and the one derived from its 
transformed copy. Using a very strict threshold to determine a 
match, we identified matched pairs for further analysis. We compute 
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the average L2 distances derived from the matched pairs over 150 
source images with respect to each of the 40 transformations. Figure 
5 shows the comparison of two L2-distance curves between the 
PCA-SIFT feature and the LSP feature. We observed that the LSP 
features result in smaller L2 distances for all 40 transformations.  
In addition to the superior performance shown in Figures 4 and 5, 
deriving the LDP feature is about 10X faster and the feature size is 
about 130X more compact (72 bits vs. 9180 bits) for hashing than 
those for the PCA-SIFT feature. 

 

Figure 4: Matched-points-ratio for 40 transformations over 150 
source images selected from Art Image Database 

 
Figure 5: L2 distance for 40 transformations over 150 source 

images selected from Art Image Database 

4. DATABASE ORGANIZATION 
Indexing schemes have been widely studied in the domain of 
document and image retrieval systems. While the tree-based 
indexing structures [18] [19] return accurate results for any given 
query, most of them are not suitable for high-dimensional data such 
as audios, images and videos. Recently, Locality Sensitive Hashing 
[9] have been employed as the core indexing for approximate 
similarity search in large databases to achieve high efficiency 
without significant degradation in accuracy[5][6][20]. One major 
drawback of the LSH techniques is the requirement for a large 
number of hash tables in order to achieve sufficient search quality. 
In this paper, we introduce the integration of the proposed LDP 
feature into our indexing structure based on the LSH technique. We 
will explain how we achieve a dramatic reduction in the number of 
required hash tables, from 20 to 1, while maintaining a high 
accuracy.        
In this section, we first introduce our database organization, 
followed by the key concept of Locality-Sensitive Hashing for the 
indexing.  

4.1 Table Structure    
In Figure 6, we illustrate the structure of our database and also 
present a table which presents the storage requirements for an 
exemplar database containing 10k images. While this design is 
similar to the database structure proposed in [5], our key 
contribution is in the reduction on the number of hash tables 
required for achieving a desirable accuracy level which greatly 
improves the overall LSH efficiency. We briefly describe the 
objective and the design of each table in the following:    

 The File Table: This table stores a list of file names to locate 
the images or videos stored in the hard disk. Each record is 
200 bytes in length and the entire table occupies 2MB storage 
in disk for a database containing 10k records.  

 The Feature Table: In a local-feature-based framework, each 
image is represented by hundreds feature vectors. This table 
stores all local descriptors extracted from all images. In each 
entry, we use 4 bytes for the file ID to record the source image 
of this feature, 12 bytes for some geometry information (X 
and Y locations, scale, and orientation) for later RANSAC 
verification, and 36 bytes for the LDP descriptor. Assuming 
an average of 1,000 features per image for a dataset of 10K 
images, the Feature Table requires a storage space of 
approximately 520M. Apparently, this table has to be in the 
hard disk to assure the system scalability for much larger 
video/image databases in real applications.  

 The Hash Table: Locality Sensitive Hashing was originally 
designed to achieve its efficiency assuming the data are in the 
main memory, for which random access is fast. In our 
database structure, the key indexing structure is the Hash 
Table which basically establishes a direct mapping to the 
Feature Table by hashing a subset of the feature values using 
the LSH technique. Each entry of this table includes the 
feature ID, a link back to the Feature Table, and a 32-bits 
checksum for excluding false matches during hashing. This 
table helps effectively narrow the feature matches down to a 
small subset of candidates by hashing similar features in the 
high-dimensional space into the same bucket. Then more 
sophisticated distance metrics (or even taking the geometry 
information into account) are employed to further improve 
search precision. We discuss our hashing choice, the LSH 
technique, in the following. 

 
4.2 Locality Sensitive Hashing 
4.2.1 Preliminaries  
Locality Sensitive Hashing (LSH), proposed in [9], is an 
approximate nearest-neighbor search technique that works 
effectively even for high-dimensional data. A LSH scheme defines a 
family of hash functions operating on a collection of objects, such 
that for two objects x and y, 

          
Pr[ ( ) ( )] ( , ),
h F

h x h y sim x y
∈

= =
         (1) 

Where sim(x,y) is some similarity function defined on the collection 
of objects. In other words, highly similar objects will be hashed into 
the same bucket in the hash table with a high probability. The key 
task in an LSH indexing method is to design a set of specific hash 
functions that satisfy the criteria defined in Formula (1), so that we 
can approximate the nearest-neighbors for any query in O (1) time. 
This is a desirable property for any retrieval system which contains 
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a large collection of objects. One of the easiest ways to construct an 
LSH family is by bit sampling. This approach works for the 
Hamming distance over d-dimensional binary vectors {0,1}d. Here, 
the family of hash functions is simply the family of all the 
projections of points on one of the d coordinates, i.e.  

   (2)  

where xi is the ith coordinate of x. A random function h from 
simply selects a random bit from its input vectors.  

4.2.2 Implementation details 
In [5], Ke et al. adopted a set of locality-sensitive hash functions 
using the Hamming distance, originally introduced by Gionis et al. 
in [21]. They first map each 36-dimensional PCA-SIFT feature 
vector into a 9180-dimensional Hamming space by concatenating 
the unary representation of each (discredited) coordinate for each 
feature value in [0, 255]. They then randomly select a subset (450 
bits in their system) out of 9180 bits for hashing. Although their 
method is straightforward and easy to implement, it requires 20 hash 
tables for their implementation, each of which utilizes a unique 
subset for hashing, in order to achieve a desirable accuracy level. 
The LSH family employed in our hashing scheme follows a similar 
principle but has the following two distinct aspects:  

1) We map the 36-dimensional LDP vector into a 72-
dimensional near-Hamming space through a clever encoding 
scheme (described in Section 3.1), rather than concatenating 
the unary representation of each (discredited) coordinate for 
each feature dimension. This results in a significantly more 
compact representation (reducing from 9180 bits to 72 bits). 
In our experiment, we randomly chose 36 bits out of the 72-
bit string for hashing. With this choice, one hash table would 
be sufficient to achieve the same level of accuracy as that 
achieved by the setting of 20 hash tables reported in [5]. This 
dramatic improvement indicates that our 72-bit signature 
carries as much useful information as that in their 9180-bit 
signature. Therefore, one hash table in their system carries a 
much smaller fraction of the information (450 out of 9180 
bits) than that in our system (36 out of 72 bits).    

2) While we might be able to apply the same 
encoding/quantizing to the PCA-SIFT features to avoid the 
long bit string, the amount of information carried in the 
resulting shorter string would likely be significantly reduced. 
That is, the encoding works uniquely well for our LDP 
feature – it is not just a mathematical transformation, also 
making great sense as part of the feature self. After 
quantizing the difference between any pair of grids into a 
two-bit vector, the resulting bit-string does carry information 
regarding the intrinsic structure around each interest point. 
For example, a string with frequent patterns of “00” or “11” 
would indicate an image patch with high contrast between 
grids.  

 

Figure 6: Database organization with tables and exemplar 
storage space requirements for a database containing 10k 
images 

5. RESPONSE TO A QUERY  
Once we construct the indexing structure for the entire database we 
can process any query according to the following steps: 

1) Locate interest points on the query image and extract/encode 
the LDP features as described in Section 3. 

2) Perform LSH hashing to obtain a set of candidate features and 
acquire them in the feature table from the disk to the main 
memory as described in Section 4. 

3) To eliminate falsely matched features, compute the L2 
distance between the query feature and each of the candidates, 
and discard those candidates with a distance above a pre-
defined threshold. 

4) Look up the file table to acquire a set of candidate images for 
which the number of matches in the feature level is larger than 
a threshold. Further employ the RANSAC [10] algorithm for 
geometric verification to minimize the false matches in the 
image level.  

6. EXPERIMENTS 
In this section, we describe the experiment settings and present the 
experimental results on two widely used datasets: a) the Art Image 
Dataset, and b) MUSCLE-VCD-2007.  

6.1 Art Image Database   
Our first experiment is based on the Art Image Database [2] used for 
image duplicate detection evaluation. We randomly selected 150 
images, synthesized 40 duplicates for each selected image and 
added the rest in the database to the gallery as distractors to 
construct a database containing 10k images. We choose this 
standard database for a fair comparison to other existing work, 
however, the proposed method is able to handle much larger-scale 
database The experiment setting is nearly identical to that described 
in [5]. For reporting the results, we also use the same evaluation 
metrics of recall and precision defined in [5]. All of our 
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experiments are implemented in C++ and run on a PC with a 2.8 
GHz CPU and 4GB memory.  
In Table 1 we show the accuracy performance under the same 
experimental setting for five different approaches. As reported in [5], 
the system proposed in [4] achieved a recall of 90% and a precision 
of 67% for the Art Image Database. The next two reported numbers 
are directly cited from [22] which employs DCT fingerprint and 
FMT fingerprint respectively. The above two systems use a global-
feature-based representation, and neither of which can achieve a 
desirable accuracy level on both recall and precision. The two 
systems, reported in the last two rows of the table, employ a local-
feature-based framework along with the LSH technique as the core 
indexing structure. The results clearly indicate that the local-feature-
based systems perform extremely well in terms of accuracy. We 
should point out that the system proposed in [5] was re-implemented 
for our experiments, and therefore the reported accuracy numbers, 
while very close, are not completely identical to the data reported in 
[5] (with a recall of 99.85% and a precision of 100%). We believe 
this minor reduction in accuracy is mainly due to: 1) we used a 
different SIFT point detector for the purpose of easier integration, 
instead of the original Lowe’s binary detector used in [5]; 2) the 
random selection of the query images for the experiments inevitably 
introduces some randomness to the final results.  

Method Recall Precision 

Meng et al’s system [4] 90% 67% 

DCT fingerprint [22] 59.6% 100% 

FMT fingerprint [22] 33.7% 100% 

Ke et al’s system [5]: using 20 
hash tables (using 1 hash table) 

99.4% 
(92%) 

99.6% 
(99.8%) 

Our system using LSP + LSH: 
using 1 hash table  

98.9% 99.9% 

Table 1: Accuracy comparison for duplicate detection methods 
on the Art-Image Database 
In comparison with the system reported in [5], while achieving 
comparable results on accuracy, our system outperforms 
significantly in terms of the storage space and the computation 
cost: 

 In Ke et al’s system, 20 hash tables are used to achieve the 
reported accuracy in Table 1. If only 1 hash table is used for 
their system, the recall drops to 92%. Given the same, limited 
memory resources to store the core indexing of hash tables, 
our system can therefore handle 20X larger databases while 
achieving the same accuracy level.    

 As for computation time, we greatly speed up the extraction of 
the LSP feature by using the Integral Image technique -- 
approximately 10X faster than extracting a PCA-SIFT 
descriptor. Another significant saving in processing time 
results from the significantly less hashing time, which is 
proportional to the number of hash tables.    

6.2 MUSCLE-VCD-2007  
The corpus used for CIVR 2007 video copy detection evaluation is 
referred as MUSCLE-VCD-2007 [1]. It provides researchers an 
ideal driver for research and evaluation of various techniques. This 
dataset contains about 100 hours of video materials coming from 

different sources: web video clips, TV archives, and movies. The 
evaluation consists of two separate tasks (ST1 and ST2):   

Video Query (ST1): Copies of an entire video chip (from 5 minutes 
to 1 hour) as the query. The transformations includes re-encoded, 
noised, or slightly re-edited. The most challenging queries could be 
movies re-acquired by a camcorder.  

Video Stream Query (ST2): Queries include parts of several 
videos belonging (or not belonging) to the database. Sequences 
belonging to the database must be identified and localized by their 
start and end times. The length of an inserted segment is within the 
range of 1 second to 1 minute. 
The following new features are necessary to adapt our system for 
detecting video duplicates: 

 Frame Sampling Strategy: Given 100 hours of video 
materials with the standard 25 fps, the total number of video 
frames is close to 10 millions. For a local-feature-based 
framework, we have to design a clever sampling strategy for 
selecting a small subset of, while most valuable, frames to 
represent the target video. In our implementation, we compute 
the pixel difference between two consecutive video frames 
and only select those frame pairs with a large enough 
difference values for incorporation into the database. Such a 
sampling scheme will select frames typically occurred in the 
transitions of the videos. In our experiments, we found a small 
number of frame pairs (from 30 to 50) are sufficient to 
achieve a good accuracy for finding the duplicate videos in 
the database.     

 Extended LSP Feature: As described in Section 3.1, we 
establishes a temporal-spatial descriptor across the video 
frames which only increases the size of the resulting bit-string 
from 72 bits to 288 bits without altering the process of 
computing the LSP descriptor. With this straightforward 
extension, we do not need modify our indexing structure in 
the scenario of detecting video duplicates.       

 Voting Function: The direct output of our system still 
predicts a duplicate, or not, in the frame-level. To accumulate 
the frame-level results to a video-level label, we need a voting 
scheme. In our experiments, the simple majority voting is 
proven sufficient for achieving a desirable accuracy.           

Methods ST1 score ST1 search time 

Best Team in CIVR07 [1] 0.86 44 minutes 

Video mining system [12] * 0.93 23 minutes  

Our system using LSP + LSH 0.93 25 minutes 

*The reported time seems only accounting for the indexing part. If this is the case, 
the indexing in our system only takes seconds. The major computation is for 
decoding and feature extraction.   

Table 2: Performance comparison for duplicate detection 
methods for ST1 on MUSCLE-VCD-2007  

We should mention that, with a sparse frame-sampling strategy, our 
system is not very suitable for the task of ST2 whose duplicates 
could be of only 1-second long. Therefore, we only perform a 
comparison on the ST1 task, presented in Table 2. Our system still 
achieves the state-of-the-art performance in terms of both accuracy 
and computation time. 

79



7. CONCLUSION 
We demonstrate a system of detecting duplicated images and videos 
that matches the detection performance of existing state-of-the-art 
methods while using significantly less storage space and lower CPU 
runtime. Such reductions are achieved by integrating the LSH 
concept with the novel LSP feature design. Central to the success of 
our approach is the use of a much more compact feature (72 bits vs. 
9180 bits) which in turn results in a reduction of the required hash 
tables. 
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