
Near-Duplicate Detection for Images and Videos
Xin Yang Qiang Zhu Kwang-Ting Cheng

Dept. of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA
xinyang@umail.ucsb.edu qzhu@ece.ucsb.edu timcheng@ece.ucsb.edu

ABSTRACT
In this paper, we describe a system for detecting duplicate images
and videos in a large collection of multimedia data. Our system
consists of three major elements: Local-Difference-Pattern (LDP) as
the unified feature to describe both images and videos, Locality-
Sensitive-Hashing (LSH) as the core indexing structure to assure the
most frequent data access occurred in the main memory, and multi-
steps verification for queries to best exclude false positives and to
increase the precision. The experimental results, validated on two
public datasets, demonstrate that the proposed method is robust
against the common image-processing tricks used to produce
duplicates. In addition, the memory requirement has been addressed
in our system to handle large-scale database.

Categories and Subject Descriptors: I.4.9 [Image
Processing and Computer Vision]: Application

General Terms Algorithms, Experimentation

Keywords
Duplicate, Feature, Indexing, Query, Database, Local-Similarity-
Pattern, Locality-Sensitive-Hashing

1. INTRODUCTION
One of the major issues encountered in the new century for internet
is the shear growth in volume of multimedia data, as seen by the
growth of the media-acquired hardware. This growth in data also
increased the importance of duplicate data detection from the
perspectives of data storage, data mining and search engines.

1.1 Duplicate Data
What constitutes a duplicate could have several different
definitions. For instance, a duplicate can be defined as the exact
syntactic terms and sequence, with or without formatting
differences. Thus, there are either no-differences, i.e. identical, or
only formatting differences, and the content of the data is exactly
the same. In such a restrictive definition of duplicates, we can
calculate a unique hash value or each data item and then examine
for duplications by looking up the hash value (checksum) in either
an in-memory hash or a persistent lookup system. Specific to
images/videos, a duplicate is often not an identical copy but rather a
transformed copy of the original source of images/videos using
digital photometric or geometric transformations. In the literatures,

the transformed copies are sometimes referred to as near duplicates
of the source images/videos. While some of the transforemations are
quite exotic – to ensure that each variant is unique and thus would
not be detected by existing algorithms using cryptographic hash of
the data, but visually all variants are very similar to the source
image and to each other. Some real examples are shown in Figure 1.

Near duplicates in two replica videos selected from MUSCLE-VCD-2007 [1], a
corpus used for CIVR 2007 video copy detection evaluation.

Near duplicates selected from the Art Image Database [2], a public dataset for
evaluation of image copy detection purpose. Left to right, four techniques (framing,
down-sampling, rotating and cropping) used to produce duplicates.

Figure 1: Near duplicates of image/video in the real world

1.2 Applications
The ability of finding near duplicates efficiently in large data
collections is of strong demand for several applications:

 Reduce redundant contents on web: recent reports indicate
that a high percentage, up to 40%, of the web contents is
duplicates. This fact results in a huge waste of storage spaces
and a longer retrieval time for a search query.

 Image spam detection: Much of the recent increase in
undetected spam can be attributed to the emergence of new
and more sophisticated forms of image spam. Early anti-spam
attempts to detect image spam included creation of a
cryptographic hash for images in spam e-mails, so that, the
same images could be detected when they are sent again.
However, this technique was easily cracked by the spammers
who create a unique variant of the spam image for each
recipient by automatically adding some random visual effects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LS-MMRM’09, October 23, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-756-1/09/10...$10.00.

73

to each source image. Therefore, identifying duplicates is core
task for image spam detection.

 Illegal use of images/videos: Some studies reveal a large
portion of the data on the internet is used illegally and infringe
the copyrights. In fact, any image used on a website is a
potential copyright infringement unless it is a personal photo,
a graphic file generated by the owner of the source, or an
image acquired from a photobank. Detection of duplicates in
conjunction with a web crawler can be used to automate the
detection of online copyright infringements.

2. OVERIVEW

2.1 Related Work
2.1.1 Duplicate-Image Detection
Detection of near-duplicate images has been investigated for years.
In [3], Zhang et al. proposed near-duplicate detection by using the
Stochastic Attribute Relational Graphing technique. With an image-
to-image comparison scheme, they show good results in terms of
robustness and discrimination; however, the high computational cost
limits its application to large-scale databases. In [4], Meng et al.
employed the traditional Content-Based-Image-Retrieval (CBIR)
framework for duplicate detection in a large data collection.
Although their system is able to handle large-scale database, the
proposed global image representation, e.g. color/texture feature, is
not fully optimized on near-duplicate detection problem. Recent
surveys [6][7] conducted an extensive comparison between global
feature and local feature in near duplicate detection application.
Both works conclude that local image descriptors are in general
superior to global image descriptors in terms of accuracy, while at
the cost of higher complexity of computing the features and more
space for storing them.
The design of using local image descriptors for duplicate detection
was originated in [5] which has attracted good attentions since its
publication. The success of their framework results from its three
core features: using PCA-SIFT as a compact and distinctive local
descriptor [8] to characterize the images, using Locality-Sensitive
Hashing (LSH) [9] to cope with the large number of local image
features, and using L2 distance and RANSAC [10] as the post-
verification steps to further eliminate false-matched features. To
further speed up the query response, the authors proposed a
hierarchically storage scheme to fit the core indexing structure, i.e.
the Hash Tables, into the main-memory. However, their scheme
requires a large number of hash tables (they used 20 hash tables in
their experiments) in order to achieve the desirable level of accuracy.
This requirement results in significant increase in both storage space
and computation time, which in turn limit its application to large
databases. Our system is mostly inspired by Ke et al’s system [5],
but particularly addresses the scalability limitation in their approach.
Our unique feature design and efficient indexing structure allow us
to handle 20X larger database compared to Ke et al’s method.
Recent frameworks employing local feature and Locality Sensitive
Hashing have been reported in [20, 23] with focus of accuracy other
than addressing the scalability problem.

2.1.2 Duplicate-Video Detection
The explosive growth in broadcasting digital video content through
internet to various end-user devices accelerates the demand for
search of video copies in large video databases. MUSCLE-VCD-

2007 [1], a public video copy detection benchmark which contains
about 100 hours of video materials assembled from a number of
different sources, provides researchers an ideal driver for research
and for evaluation of the various techniques with respect to the same
data and settings. This live benchmark was organized during the
ACM International Conference on Image and Video Retrieval
(CIVR2007) in which a number of research teams participated in
the public evaluation using this benchmark.
For video duplicate detection, it has also been reported that local-
feature-based methods outperform the global-feature-based
approaches in terms of accuracy [11]. For example, the near-
duplicate video detection system reported in [12], an enhancement
from its earlier version of [13], demonstrated that the elaborated
local spatiotemporal feature, combined with their specific matching
algorithm, is robust with respect to the most complex and
challenging transformations such as cropping and inserting.
However, the system still suffers from the high overhead of
computation time and storage space which limits its deployment to
large databases and real-time applications.

2.1.3 Discussions & Summary
The choice of an image representation and an indexing structure
affects both the amount of data stored per image and the time
complexity of database search. In this section, we will give a brief
summary of these two key issues that need to be addressed for
building a near duplicate detection system.

 Data Representation: There exist many known features for
describing an individual image. An effective representation
utilizes a set of features that can effectively capture the
“essence” of any source image and that is sufficiently robust
in presence of random noises. In particular, our application
requires a design of image/video features which are relatively
invariant with respect to the typical transformations applied to
images/videos for producing near duplicates. In addition, the
descriptor should be as compact as possible in order to address
the scalability issue for handling large multimedia databases.
Prior studies have concluded that local-feature-based methods
consistently outperform global-feature-based methods,
especially for duplicates resulting from complex
transformations.

 Indexing Structure: An efficient indexing structure is the
most important factor for addressing the scalability problem of
a database design.To our knowledge, one of the best-known
and popular indexing methods is the Locality Sensitive
Hashing (LSH) [9] which achieves high efficiency with very
little compromise in accuracy for the duplicate detection
applications [5].

2.2 Our System
The near duplicate detection system proposed in this paper,
illustrated in Figure 2, adopts a local-feature-based framework along
with a hierarchical indexing structure using the LSH technique. We
represent an image or a video-frame using a set of local image
patches. For each local patch, we design a descriptor, called Local-
Difference-Pattern (LDP), which is further encoded as a binary bit-
string for hashing. The database indexing follows a hierarchical
structure which consists of three individual tables: the “File Table”
and the “Feature Table” are stored in the hard disk to index the large
collection of images/videos, and the “Hash Table”, the core part of

74

the indexing structure, is stored in the memory and is used for quick
selection of candidate features for further L2/RANSAC verification
during the search. The experimental results on two public datasets
widely used for duplicates detection evaluation show that the
proposed system can achieve a detection accuracy comparable to
the best results reported in the literatures, while using significantly
less processing time and storage space than the prior approaches,
Overall, the key strengths of the proposed system can be
summarized as follows:

 Our unique feature, Local-Difference-Pattern (LDP), is the
key contributor for the significant reduction in both
computation cost and storage space. The LDP feature is
encoded using only 72 binary-bits which facilitates very
efficient hashing. In contrast, the feature used in Ke’s system
[5] requires 9180 binary-bits for hashing.

 Based on the LSH technique, the hierarchical indexing
structure assures that the most frequent data access to the hash
table occurs in the main memory. Only a small subset of
“candidate” features are selected from the feature set for
further L2/RANSAC verification which typically involves
hard-disk access. This design greatly reduces I/O costs yet
still capable of finding near duplicates accurately.

 The proposed framework is directly applicable to both still
images and videos. To the best of our knowledge, this is the
first system which reports results on both image and video
datasets without special modification and customization with
respect to specific media types while, at the same time,
achieving an accuracy level comparable to the best prior
results reported in the literatures for each media type.

 Figure 2: Our system for near duplicate detection

In the remainder of the paper, we first introduce the design of our
features for characterizing images and its extension to video
sequences, followed by the details of our indexing structure and the
query process. We present the experimental results on two public
datasets in Section 6 and conclude with a short discussion.

3. FEATURE DESIGN
Ideally, an image descriptor should be distinctive (for reliably
distinguishing one image of interest from others), compact (to
minimize storage space), and robust with respect to small shifts and
random noises. In this section, we first describe details of the Local-
Difference-Pattern (LDP) feature, followed by a discussion on its

strengths and suitability for solving the target problem of duplicate
detection. Finally we conduct a comparison, between the PCA-SIFT
feature [8] used in [5] and our feature, using some real data to
validate the power of the proposed LDP feature.

3.1 Local-Difference-Pattern (LDP)
We depict the key extraction steps of the Local-Difference-Pattern
(LDP) feature in Figure 3 with the following details:

Image Patch Detector: First we detect a set of interest points across
the target image using the key-point localization algorithm
described in [14] where the Scale-space extreme detection and the
Orientation assignment are used to assure that the feature descriptors
to be extracted are scale-rotation invariant.

Image Patch Descriptor: We divide each detected image patch into
a 3х3 equal-sized grid and compute the sum of the differences (SD)
between corresponding pixels for each pair of grids. Then we
compute the Average Difference Per Pixel (ADPP) by dividing SD
by the number of pixels in a gird to construct a symmetric 9х9
average difference matrix, each entry of which corresponds to the
ADPP derived from a pair of grids. After discarding the diagonal
entries (which have a value of zero) and the entries in the lower part
of the matrix (as they are identical to the upper part in this
symmetric matrix), we have our LDP descriptor of 36 dimensions.
By employing the Integral Image [15] calculation technique, these
features can be derived very efficiently – approximately 10X faster
than the time required for extracting the original PCA-SIFT
descriptor.

Quantization and Encoding: We further quantize each of the 36
LDP feature value into two binary-bits with respect to a threshold T:
if the feature value is between T and 255, it will be encoded as ’11’.
Similarly, it will be encoded as ‘10’, ‘01’ and ‘00’ if the feature
value is in the ranges of (0, T), (0, -T), and (-T, -255) respectively.
As a result, the 36-dimensional descriptor is encoded into a 72-bit
string, i.e. 9-byte long.
It should be noted that if we encode each feature value by only one
bit (i.e. “1” for a positive feature value and “0” for a negative
feature value), the resulting 36-bit string will be nicely embedded
into a Hamming space. In a Hamming space, the number of bits
with different bit values between two bit-strings is directly
proportional to the L1 distance between the two corresponding
image descriptors. This special property is used in the development
of the Locality-Sensitive-Hashing technique when designing our
indexing structure. We will discuss this point in Section 4.
Quantizing a feature value into two bits, instead of just one bit,
offers greater discriminating power for the resulting encoded
features. While the bit-string will no longer perfectly fit into the
Hamming space, the bit-count difference of two bit-strings is still,
statistically, strongly correlated to the L1 distances between the two
feature descriptors.
Extension for Video Sequences: As illustrated in Figure 3, we
further extend the ADPP operation to two consecutive frames (thus,
dealing with two 3x3 grids which results in 18x18 pairs of grids).
This straightforward extension which establishes a temporal-spatial
descriptor across the video frames only increases the size of the
resulting bit-string from 72 bits to 288 bits without altering the
process of computing the descriptor. With this straightforward
extension, our indexing structure can be used for both image and
video databases.

75

}

}

Figure 3: Extraction of Local-Difference-Pattern (LDP) and encoding. (a) At an image pixel. (b) At a video pixel.
1)The keypoint localization algorithm described in SIFT paper[14] to detect a set of scale-rotation invariant image patches; 2)Applying ADPP
operation to the pairs of a 3x3 equal-sized grid to construct a average difference matrix(ADM) . Integral image technique is employed in this
step to speed-up the process; 3) Constructing LDP feature based on ADM; 4) Quantizing each of the LDP value into two binary-bits with
respect to a threshold T to form a bit-string for the following hashing indexing.

3.2 Motivations and Strengths
Our feature design was mostly inspired by the direct observations
made on the duplicates commonly seen in practice. Most of the
common transformations (color/contrast adjustments, blurring,
down-sampling, etc.) can be simply compensated by computing the
difference between two sub-regions. While noises added to the
source image change some of its characteristics (color, intensity and
even quality) as a whole, some of the intrinsic structures within the
image are often not changed. The closet work to our LDP feature is
self-similarity descriptor proposed by Eli and Michal in [16]. “self-
similarity descriptor” was designed to efficiently capture the
internal self-similarities of any interest point within a target image.
In their approach a local area was divides into grids and “Sum of
Square Differences” between the center grid and the others was
computed. However their particular design is not applicable for our
application due to two reasons: First, the Integral Image technique
cannot be applied to their “Sum of Square Differences” operation
and thus their feature extraction process cannot be easily sped up to
meet our needs. In addition, they simply concatenated all the
difference values into one big feature vector without any
quantization/encoding. Therefore, their feature descriptor is not
compatible with the Locality-Sensitive-Hashing indexing structure.

3.3 Invariant to Transformations
For making a direct comparison between our LDP feature and the
PCA-SIFT feature [8] used in [5], we designed two experiments
based on the traditional image-matching task. The database used for
this comparison contains 150 source images randomly selected from
cgfa art image database [2] and 6000 duplicates (produced by
applying 40 different transformations to each source).

The first experiment was inspired by the matching scheme proposed
in the original SIFT paper [14]. In their work, for each query feature,
they calculate the ratio between its 1st and 2nd nearest-neighbors
with respect to a collection of existing features. If the ratio is smaller
than a pre-selected threshold, the 1st nearest-neighbor is considered
as a match of the query. The rationale behind this rule is that a
match to the query feature must have a sufficiently small distance to
it. Such a scheme avoids the need for a threshold T to determine a
match, and is also efficient for excluding the outliers. In our
experiment, we first filter out the matches with the ratio between its
1st and 2nd nearest-neighbors below a threshold (0.8 suggested in
[14]) to find matched candidates of a source image to its 40
transformed copies. For further removing false matches, we apply
RANSAC [10] as post-verification step. A matched-point-ratio,
defined as the number of matched features to the total number of
features detected in a source image, is calculated for each source
image. A good feature design which is robust with respect to various
transformations should have a high matched-point-ratio for all
source images. In the experiment, we compute the average ratio
over all 150 source images with respect to each of the 40
transformations. Figure 4 shows the comparison of the two ratio
curves between the PCA-SIFT feature and the LDP feature. Overall,
the LDP feature consistently achieves comparable matched-point-
ratio to that of the PCA-SIFT feature, and for some transformations
the LDP performs even better than PCA-SIFT feature.
The second experiment directly examines the L2 distance between
the PCA-SIFT feature and the LSP feature under the same scenario.
We simply calculate the pair-wise L2 distances between the feature
set derived from the source image and the one derived from its
transformed copy. Using a very strict threshold to determine a
match, we identified matched pairs for further analysis. We compute

76

the average L2 distances derived from the matched pairs over 150
source images with respect to each of the 40 transformations. Figure
5 shows the comparison of two L2-distance curves between the
PCA-SIFT feature and the LSP feature. We observed that the LSP
features result in smaller L2 distances for all 40 transformations.
In addition to the superior performance shown in Figures 4 and 5,
deriving the LDP feature is about 10X faster and the feature size is
about 130X more compact (72 bits vs. 9180 bits) for hashing than
those for the PCA-SIFT feature.

Figure 4: Matched-points-ratio for 40 transformations over 150
source images selected from Art Image Database

Figure 5: L2 distance for 40 transformations over 150 source

images selected from Art Image Database

4. DATABASE ORGANIZATION
Indexing schemes have been widely studied in the domain of
document and image retrieval systems. While the tree-based
indexing structures [18] [19] return accurate results for any given
query, most of them are not suitable for high-dimensional data such
as audios, images and videos. Recently, Locality Sensitive Hashing
[9] have been employed as the core indexing for approximate
similarity search in large databases to achieve high efficiency
without significant degradation in accuracy[5][6][20]. One major
drawback of the LSH techniques is the requirement for a large
number of hash tables in order to achieve sufficient search quality.
In this paper, we introduce the integration of the proposed LDP
feature into our indexing structure based on the LSH technique. We
will explain how we achieve a dramatic reduction in the number of
required hash tables, from 20 to 1, while maintaining a high
accuracy.
In this section, we first introduce our database organization,
followed by the key concept of Locality-Sensitive Hashing for the
indexing.

4.1 Table Structure
In Figure 6, we illustrate the structure of our database and also
present a table which presents the storage requirements for an
exemplar database containing 10k images. While this design is
similar to the database structure proposed in [5], our key
contribution is in the reduction on the number of hash tables
required for achieving a desirable accuracy level which greatly
improves the overall LSH efficiency. We briefly describe the
objective and the design of each table in the following:

 The File Table: This table stores a list of file names to locate
the images or videos stored in the hard disk. Each record is
200 bytes in length and the entire table occupies 2MB storage
in disk for a database containing 10k records.

 The Feature Table: In a local-feature-based framework, each
image is represented by hundreds feature vectors. This table
stores all local descriptors extracted from all images. In each
entry, we use 4 bytes for the file ID to record the source image
of this feature, 12 bytes for some geometry information (X
and Y locations, scale, and orientation) for later RANSAC
verification, and 36 bytes for the LDP descriptor. Assuming
an average of 1,000 features per image for a dataset of 10K
images, the Feature Table requires a storage space of
approximately 520M. Apparently, this table has to be in the
hard disk to assure the system scalability for much larger
video/image databases in real applications.

 The Hash Table: Locality Sensitive Hashing was originally
designed to achieve its efficiency assuming the data are in the
main memory, for which random access is fast. In our
database structure, the key indexing structure is the Hash
Table which basically establishes a direct mapping to the
Feature Table by hashing a subset of the feature values using
the LSH technique. Each entry of this table includes the
feature ID, a link back to the Feature Table, and a 32-bits
checksum for excluding false matches during hashing. This
table helps effectively narrow the feature matches down to a
small subset of candidates by hashing similar features in the
high-dimensional space into the same bucket. Then more
sophisticated distance metrics (or even taking the geometry
information into account) are employed to further improve
search precision. We discuss our hashing choice, the LSH
technique, in the following.

4.2 Locality Sensitive Hashing
4.2.1 Preliminaries
Locality Sensitive Hashing (LSH), proposed in [9], is an
approximate nearest-neighbor search technique that works
effectively even for high-dimensional data. A LSH scheme defines a
family of hash functions operating on a collection of objects, such
that for two objects x and y,

Pr[() ()] (,),
h F

h x h y sim x y
∈

= =
 (1)

Where sim(x,y) is some similarity function defined on the collection
of objects. In other words, highly similar objects will be hashed into
the same bucket in the hash table with a high probability. The key
task in an LSH indexing method is to design a set of specific hash
functions that satisfy the criteria defined in Formula (1), so that we
can approximate the nearest-neighbors for any query in O (1) time.
This is a desirable property for any retrieval system which contains

77

a large collection of objects. One of the easiest ways to construct an
LSH family is by bit sampling. This approach works for the
Hamming distance over d-dimensional binary vectors {0,1}d. Here,
the family of hash functions is simply the family of all the
projections of points on one of the d coordinates, i.e.

 (2)

where xi is the ith coordinate of x. A random function h from
simply selects a random bit from its input vectors.

4.2.2 Implementation details
In [5], Ke et al. adopted a set of locality-sensitive hash functions
using the Hamming distance, originally introduced by Gionis et al.
in [21]. They first map each 36-dimensional PCA-SIFT feature
vector into a 9180-dimensional Hamming space by concatenating
the unary representation of each (discredited) coordinate for each
feature value in [0, 255]. They then randomly select a subset (450
bits in their system) out of 9180 bits for hashing. Although their
method is straightforward and easy to implement, it requires 20 hash
tables for their implementation, each of which utilizes a unique
subset for hashing, in order to achieve a desirable accuracy level.
The LSH family employed in our hashing scheme follows a similar
principle but has the following two distinct aspects:

1) We map the 36-dimensional LDP vector into a 72-
dimensional near-Hamming space through a clever encoding
scheme (described in Section 3.1), rather than concatenating
the unary representation of each (discredited) coordinate for
each feature dimension. This results in a significantly more
compact representation (reducing from 9180 bits to 72 bits).
In our experiment, we randomly chose 36 bits out of the 72-
bit string for hashing. With this choice, one hash table would
be sufficient to achieve the same level of accuracy as that
achieved by the setting of 20 hash tables reported in [5]. This
dramatic improvement indicates that our 72-bit signature
carries as much useful information as that in their 9180-bit
signature. Therefore, one hash table in their system carries a
much smaller fraction of the information (450 out of 9180
bits) than that in our system (36 out of 72 bits).

2) While we might be able to apply the same
encoding/quantizing to the PCA-SIFT features to avoid the
long bit string, the amount of information carried in the
resulting shorter string would likely be significantly reduced.
That is, the encoding works uniquely well for our LDP
feature – it is not just a mathematical transformation, also
making great sense as part of the feature self. After
quantizing the difference between any pair of grids into a
two-bit vector, the resulting bit-string does carry information
regarding the intrinsic structure around each interest point.
For example, a string with frequent patterns of “00” or “11”
would indicate an image patch with high contrast between
grids.

Figure 6: Database organization with tables and exemplar
storage space requirements for a database containing 10k
images

5. RESPONSE TO A QUERY
Once we construct the indexing structure for the entire database we
can process any query according to the following steps:

1) Locate interest points on the query image and extract/encode
the LDP features as described in Section 3.

2) Perform LSH hashing to obtain a set of candidate features and
acquire them in the feature table from the disk to the main
memory as described in Section 4.

3) To eliminate falsely matched features, compute the L2
distance between the query feature and each of the candidates,
and discard those candidates with a distance above a pre-
defined threshold.

4) Look up the file table to acquire a set of candidate images for
which the number of matches in the feature level is larger than
a threshold. Further employ the RANSAC [10] algorithm for
geometric verification to minimize the false matches in the
image level.

6. EXPERIMENTS
In this section, we describe the experiment settings and present the
experimental results on two widely used datasets: a) the Art Image
Dataset, and b) MUSCLE-VCD-2007.

6.1 Art Image Database
Our first experiment is based on the Art Image Database [2] used for
image duplicate detection evaluation. We randomly selected 150
images, synthesized 40 duplicates for each selected image and
added the rest in the database to the gallery as distractors to
construct a database containing 10k images. We choose this
standard database for a fair comparison to other existing work,
however, the proposed method is able to handle much larger-scale
database The experiment setting is nearly identical to that described
in [5]. For reporting the results, we also use the same evaluation
metrics of recall and precision defined in [5]. All of our

78

experiments are implemented in C++ and run on a PC with a 2.8
GHz CPU and 4GB memory.
In Table 1 we show the accuracy performance under the same
experimental setting for five different approaches. As reported in [5],
the system proposed in [4] achieved a recall of 90% and a precision
of 67% for the Art Image Database. The next two reported numbers
are directly cited from [22] which employs DCT fingerprint and
FMT fingerprint respectively. The above two systems use a global-
feature-based representation, and neither of which can achieve a
desirable accuracy level on both recall and precision. The two
systems, reported in the last two rows of the table, employ a local-
feature-based framework along with the LSH technique as the core
indexing structure. The results clearly indicate that the local-feature-
based systems perform extremely well in terms of accuracy. We
should point out that the system proposed in [5] was re-implemented
for our experiments, and therefore the reported accuracy numbers,
while very close, are not completely identical to the data reported in
[5] (with a recall of 99.85% and a precision of 100%). We believe
this minor reduction in accuracy is mainly due to: 1) we used a
different SIFT point detector for the purpose of easier integration,
instead of the original Lowe’s binary detector used in [5]; 2) the
random selection of the query images for the experiments inevitably
introduces some randomness to the final results.

Method Recall Precision

Meng et al’s system [4] 90% 67%

DCT fingerprint [22] 59.6% 100%

FMT fingerprint [22] 33.7% 100%

Ke et al’s system [5]: using 20
hash tables (using 1 hash table)

99.4%
(92%)

99.6%
(99.8%)

Our system using LSP + LSH:
using 1 hash table

98.9% 99.9%

Table 1: Accuracy comparison for duplicate detection methods
on the Art-Image Database
In comparison with the system reported in [5], while achieving
comparable results on accuracy, our system outperforms
significantly in terms of the storage space and the computation
cost:

 In Ke et al’s system, 20 hash tables are used to achieve the
reported accuracy in Table 1. If only 1 hash table is used for
their system, the recall drops to 92%. Given the same, limited
memory resources to store the core indexing of hash tables,
our system can therefore handle 20X larger databases while
achieving the same accuracy level.

 As for computation time, we greatly speed up the extraction of
the LSP feature by using the Integral Image technique --
approximately 10X faster than extracting a PCA-SIFT
descriptor. Another significant saving in processing time
results from the significantly less hashing time, which is
proportional to the number of hash tables.

6.2 MUSCLE-VCD-2007
The corpus used for CIVR 2007 video copy detection evaluation is
referred as MUSCLE-VCD-2007 [1]. It provides researchers an
ideal driver for research and evaluation of various techniques. This
dataset contains about 100 hours of video materials coming from

different sources: web video clips, TV archives, and movies. The
evaluation consists of two separate tasks (ST1 and ST2):

Video Query (ST1): Copies of an entire video chip (from 5 minutes
to 1 hour) as the query. The transformations includes re-encoded,
noised, or slightly re-edited. The most challenging queries could be
movies re-acquired by a camcorder.

Video Stream Query (ST2): Queries include parts of several
videos belonging (or not belonging) to the database. Sequences
belonging to the database must be identified and localized by their
start and end times. The length of an inserted segment is within the
range of 1 second to 1 minute.
The following new features are necessary to adapt our system for
detecting video duplicates:

 Frame Sampling Strategy: Given 100 hours of video
materials with the standard 25 fps, the total number of video
frames is close to 10 millions. For a local-feature-based
framework, we have to design a clever sampling strategy for
selecting a small subset of, while most valuable, frames to
represent the target video. In our implementation, we compute
the pixel difference between two consecutive video frames
and only select those frame pairs with a large enough
difference values for incorporation into the database. Such a
sampling scheme will select frames typically occurred in the
transitions of the videos. In our experiments, we found a small
number of frame pairs (from 30 to 50) are sufficient to
achieve a good accuracy for finding the duplicate videos in
the database.

 Extended LSP Feature: As described in Section 3.1, we
establishes a temporal-spatial descriptor across the video
frames which only increases the size of the resulting bit-string
from 72 bits to 288 bits without altering the process of
computing the LSP descriptor. With this straightforward
extension, we do not need modify our indexing structure in
the scenario of detecting video duplicates.

 Voting Function: The direct output of our system still
predicts a duplicate, or not, in the frame-level. To accumulate
the frame-level results to a video-level label, we need a voting
scheme. In our experiments, the simple majority voting is
proven sufficient for achieving a desirable accuracy.

Methods ST1 score ST1 search time

Best Team in CIVR07 [1] 0.86 44 minutes

Video mining system [12] * 0.93 23 minutes

Our system using LSP + LSH 0.93 25 minutes

*The reported time seems only accounting for the indexing part. If this is the case,
the indexing in our system only takes seconds. The major computation is for
decoding and feature extraction.

Table 2: Performance comparison for duplicate detection
methods for ST1 on MUSCLE-VCD-2007

We should mention that, with a sparse frame-sampling strategy, our
system is not very suitable for the task of ST2 whose duplicates
could be of only 1-second long. Therefore, we only perform a
comparison on the ST1 task, presented in Table 2. Our system still
achieves the state-of-the-art performance in terms of both accuracy
and computation time.

79

7. CONCLUSION
We demonstrate a system of detecting duplicated images and videos
that matches the detection performance of existing state-of-the-art
methods while using significantly less storage space and lower CPU
runtime. Such reductions are achieved by integrating the LSH
concept with the novel LSP feature design. Central to the success of
our approach is the use of a much more compact feature (72 bits vs.
9180 bits) which in turn results in a reduction of the required hash
tables.

8. REFERENCES
1. MUSCLE-VCD-2007, http://www.rocq.inria.fr/imedia/civr-

bench/index.html.
2. CGFA - A Virtual Art Museum, http://cgfa.sunsite.dk/.
3. D. Q. Zhang, S. F. Chang. Detecting Image Near-Duplicate

by Stochastic Attributed Relational Graph Matching with
Learning, In Proceedings of ACM International Conference
on Multimedia, New York, USA, October 2004.

4. Y. Meng, E. Y. Chang, and B. Li. Enhancing DPF for near-
replica image recognition. In Proceedings of IEEE
International Conference on Computer Vision,, Madison,
Wisconsin, June 2003.

5. Y. Ke, R. Sukthankar, and L. Huston. Efficient Near-
duplicate Detection and Sub-image Retrieval. In
Proceedings of ACM International Conference on
Multimedia, New York, USA, October 2004.

6. J. J. Foo, R. Sinha, and J. Zobel. Discovery of image
versions in large collections. In Proceedings of ACM
International Conference on Multimedia Modeling,
Singapore, January 2007.

7. B. Thomee, M. J. Huiskes, E. M. Bakker, and Michael S.
Lew. Large scale image copy detection evaluation. In
Proceedings of ACM International Conference on
Multimedia Information Retrieval, Vancouver, Canada,
October 2008.

8. Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive
representation for local image descriptors. In Proceedings of
IEEE Computer Vision and Pattern Recognition,
Washington, DC, June, 2004.

9. P. Indyk and R. Motwani. Approximate nearest neighbor -
towards removing the curse of dimensionality. In
Proceedings of Symposium on Theory of Computing, Dallas,
Texas, May1998.

10. M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6), June 1981.

11. L. T. Julien, C. Li, J. Alexis, L. Ivan , B. Olivier, G. B.
Valérie, B. Nozha, and S. Fred. Video copy detection: a

comparative study. In Proceedings of ACM International
Conference on Image and Video Retrieval, Amsterdam,
Netherlands, July 2007

12. S. Poullot and O. Buisson. Scalable mining of large video
database using copy detection. In Proceedings of ACM
International Conference on Multimedia, Vancouver,
Canada, October 2008

13. S. Poullot and O. Buisson. Z-grid-based probabilistic
retrieval for scaling up content-based copy detection. In
Proceedings of ACM International Conference on Image
and Video Retrieval, Amsterdam, Netherlands, July 2007

14. D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2),
pp. 91-110, 2004.

15. P. Viola and M. Jones. Robust Real-Time Face Detection,
International Journal of Computer Vision, 57(2), pp. 137-
154, 2004.

16. E. Shechtman and M. Irani. Matching Local Self-
Similarities across Images and Videos. IEEE Conference
on Computer Vision and Pattern Recognition, Minneapolis,
Minnesota, June 2007.

17. T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution
gray-scale and rotation invariant textureclassification with
local binary patterns. In IEEE Trans. Pattern Analysis and
Machine Intelligence, pages 971-987, Jul. 2002.

18. Beygelzimer, S. Kakade, and J. Langford. Cover trees for
nearest neighbor. In Proceedings of the 23rd International
Conference on Machine Learning, Pittsburgh, Pennsylvania,
June, 2006

19. R. Krauthgamer and J. R. Lee. Navigating nets: Simple
algorithm fir proximity search. In Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms, New
Orleans, LA, January 2004.

20. P. Jain, B. Kulis, and K. Grauman. Fast Image Search for
Learned Metrics. In Proceeding of the IEEE Conference on
Computer Vision and Pattern Recognition, Anchorage,
Alaska, June 2008.

21. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In Proceedings of International
Conference on Very Large Databases, Edinburgh, Scotland,
UK, September, 1999.

22. S.H. Srinivasan, Neela Sawant, Finding near-duplicate
images on the web using fingerprints, In Proceedings of
ACM International Conference on Multimedia, Vancouver,
Canada, October 2008.

23. O. Chum, J. Philbin, and A. Zisserman, Near-duplicate
image detection: min-hash and tf-idf weighting, In
Proceedings of British Machine Vision Conference, 2008.

80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

