

A Comparison of Three Code Generators for
Models Created in Simulink

Author Robert Hammarström och Josef Nilsson

Document Id 017

Date 14 September 2006

Availability Public
Status Final

A Comparison of Three Code Generators for
Models Created in Simulink

ROBERT HAMMARSTRÖM

JOSEF NILSSON

Master's Thesis
Computer Science and Engineering Program

CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
Division of Computer Engineering

Göteborg 2006

A Comparision of Three Code Generators for
Models Created in Simulink

ROBERT HAMMARSTRÖM

JOSEF NILSSON

Master's Thesis
Computer Science and Engineering Program

CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
Division of Computer Engineering

Göteborg 2006

 i

Abstract
As a part of the CEDES project, this report is involved in the work of developing cost

efficient dependable electronic systems. The purpose of the master’s thesis is to evaluate and

compare the three tools Real-Time Workshop Embedded Coder, TargetLink and SCADE

Drive. The comparison is based on functionality, compliance to relevant standards, integration

with other software and hardware as well as the quality of the generated code. The results are

focused on the differences between the tools. TargetLink is integrated in Simulink and is

found to have the best user friendliness and graphical interface. SCADE uses a different

environment and unlike Real-Time Workshop Embedded Coder and TargetLink it runs

without MATLAB and Simulink.

The implementation of fixed-point arithmetic is easily made in TargetLink. When working

with Real-Time Workshop Embedded Coder the implementation is made with a tool provided

in Simulink. This tool has some weaknesses compared to TargetLink and SCADE.

The means to verify and check the model is also provided in Simulink when working with

Real-Time Workshop Embedded Coder. SCADE have several methods available for

verification. These extra tools are not the only features distinguishing SCADE. The code

generated with SCADE is certified to the standard IEC 61508 and has proven to qualify to the

DO-178B standard.

Keywords:

CEDES, Automatic code generation, Simulink, TargetLink, SCADE, Model based

 ii

Sammanfattning
Detta examensarbete har utförts som en del i projektet CEDES för utveckling av

kostnadseffektiva metoder för felhantering och feltolerans för elektroniksystem i fordon.

Syftet med arbetet är att utvärdera och jämföra de tre verktygen Real-Time Workshop

Embedded Coder, TargetLink och SCADE Drive. Jämförelsen är baserad på funktionalitet,

överensstämmelse med standarder för säkerhetskritiska system, integration med annan mjuk-

och hårdvara samt kvalitet på genererad kod. Resultaten är sedan baserade på skillnader

mellan de olika verktygen. TargetLink är integrerat i Simulink och har det mest

användarvänliga grafiska gränssnittet. SCADE använder sig av en egen utvecklingsmiljö och

är i motsatt till Real-Time Workshop Embedded Coder och TargetLink helt oberoende av

MATLAB och Simulink.

Omskalning av en modell för fasttalsrepresentation görs smidigt i TargetLink och SCADE

medan Real-Time Workshop Embedded Coder använder sig av ett verktyg som finns i

Simulink. Detta verktyg innehåller några svagheter om man jämför med TargetLink och

SCADE.

Alla tre verktyg tillhandahåller flera möjligheter att verifiera och validera modeller. SCADE

är det verktyg som levererar de bästa lösningarna i detta syfte. Som en del i detta är

kodgeneratorn certifierad för standarden IEC 61508 och kan ingå som ett led i att utveckla

produkter certifierade till DO-178B.

 iii

Preface
This Master’s project has been carried out at SP, Swedish National Testing and Research

Institute in Gothenburg. It is part of a bigger project called CEDES, Cost Efficient

Dependable Electronic Systems.

We wish to thank our supervisors at SP, Håkan Edler and Jonny Vinter for their invaluable

help during this project. The technical support and friendly attitude from Jonas Cornelsen at

Fengco Real Time Control AB, Roger Aarenstrup and Hossein Mousavi at The MathWorks

AB and Paul Raistrick at Esterel Technologies Inc. has also been very helpful.

 iv

1 INTRODUCTION - 1 -

1.1 BACKGROUND - 1 -
1.2 PURPOSE - 1 -
1.3 PROBLEM DESCRIPTION - 2 -

2 STATE-OF-THE-ART - 3 -

2.1 MODEL-BASED SOFTWARE ENGINEERING - 3 -
2.2 CODE GENERATION TOOLS - 4 -
2.3 STANDARDS - 6 -
2.4 DEVELOPING SAFETY-CRITICAL SOFTWARE USING AUTOMATIC CODE GENERATION - 6 -
2.4.1 THE V-MODEL - 6 -
2.4.2 CODE GENERATORS AND STANDARDS - 7 -

3 METHOD - 9 -

3.1 METRICS - 9 -

4 RESULTS - 13 -

4.1 THE ENVIRONMENT - 13 -
4.2 PRODUCT MANUAL - 13 -
4.3 MODEL BLOCK SUPPORT - 14 -
4.4 VALIDATION AND VERIFICATION - 16 -
4.5 SCHEDULING AND INTEGRATION WITH RTOS - 18 -
4.6 FIXED-POINT - 18 -
4.7 CUSTOMISING THE GENERATED CODE - 19 -
4.8 OPTIMISATION OF THE GENERATED CODE - 20 -
4.9 STANDARDS - 20 -
4.10 METRICS - 22 -

5 CONCLUSIONS - 24 -

6 REFERENCE - 26 -

APPENDIX I - TERMINOLOGY - 28 -

 v

RTOS - 28 -
SCHEDULING - 28 -
FIXED-POINT ARITHMETIC - 28 -
AUTO-SCALING - 29 -
MEX-FILES - 29 -
S-FUNCTION - 30 -
SIMULATION MODES - 30 -

APPENDIX II – MATHWORKS REAL-TIME WORKSHOP EMBEDDED CODER - 31 -

DATA TYPES - 31 -
FIXED-POINT - 32 -
SUPPORT - 32 -
AUTO-SCALING - 32 -
GENERATED FILES - 33 -
VERIFICATION AND VALIDATION - 33 -
SCHEDULING AND INTEGRATION WITH RTOS - 35 -
CUSTOMISING THE GENERATED CODE - 35 -
CUSTOM CODE - 35 -
TARGET LANGUAGE COMPILER - 36 -
CUSTOM STORAGE CLASSES - 36 -
CREATING FUNCTIONS FROM SUBSYSTEMS - 36 -
SIGNAL PROPERTIES - 37 -
OPTIMISATION OPTIONS - 37 -
OPTIMISATION EXAMPLES - 39 -
EXAMPLE: INLINE PARAMETERS - 39 -
EXAMPLE: ELIMINATE SUPERFLUOUS TEMPORARY VARIABLES (EXPRESSION FOLDING) - 41 -

APPENDIX III - SCADE DRIVE - 44 -

DATA TYPES - 44 -
SIMULINK GATEWAY - 45 -
FIXED-POINT - 46 -
SUPPORT - 46 -
AUTO-SCALING - 46 -
GENERATED FILES - 46 -
VERIFICATION AND VALIDATION - 48 -

 vi

SCHEDULING AND INTEGRATION WITH RTOS - 48 -
CUSTOMISING THE GENERATED CODE - 49 -
SPLIT TO MULTIPLE FILES - 49 -
EXPANSION - 49 -
OPTIMISATION OPTIONS - 49 -
OPTIMISATION EXAMPLES - 50 -

APPENDIX IV – TARGETLINK - 54 -

DATA TYPES - 54 -
SIMULINK TO TARGETLINK - 55 -
FIXED-POINT - 56 -
SUPPORT - 56 -
AUTO-SCALING - 56 -
GENERATED FILES - 56 -
VERIFICATION AND VALIDATION - 57 -
SCHEDULING AND INTEGRATION WITH RTOS - 58 -
CUSTOMISING THE GENERATED CODE - 58 -
GENERAL BLOCK OPTIONS - 58 -
THE FUNCTION BLOCK - 59 -
ASSIGNING VARIABLES TO A MEMORY SECTION - 59 -
CUSTOM CODE BLOCK - 59 -
EXTENSIBLE MARKUP LANGUAGE - 60 -
OPTIMISATION OPTIONS - 60 -
OPTIMISATION EXAMPLES - 60 -
MENU - 63 -
DATA DICTIONARY - 63 -
BLOCKSET STAND-ALONE - 64 -
LIMITATIONS - 64 -
ENCOUNTERED PROBLEMS - 64 -

APPENDIX V - STANDARDS FOR SAFETY-CRITICAL SYSTEMS - 65 -

SAFETY STANDARD DO-178B/ED-12B - 65 -
SAFETY STANDARD IEC 61508 - 66 -
SAFETY CODE STANDARD MISRA C - 67 -
REFERENSER - 67 -

 vii

APPENDIX VI – THE ABS-MODEL - 68 -

APPENDIX VII - MODEL BLOCK SUPPORT - 69 -

REAL-TIME WORKSHOP EMBEDDED CODER NOTES - 88 -
TARGETLINK NOTES - 90 -
SCADE DRIVE NOTES - 98 -

APPENDIX VIII – METRICS - 105 -

UNSCALED - 107 -
FILE-BASED - 107 -
FUNCTION-BASED - 108 -
SCALED - 108 -
FILE-BASED - 108 -
FUNCTION-BASED - 109 -

APPENDIX IX – MISRA C COMPLIANCE - 111 -

A Comparision of Three Code Generators for Models Created in Simulink

 - 1 -

1 Introduction

1.1 Background

The Swedish Parliament stated a safety goal in 1997 called the “vision zero” (sv.

Nollvisionen) [1]. It aims to minimise severe injuries in car accidents. In order to reach this

goal both vehicles and roads have to be made safer. The construction of dependable and

secure cars requires new innovative solutions because of tighter time-to-market and budgets

in the automotive industry.

The CEDES (Cost Efficient Dependable Electronic Systems) project [2] is a cooperation

between academic institutes and automotive industries in Sweden. Its purpose is to develop

cost efficient technologies for safety critical electronic components suitable for vehicles. The

vision is to create a system where redundancy, in terms of error-correction and error-tolerance

is placed in the software. This approach aims to reduce costs by minimising the amount of

hardware used in each car. The software is developed for all vehicles opposite the hardware

that is individual for each car.

One of the goals of the CEDES project is to apply and utilise automatic code generation from

models when producing software. Both the control algorithm and the simulation of the

vehicles behaviour is created as models in Simulink. C code is then generated from the

models. There are several tools available for automatic code generation. Model based

software development has just started to get acceptance in the industry of safety critical

systems. The method has already shown good results in cutting down on development costs

and to provide a more lucid overview of the system during the development process.

1.2 Purpose

The aim of this master’s thesis is to analyse, compare and evaluate three different tools for

automatic code generation from models in Simulink. The tools being compared are Real-Time

Workshop Embedded Coder (RTW-EC) 4.3 from MathWorks [3], TargetLink 2.1.5 from

dSPACE [4] and SCADE (Safety-Critical Application Development Environment) Drive 5.1

from Esterel Technologies [5]. MATLAB (MATrix LABoratory) 7.1.0.246 (R14) Service

Pack 3 with Simulink 6.3 is the tool used for creating and reviewing models.

A Comparision of Three Code Generators for Models Created in Simulink

 - 2 -

1.3 Problem description

Automatic code generation from models is a fairly new technology. It is becoming an

accepted and applied method when creating software but a number of problems may arise.

This thesis is focused on these questions:

• How well does the generated code fulfil the rules of MISRA C?

• How can the generated code be verified to comply with existing standards for safety-

critical systems?

• How can models be validated?

• Are there additional tools required to validate models?

• Are only certain microcontrollers supported or is the generated code general?

• How does the program interact with other software like RTOS, interrupt routines,

drivers and existing code?

• What is the quality of the generated code in terms of readability, size and other code

metrics?

• How is the code optimised and what are the effects of optimisation?

• What are the limitations when handling Simulink models in the different tools?

• What is the support to return the models to Simulink?

• Are data types other than those using integer arithmetic supported?

A Comparision of Three Code Generators for Models Created in Simulink

 - 3 -

2 State-of-the-art

2.1 Model-Based Software Engineering

Model-Based Software Engineering (MBSE) can simply be explained as a way to lower the

abstraction level and a way to get a better overview of a project. The objectives of MBSE is to

shorten product cycle time and improve product quality and product maintainability. A big

step has been taken from the time when programs needed to be written in complex machine

code until now when advanced but still user-friendly graphical blocks can be used.

John Von Neumann created two important concepts in 1945 that would come to affect the

path of computer programming languages [6]. The first concept was known as “shared-

program technique" and stated that the computer hardware should be made simpler and

instead controlled by more advanced instructions. This should allow the computer to be

reprogrammed much faster than was possible before when the entire system had to be rewired

for each new program or calculation. The second concept, "conditional control transfer",

added to the ideas of small blocks of code that could be jumped to in any order, instead of a

list of instructions that needed to be executed in sequential order. "Conditional control

transfer" gave rise to the notion of libraries, which are blocks of code that can be reused over

and over again.

The first computer language, called Short Code, for electronic devices was invented in 1949,

but it required that the programmer translated its statements into 0’s and 1’s by hand. Still,

this was a step towards the advanced algorithms that is being used today.

In 1951, the first compiler was invented which started a new era with many different

programming languages. The development went against higher levels of computer language

which today has resulted in languages that are using graphical blocks instead of text.

The computing and information technology industry is a field renowned for complexity and

customers require more complicated functions and enhanced performance from the products

than ever. As an effect of this the demands on the software programmers have become more

onerous and difficult. As the number of components in a product increases, so does the

numbers of interactions, and thus the possibilities for failures and errors increases.

A Comparision of Three Code Generators for Models Created in Simulink

 - 4 -

Many of today companies have seen the advantage of working with models in one way or

another. MBSE has become an accepted and established way to develop embedded systems.

The number of benefits depends to a great extent on the model. To acquire the benefits from

MBSE, it has to be used in all the phases of the project, from developing algorithms, to testing

and calibration.

What is needed to create a realistic model is a conceptual approach to modelling that captures

vital knowledge of the system. The model should contain not only the structural and

functional properties but also its behavioural aspects. Another important characteristic that

should be held in mind is that the algorithms shall be reusable, meaning that it should be

possible to exploit algorithms in another application. Because of the strong connection

between the different steps in the development process (considering that algorithms can be

reused in other applications), much of the work can be reused, which focuses the development

time to the engineering of the model.

 The advantages of using MBSE are among others:

• Engineers can create reusable assets that satisfy a wide variety of uses

• Graphical design enables a high level of abstraction and overview

• Changes in existing software can easily be analysed to quickly compose or synthesize

new solutions for subsequent products

• Testing becomes a natural part of construction on all levels

• Higher productivity because of less work

• Fewer errors because of fewer sources

• Speeding up the development process

2.2 Code Generation Tools

Instead of producing code by hand a tool can automatically generate it from models. Blocks in

the model represent different operations, for example a mathematical or conditional operation.

Signals work their way through the blocks like variables change during execution of a

program.

A Comparision of Three Code Generators for Models Created in Simulink

 - 5 -

Figure 1 - Addition performed by a Simulink model

Listing 1 - Addition in a Simulink model (code generated by Real-Time Workshop Embedded Coder)

Automatic code generation from models is especially effective at eliminating syntax errors.

Code from a specific block in the model is generated exactly the same every time. As

described in Development of Safety-Critical Software Using Automatic Code Generation [7],

the potential for introducing errors with manual translation is high. By using an automatic

code generator, these errors are minimised and the code is kept consistent with the model

design. However, using a code generator is no guarantee for getting error free software. The

unlimited number of combinations of modelling constructs can lead to errors. Bad modelling

will also result in bad code. If the model contains logic errors, these errors will be transferred

to the code.

When generating code automatically, standardised functions, comments and documentation

are created. Thus the implementation and documents are kept up to date.

/* Model output function */
static void add_output()

{

 /* Outport: '<Root>/Out1' incorporates:

 * Sum: '<Root>/Add'

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 */
 add_Y.Out1 = add_U.In1 + add_U.In2;

}

A Comparision of Three Code Generators for Models Created in Simulink

 - 6 -

The transition from model to code differs between the available tools, but guidelines and

standards regulate the outcome. Some standards are very strict and require an extensive

certification process.

2.3 Standards

More and more products that are used in our daily life contain some kind of software. Some

of these systems are safety-critical, which means that software failures could have

catastrophic consequences for the user, especially in cars, aircrafts and other vehicles. To

minimize the risk for software failures, different standards and guidelines have been

developed. The standards for safety-critical software are among others, safety standard DO-

178B (see Appendix V), safety standard IEC 61508 (see Appendix V) and the safe code

standard MISRA C, The Motor Industry Software Reliability Association (see Appendix V).

2.4 Developing Safety-Critical Software Using Automatic Code

Generation

2.4.1 The V-model

Most standards for development of embedded systems can be modelled by the V-model. This

model covers all the steps from defining the system to the complete product and illustrates the

stages of the process. Problems detected during the system testing phase, which is carried out

late in the development cycle, are often very expensive to fix. Therefore it is desirable to

model and analyse the system during early design stages.

Designing a system according to the V-model includes the following phases.

A Comparision of Three Code Generators for Models Created in Simulink

 - 7 -

Illustration 1: The V-model [8]

Modelling tools like MathWork’s Simulink, dSPACE’s TargetLink or Esterel Technologies’

SCADE are used to design the models used through the work. These models can then be

improved and reused throughout the different phases of the V-model. The model can be,

automatically or by hand, translated into code which is implemented on the target hardware.

Hardware-in-the-loop mode simulations of the modules and the whole system are made

possible. The result is that software developers using modelling tools are provided with

automatic code generation and tests in an early stage (the left side of the V-model) of the V-

model.

2.4.2 Code generators and standards

All types of safety standards define a set of actions that have to be carried out to achieve a

desired safety level. These actions can generally be divided into three categories, selecting

development techniques and tools, implementing the system and verifying and validating the

system.

When generating code for safety-critical systems, different conditions and restrictions need to

be fulfilled. A code generator certified to IEC 61508 or qualifiable for DO-178B shall

produce code that can be used in safety-critical applications. The listing below shows some of

the features of the SCADE compiler [9] that ensures the high level of safety.

A Comparision of Three Code Generators for Models Created in Simulink

 - 8 -

• The tool is deterministic. The input model has a formal definition. Its meaning is

completely accurate and is formally defined by the SCADE language.

• The generated code is strictly deterministic. A specific input sequence will always

produce the same output sequence. There is no variation as a result of code generation

options selected. The behaviour is deterministic based solely on the input model.

• The generated code is safe. It only uses a small, safe subset of the C language. It

contains no dynamic memory allocation, no pointer arithmetic and the only loops are

bounded loops over delay buffers.

• The generated code is traceable to the input model.

A code generator can be certified to the IEC 61508 standard. This means that the generated

code is automatically certified to this standard. The DO-178B standard certifies the final

product. The SCADE code generator has been used in the development of products certified

to DO-178B and is said to be qualifiable to this standard.

A Comparision of Three Code Generators for Models Created in Simulink

 - 9 -

3 Method
When evaluating the three tools for code generation from models created in Simulink several

aspects are taken into account. Code generated from all three tools have been compared and

tested with the tool QA C1.

To generate code from the different tools a model from Volvo Technology has been used. The

model includes an ABS-system and a simulator of a vehicle. The vehicle part of the model

has been used for simulation purposes only and the code being compared has been generated

from the ABS-system.

Several aspects of the tools have been tested when evaluating. First is the environment

examined and characteristics like user friendliness and interface to settings compared.

The tools for verification and validation included in the tools and some of Simulinks extra

toolboxes have been tested and evaluated. Information about the verification and validation

tools has mainly been taken from the manuals.

Different ways to customise and optimise the code has been identified and tested. Code is

generated with various settings to verify the flexibility and functionality of the available

options. Additional models are created to see the effects of the optimisation options available.

Both optimised and non-optimised code is generated and compared. Most of the

customisation settings are tested, but some require knowledge of the target hardware and have

therefore been mentioned but not evaluated.

3.1 Metrics

In an attempt to find concrete values associated with the structure of the code generated from

the tools, a set of metrics are computed. The static measurements are calculated by counting

different properties in the C code.

The code used in the calculation of the metrics was generated from an ABS-system. Volvo

Technology provided the Simulink model which was converted to TargetLink and SCADE.

1 Programming Research Quality Assurance for C v 4.4.2

A Comparision of Three Code Generators for Models Created in Simulink

 - 10 -

The model was fairly simple and not designed to illustrate all aspects of safety-critical real-

time systems.

The tool used for the evaluation, QA C, provides a set of metrics, both function-based and

file-based. File-based metrics computes a value for each file and function-based present

values for each function.

In the report A comparison between handwritten and automatic generation of C code from

SDL using static analysis [10], a wide range of metrics are computed and used in the

comparison between handwritten and automatically generated C code. Among the properties

measured are the number of lines of code and the cyclomatic complexity. Both these metrics

are discussed in Metrics that matter [11], where extra credit is given to the number of code

lines metric. The value of this simple metric is presented as one of the best all-around error

predictors. A third measured value is the Halstead’s Program Level which showed useful

when applied on the code evaluated in Metrics that matter.

The metric lines of code is quite self explaining, it is the number of lines with executable

source code. The value can be calculated for a function (function-based) or a file (file-based).

In this report the metric is file-based.

Cyclomatic complexity (VG) or McCabe’s cyclomatic complexity [11] is the number of

independent paths through the flow graph calculated by:

2+−= neVG

where e is the number of connections between nodes and n is the number of nodes in the flow

graph.

The Halstead’s Program Difficulty is a metric of the complexity of the code in terms of

operators and operands. With a large number of operators and operands the code is considered

more difficult to understand.

To complete the list of metrics used in the comparison, the recommendations in Complexity

Analysis of Real Time Software – Using Software Complexity Metrics to Improve the Quality

A Comparision of Three Code Generators for Models Created in Simulink

 - 11 -

of Real Time Software [12] was added. The recommended intervals (Table 1) from this master

thesis is applied and used as guidelines. The maximum and minimum values are

recommendations made based on the correlation between the metric and errors in code.

Metric Interval

Cyclomatic Complexity 2-15

Maximum nesting of control structures 1-5

Estimated static path count 4-250

Number of function calls 1-10

Estimated function coupling 1-150

Halstead’s program difficulty -

Number of executable lines 1-70

Table 1 - Limits for software metrics

The maximum nesting of control structures metric measure the maximum control flow

nesting. An if-statement with one if and one else condition results in a nesting of two. With an

else-if condition added to the statement the value of the metric is increased to three.

An upper bound of the number of paths in the control flow is given by the estimated static

path count. The value of this metric is larger or equal to the actual path count which is larger

or equal to the cyclomatic complexity.

The number of function calls metric is as the name suggests the total number of calls to

functions. It is not the number of unique functions but the total number of calls to functions.

Estimated function coupling (STFCO) is a simplified version of the function coupling metric.

The value is calculated from the two metrics, number of function calls (STSUB) and number

of function definitions (STFNC).

1)(+−= ∑ STFNCSTSUBSTFCO

A Comparision of Three Code Generators for Models Created in Simulink

 - 12 -

All tools generate a <’model’.c> file, where ‘model’ is the name given to the model. This file

contains the functions for initialisation, reading input, calculation and updating of output and

termination. The metrics presented in this report are based either on the file <‘model’.c> (file-

based metric) or the functions in that file (function-based metric). Since the three tools

generate different sets of functions, the results in this report are presented as file-based, in

order to get comparable values. Not all metrics used in the comparison can be calculated as

file-based by QA C. Therefore, the function-based metrics are translated to file-based

manually.

Figure 2 – Illustration of different baisis for metrics

Function{

.

.

.

}

Main{

.

.

.

}

Function-
based metric

File-based
metric

A Comparision of Three Code Generators for Models Created in Simulink

 - 13 -

4 Results

4.1 The environment

Both Real-Time Workshop Embedded Coder and TargetLink use the Simulink environment,

but to enable code generation with TargetLink, the model needs to be converted first. The

conversion between Simulink and TargetLink can be done automatically since many blocks

are supported (for a complete list of supported blocks see Appendix VI).

Real-Time Workshop Embedded Coder is a product from MathWorks. It is integrated in the

Simulink environment and requires no conversion of models before code can be generated.

The third tool in the comparison is SCADE. It uses a totally different environment for

simulation and code generation and therefore a model created in Simulink needs to be

translated. Because of the different environment, some settings can be lost in the translation.

A translation of a model can be troublesome if it is designed badly or in a non deterministic

way. For example in Simulink you do not have to specify the datatype through the model (can

be specified as “auto”). In SCADE every datatype needs to be specified to be able to simulate

the model.

Both TargetLink and SCADE have support for creation of models without first designing it in

Simulink. The scope of this report is not to compare this feature. Instead all models are

created in Simulink before they are used in any of the compared tools.

The settings for code generation in TargetLink are all gathered under one dialogue. The

dialogue has a simple interface which makes it easy to understand even for an inexperienced

user. In Real-Time Workshop Embedded Coder the option pane is more complicated, but

provides more options for optimisation of the code (see 4.9).

4.2 Product manual

The manuals provided for the tools are overall good. MathWorks provides a comprehensive

search engine on their homepage that contains information about almost everything

concerning the Simulink and Real-Time Workshop Embedded Coder environment. Every

setting in every pane is explained carefully, making it easy to find information about any

A Comparision of Three Code Generators for Models Created in Simulink

 - 14 -

option. The searchable help on the website contains the same help available within

MATLAB, but provides some extra features like an FAQ section. This extensive set of

documentation, both offline and online, makes technical data easily available to users.

The help in TargetLink is also thorough and explains the different settings well. However, it

can sometimes be difficult to find a specific topic, despite the help button found in the

dialogue of all TargetLink blocks.

Retrieving technical information in SCADE can sometimes be difficult. The help given in

SCADE is focused on solving different problems associated with development and

configuration of models. Documentation of technical data is limited to the SCADE Technical

Manual which explains many features but is not as detailed as the one provided by

MathWorks.

4.3 Model Block support

None of the tools can generate code from all blocks provided by Simulink. To begin with,

continuous blocks are not intended for an embedded target. Real-time systems are executed

with a sampling rate which is why only discrete blocks are used. Other blocks irrelevant for

code generation are for example some of the blocks found in the Simulink Source and Sink

libraries. These blocks are used in simulation to log or generate signals and will either be

ignored or reporting an error when generating code.

Real-Time Workshop Embedded Coder supports all blocks relevant for code generation and

has the fewest limitations to Simulink models. RTW-EC has also support for many of the

blocksets that are available for Simulink. TargetLink supports many blocks, but limitations

associated with some of them prevent full compatibility with the corresponding Simulink

block. An example of a limitation is the state port on the Discrete-Time Integrator block. For

TargetLink to support this block the state port needs to be disabled before conversion of the

model.

The user-defined and complex functions like the Embedded MATLAB function, the n-

dimensional Look-up table and all matrix functions are blocks only supported by Real-Time

Workshop Embedded Coder. SCADE and TargetLink both support insertion of legacy-code,

where operations not provided by predefined blocks can be inserted. Real-Time Workshop

A Comparision of Three Code Generators for Models Created in Simulink

 - 15 -

Embedded Coder not only supports this feature, but since it provides many of the blocks from

the Simulink library, like the Embedded MATLAB function, the user is offered additional

options when designing systems.

Simulink subsystems have a set of options controlling their behaviour. They can for example

be conditionally executed based on If-statements or treated as atomic units1. SCADE supports

many of the different ports and subsystems available in Simulink. The difference is that the

settings become hard-coded when importing a model into SCADE and loops are not allowed,

eliminating for and while iterations. This because loops can present a threat to the

determinism of the resulting software.

Lack of support for a specific block does not necessarily mean that the desired operation can

not be performed, since Simulink provides blocks that combine a set of blocks in one. This

feature in Simulink will affect the conversion to TargetLink and SCADE and the user may

want to bear this in mind when designing a system.

1 Subsystems are by default virtual in Simulink. This kind of grouping is only graphical and has no meaning

when simulating or generating code. If the subsystem is atomic it is treated as a unit and the structure inside it is

not visible to the outside system.

A Comparision of Three Code Generators for Models Created in Simulink

 - 16 -

TargetLink
Code Generator

Real-Time
Workshop

Embedded Coder
Code Generator

SCADE
Code Generator

Conversion Conversion

C code

Simulink
model

Model
created in
TargetLink

Model
created in
SCADE

TargetLink
model

SCADE
model

Figure 3 - From model to code

The above figure shows the different paths from model to generated code. This illustrates that

Real-Time Workshop Embedded Coder uses Simulink models. The TargetLink and SCADE

tools can create their own as well as import models from Simulink.

4.4 Validation and verification

A key issue in model based programming is the accuracy of the model. When designing the

system there is often a need to simulate reality which can be complicated. Another source for

errors is the special requirements of real-time systems, for example the necessity of correct

timing. To meet these requirements, extensive surveys have to be performed on the model.

Simulink, TargetLink and SCADE provide different tools to validate and verify models. All

three manufacturers also provide additional tools that can be used to make more extensive

tests on the model and the generated code.

A Comparision of Three Code Generators for Models Created in Simulink

 - 17 -

SCADE and Simulink have a tool that examines the model and reports blocks that are found

unreachable. This is made to prevent existence of unnecessary blocks in the model.

TargetLink does not provide this test, but has an additional tool that checks the generated

code. The tool goes through every branch in the code to make sure that no unreachable

operations have been generated.

All three tools can verify models and check if a signal stays within a specified range.

Simulink provides different blocks that assert when a signal leaves a specified range or limit.

TargetLink fully supports this set of blocks provided by Simulink. SCADE’s tool for

verification has the same properties as the blocks in Simulink but also provides some other

useful features. More advanced requirements can be specified in SCADE. In Simulink

properties based on simulation can only be carried out, SCADE however checks for every

possible value mathematically. For example, it is possible to check mathematically if two

signals can be true at the same time or not, regardless of the inputs to the model. This is made

possible through that a model in SCADE is based of a formal language called LUSTRE.

To validate and verify that the code has fulfilled the requirements, TargetLink provides three

simulation modes, model-in-the-loop (MIL), software-in-the-loop (SIL) and processor-in-the-

loop (PIL). MIL mode simulates the model and checks controller design and parameterisation

as well as behaviour. SIL mode runs the generated code on the host computer and is among

other things used to check fixed-point scaling. In Simulink, an S-function (see Appendix I) is

created and replacing the original model when performing a SIL mode simulation. PIL mode

simulation runs the code on the target processor. Data may be logged in the different modes

and compared against each other.

SCADE provides an ability to verify that the functionality of a Simulink model still maintains

after conversion. This can be performed by creating an S-function from the imported model.

The S-function is then inserted as a block in Simulink allowing interaction with models of the

environment.

Simulink provides a useful tool that checks a model for conditions, blocks and settings that

can be inappropriate for embedded systems. The tool has two parts, one that checks the model

and one that checks the settings for code generation by Real-Time Workshop Embedded

A Comparision of Three Code Generators for Models Created in Simulink

 - 18 -

Coder. The tool can therefore be used on a model before converting it to a TargetLink or

SCADE model.

4.5 Scheduling and integration with RTOS

No sampling times can be specified in SCADE models. This distinguishes SCADE from both

Real-Time Workshop Embedded Coder and TargetLink, but the differences become less

remarkable when comparing the generated code. None of the tools control the sampling time

of the application, only execution rate as multiples of the sampling time is managed. If

different sampling times are specified in TargetLink or Real-Time Workshop Embedded

Coder models, code can be generated consisting of a specific task for each sampling

frequency. These tasks are then made available to the user, either through a single function or

as separate functions. Real-Time Workshop Embedded Coder supports both types whereas

TargetLink and SCADE only support separate.

To ensure data integrity and determinism when exchanging data between tasks, Real-Time

Workshop Embedded Coder and TargetLink use Rate-Transition blocks. This block ensures

that data is transferred safely and not interrupted if for example pre-emption of a task would

occur. The need for Rate-Transition blocks is not always obvious to the user, which is why

Real-Time Workshop Embedded Coder can insert these automatically. This feature is not

available in TargetLink. In SCADE there is no Rate-Transition block since it is considered

outside the scope of the tool.

4.6 Fixed-Point

All three tools handle fixed-point arithmetic. There are some differences though. Real-Time

Workshop Embedded Coder supports the fixed-point settings available in Simulink. These

settings include integers of arbitrary bit size, slope and bias. TargetLink only support integers

of 8, 16 or 32 bits. The slope and bias settings can be entered in TargetLink if translated to

LSB (least significant bit) and offset. SCADE only support the LSB setting and offset by

default. Further configurations, like the slope setting can be made available through scripts.

To determine the optimal value of this settings and the choice of data type there are three

different procedures available.

If the model is to be used in SCADE, fixed-point scaling should be done after conversion.

During translation no fixed-point settings specified in the model are preserved. Since

A Comparision of Three Code Generators for Models Created in Simulink

 - 19 -

Simulink is a tool for modelling and not for generating code for embedded systems there is no

need for scaling before conversion to SCADE. Fixed-point scaling is target-specific and

performed when the modelling of the system is finished. Therefore it is not an issue until after

conversion. TargetLink preserves fixed-point settings when converting the model.

The auto-scaling tools available in the three environments provide automatic scaling with

varying success. In TargetLink all blocks relevant for scaling have options for it. Ranges can

be specified in dialogues and simulation or worst-case propagation values are displayed in the

same window. SCADE has an interface similar to TargetLink. Auto-scaling is done with the

implement-tool that creates a new model with a wrapper node at top most level of the system.

This extra node converts the scaled signals of the in- and outputs to unscaled real values.

Automatic scaling can be achieved in Real-Time Workshop Embedded Coder as well, but the

tool is not very user friendly and does not support worst-case propagation of ranges.

4.7 Customising the generated code

All tools have different settings to customise the code to a way that suits the developer. One

basic property that all three tools have is the possibility to add custom code to a model. The

added custom code will then be generated along with the rest of the model.

The three tools also provide the possibility to create separate functions for the different

subsystems and nodes or to create one function that covers the whole model. Separate files

can also be generated for separate functions. The signals to and from the model or subsystem

can be handled as arguments, pointers or as global variables. There are no big differences

between the tools in terms of flexibility in creating different functions and creating arguments

to these. However, SCADE generates function arguments by default insted of using global

variables.

When Real-Time Workshop Embedded Coder generates code from different blocks it uses

Target Language Compiler (TLC) files. These files provide information on how every block

should be translated to code. To change the code generated from a specific block, these files

can be edited. Editing TLC files is a very flexible way to customise the generated code, but it

requires knowledge of the TLC.

A Comparision of Three Code Generators for Models Created in Simulink

 - 20 -

TargetLink and Real-Time Workshop Embedded Coder have a feature to allocate which

memory section variables should be stored in. TargetLink will automatically generate the

statements required (pragmas etc). However, this feature is not supported by the ANSI-C

standard.

4.8 Optimisation of the generated code

Real-Time Workshop Embedded Coder provides many different options for optimisation.

TargetLink and SCADE do not have the same freedom of choice. However, with full

optimisation chosen, the differences between the Real-Time Workshop Embedded Coder and

TargetLink produced code are small. The SCADE generated code is not as optimised due to

the high level of traceability between the generated code and the model.

4.9 Standards

The three tools have different areas of use. SCADE is a tool mainly used in the aerospace and

defence business but is now advancing in safety-critical automotive embedded software.

TargetLink and RTW-EC are mainly used in the automotive area but also have some

applications in the aerospace area.

There are several safety standards for safety critical systems and the three tools generate code

that fits these standards more or less. SCADE is however the only tool that generates code

with a certified code generator. SCADE’s code generator generates code that is certified to the

standard IEC 61508. Code generated from SCADE has also proven safe enough for use in

products certified to DO-178B. Generating certified code has several benefits which mainly

shorten the test and certification process. Code generated from Real-Time Workshop

Embedded Coder and TargetLink is also suited for safety related systems but requires more

testing. A disadvantage of using a certified code generator is that updates of the generator can

not be released as frequently because of the time-consuming certification process.

All three code generators follow most of the rules of MISRA C. TargetLink and SCADE has

tested their code generators to the rules of MISRA C (2004) and Real-Time Workshop

Embedded Coder to MISRA C (1998) which makes them hard to compare. The rules of

MISRA C (1998) contain 93 mandatory and 34 advisory rules and MISRA C (2004) contains

121 mandatory and 20 advisory rules. Some of the rules in MISRA C (1998) have been

A Comparision of Three Code Generators for Models Created in Simulink

 - 21 -

removed from the MISRA C (2004). The table below shows how many of the rules the

different code generators comply with.

Compliance Code generator

Full Configurable Partial None1

TargetLink (MISRA C 2004) 79 24 14 24

SCADE (MISRA C 2004) 99 35 0 7

RTW-EC (MISRA C 1998) 109 13 0 5

1: Some of the rules that are not supported do not depend on the code generators. Some

rules of MISRA C are not applicable for automatic code generators.

Table 2 – Compliance to the rules of MISRA C

Full compliance means that a rule is always met when generating code.

Configurable compliance means that the rule can be fulfilled if certain block or code options

are set, it is also possible that restrictions on the model needs to be set.

Partial compliance means that the rule has several statements and that some but not all are

fulfilled.

None compliance means that the rule is not supported.

A Comparision of Three Code Generators for Models Created in Simulink

 - 22 -

4.10 Metrics

Metric RTW-EC TargetLink SCADE Interval1

Cyclomatic Complexity 11 19 20 2-15

Maximum nesting of control

structures

3 2 1 1-5

Estimated static path count 572 34992 1E+05 4-250

Number of function calls 0 0 0 1-10

Estimated function coupling 0 0 0 1-150

Halstead’s program difficulty 11,12 18,55 19,99 -

Number of executable lines 45 77 144 1-70

1: Recommended metric value from “A comparison between handwritten and automatic generation of C code from

SDL using static analysis” [10]

2: See the explanation of estimated static path count.

Table 3 – Different metrics

Cyclomatic complexity is considered an important metric which provides insight into

reliability and maintainability. Real-Time Workshop Embedded Coder is the only tool with a

value that is considered within the acceptable interval. Some strict programming standards

state that the value shall not exceed ten. With this interval, code from none of the tools has

acceptable values.

The estimated static path count value of the SCADE generated code is outside the

recommended interval. TargetLink also produces code with a value outside the interval. Real-

Time Workshop Embedded Coder on the other hand, has an estimated static path count within

the interval. One of the reasons for this is that Real-Time Workshop Embedded Coder defines

the maximum and saturation operations externally. These operations contain if-statements

which would add to the value of the metric if they where included in the evaluation.

The Halstead program difficulty metric does not state a clear limit but a value close to 1 is

recommended. None of the tools generate code complying with this criterion, but the value

got from the Real-Time Workshop Embedded Coder code is almost half the value of

TargetLink’s and SCADE’s.

A Comparision of Three Code Generators for Models Created in Simulink

 - 23 -

The high optimisation level of Real-Time Workshop Embedded Coder is illustrated by the

maximum nesting of control structures metric. The value three is the largest of the tools but it

is still below the upper limit of the interval. SCADE, which has a metric value of one, has a

very simple control structure where if-statements only have one path. Hence, there are no else

or if-else paths.

The number of function calls and estimated function coupling are zero simply because the

code is not divided into functions by either of tools.

When code is generated with SCADE, the model blocks can be generated to separate

functions or combined in one function. The code used to evaluate the metrics was generated

as one function. The reason for this is to get a comparable set of files that could be put side by

side with the code from Real-Time Workshop Embedded Coder and TargetLink. As a result

of this the code became quite complex and exceeded several of the interval limits

recommended for real-time systems.

Another reason contributing to the more complex code generated from SCADE is the limited

optimisation of the code due to the traceability requirements between generated code and

model (see section 4.9).

A Comparision of Three Code Generators for Models Created in Simulink

 - 24 -

5 Conclusions
The goal of this master thesis was to compare three different tools for code generation. Many

different properties has been tested and evaluated. A summary of some important properties

has been collected in table 4, shown below.

 Simulink
support

User-
friendliness

Customisation
options

Standard
compliance

Verification
tools

Fixed-
Point

RTW-EC High Medium High Low-

Medium

Medium Low-

Medium

TargetLink Medium High Medium-High Low-

Medium

Medium High

SCADE Low-

Medium

Medium Low High High Medium-

High

Table 4 – Grades for different properties included in the tools

RTW-EC supports all relevant blocks in the Simulink block library while TargetLink supports

about 50 percent and SCADE 40 percent. However, if this restriction is taken into account

when designing the system, this should not be a problem.

TargetLink is the most user-friendly of the three tools. This is mostly because of the simple

graphical user interface and the concentration of options relevant for code generation in one

place.

SCADE is a tool that generates certified code and therefore does not provide as many ways to

customise the code as the other tools. The options for customisation are about the same for

TargetLink and RTW-EC.

SCADE generates code certified to the standard IEC 61508. Code generated from RTW-EC

and TargetLink is not automatically certified to these standards. Instead this process can be

carried out afterwards. Both TargetLink and RTW-EC have code that is part of systems which

have been certified according to IEC 61508.

A Comparision of Three Code Generators for Models Created in Simulink

 - 25 -

Different tools used to verify and validate a model are included in SCADE and TargetLink.

Simulink also provides several methods but those are not included in the RTW-EC toolbox

but can be purchased separately. SCADE provides the most powerful tools to validate and

verify models.

All three tools have the possibility to auto-scale models to fixed-point arithmetic. SCADE’s

and TargetLink’s tools provide the user friendliest interface and has support for different

scaling methods.

A Comparision of Three Code Generators for Models Created in Simulink

 - 26 -

6 Reference
[1] NTF. Nollvisionen. (Electronic) Accessible: <http://www.ntf.se/omoss/default7793.asp>

(2006-06-08).

[2] Edler, Håkan. CEDES. (Electronic) Accessible: <http://www.cedes.se> (2006-06-08).

[3] MathWorks. (Last modified 2006).The MathWorks (Electronic). Accessible:

<http://www.mathworks.se> (2006-06-08)

[4] dSPACE. (Last modified 2006).dSPACE (Electronic) Accessible:

<http://www.dspace.com> (2006-06-08)

[5] Esterel Technologies. (Last modified 2006).Esterel-Technologies (Electronic) Accessible:

<http://www.esterel-technologies.com> (2006-06-08)

[6] Ferguson, Andrew. (Last modified 2004-11-05). The History of Computer Programming

Languages. (Electronic). Accessible:

<http://www.princeton.edu/~ferguson/adw/programming_languages.shtml> (2006-06-08)

[7] Michael Beine, Rainer Otterbach and Michael Jungmann (2004) Development of Safety-

Critical Software Using Automatic Code Generation. SAE 2004 World Congress &

Exhibition; March 2004; Detroit, MI, USA.

[8] Zonghua Gu, Shige Wang, Jeong Chan Kim and Kang G. Shin.

(2004-01-02). Integrated Modeling and Analysis of Automotive

Embedded Control Systems with Real-Time Scheduling. (Electronic). Accessible:

<http://kabru.eecs.umich.edu/aires/paper/gu_sae04.pdf> p.3. (2006-06-08).

[9] Esterel Technologies. (Last modified 2006). RTCA DO-178B. (Electronic). Accessible:

<http://www.esterel-technologies.com/products/scade-suite/do-178b-code-generation.html>

(2006-06-08)

A Comparision of Three Code Generators for Models Created in Simulink

 - 27 -

[10] Marcello Becucci, Alessandro Fantechi, Marco Giromini and Emilio Spinicci (2005)

 A comparison between handwritten and automatic generation of C code from SDL using

static analysis. (Electronic). Software – Practise and experience 2005; 35; 1317-1347

Accessible: <http://fmt.isti.cnr.it/WEBPAPER/FULLTEXT.PDF> (2006-02-10)

[11] Tim Menzies, Justin S. Di Stefano, Mike Chapman, Ken McGill (2002) Metrics That

Matter. Software Engineering Workshop, 2002. Proceedings. 27th Annual NASA

Goddard/IEEE p. 51-57

[12] Krusko, Armin (2004) Complexity Analysis of Real Time Software– Using Software

Complexity Metrics to Improve the Quality of Real Time Software. Stockholm: Royal

Insitute of Technology, Department of Numerical Analysis and Computer Science

A Comparision of Three Code Generators for Models Created in Simulink

 - 28 -

Appendix I - Terminology

RTOS

Real-Time Operating Systems provide an environment for embedded applications in real-time

systems. Services included in the RTOS are for example real-time scheduling and

synchronization mechanisms.

Scheduling

Real-time applications execute periodically with a rate specified by the sample time.

A real-time system with a single sampling time has a single rate. This type of program needs

no extra control over the execution beside the basic sampling rate.

Systems with blocks running at different sampling rates need extra managing. This can be

done by dividing the model into tasks based on sampling time. Each subsystem or single

block with its own sampling rate is placed in tasks.

If the rates are multiples of each other the application can be controlled using if-branches. The

shortest sampling time becomes the base rate. An integer variable is used to remember the

sample number. If the base sampling time is 1 second and two subsystems have 2 seconds and

3 seconds as their sampling times, the first would execute on every second and the latter on

every third sample.

Fixed-point arithmetic

Fixed-point calculations are especially suited for embedded applications, since most of the

microcontrollers used do not have a Floating-Point Unit (FPU).

The difference between an ordinary integer and fixed-point data types is the ability to store

decimal numbers. Instead of using all bits for the integer value, some are dedicated to

fractions of 1.

All fixed-point numbers are evaluated using a ‘slope’ and a ‘bias’. This computation is done

through a set of arithmetic operations. To speed up the calculation, the bias can be set to 0 and

A Comparision of Three Code Generators for Models Created in Simulink

 - 29 -

the slope is simplified to a power of 2. The result is a binary-point scaling which is done

easily by a microcontroller.

bN … b7 b6 b5 b4 b3 b2 b1 b0

 Binary Point

Advantages using fixed-point arithmetic are:

a) smaller RAM and ROM consumption,

b) faster execution time and

c) more flexible word size and scaling.

However scaling a whole model to using fixed-point values increases development time and

makes the implementation to hardware more complex. It is also easier to get quantization

errors due to limited dynamic range.

Auto-scaling

The scaling of signals is a tedious work if done manually. Faults are easily introduced to the

system. With auto-scaling this process of calculation and implementation of scaling is

handled by algorithms.

To scale a signal properly, a range in which it will operate has to be worked out to eliminate

overflow. There are two different approaches to determine the upper and lower limits. If a

model is not yet complete or if the model used is not good enough, worst-case scaling can be

performed. In the worst-case scenario all known ranges are specified in advance (input

signals, constants and so on). The auto-scaling tool then propagates the ranges along the

signal lines to blocks that require a worst-case calculation. The alternative approach is to do

the range estimation via simulation; the minimum and maximum values are logged during

simulation and used as limits to determine the range.

MEX-files

MEX-files provide the possibility to use custom C or FORTRAN routines in MATLAB.

Through the external interface (an interface in MATLAB between routines written in other

languages and some external communication) the routines can integrate with MATLAB and

A Comparision of Three Code Generators for Models Created in Simulink

 - 30 -

be called as if they were M-files (a program written in MATLAB is saved as an M-file) or

built-in functions.

S-Function

An S-function is the description of a Simulink block in a computer language. Supported

languages are MATLAB, C, C++, Ada and FORTRAN. The S-function is compiled as a

MEX-file making it executable in MATLAB.

Simulation modes

There are three different types of simulation modes, Model-In-The-Loop (MIL), Software-In-

The-Loop (SIL) and Processor-In-The-Loop (PIL). MIL mode is used for controller design,

parametrising and validity checks. It also simulates the model’s subsystems to predict whether

the current settings will lead to overflows. SIL mode means that the code generated from the

model is compiled and executed on the host computer during simulation. Errors concerning

the scaling of variables and fixed-point arithmetic effects like quantisation errors are

discovered. When simulating in SIL mode the subsystems are disabled and the in- and outputs

are redirected to S-function frames that has been generated. PIL mode is used to simulate the

generated code on target hardware, this to find errors that are caused by the target compiler or

processor. Information like stack usage and execution time can easily be measured in PIL

mode. The PIL mode can be used on various target/compiler combinations but requires a

license for it.

A Comparision of Three Code Generators for Models Created in Simulink

 - 31 -

Appendix II – MathWorks Real-Time Workshop
Embedded Coder
The information in the appendix is gathered from MathWorks online manual, the help

provided in Matlab and the experiences of the writers of this report.

Supplied by the same company as Simulink, Real-Time Workshop Embedded Coder is well

integrated with that modelling environment. There is no need for specific block or translation

of blocks before generating code. This feature enables existing models created in Simulink to

be used with Real-Time Workshop Embedded Coder without any modifications.

Data types

Simulink models support eight built-in types.

Name Description

double Double-precision floating point (64-bit)

single Single-precision floating point (32-bit)

int8 Signed 8-bit integer

uint8 Unsigned 8-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer

Table 5 – Data types supported by Simulink

Beside these there are Boolean and Fixed-point data types. The Boolean type is internally

represented by uint8 values.

Compared to MATLAB, Simulink support all data types except uint64 and int64.

A Comparision of Three Code Generators for Models Created in Simulink

 - 32 -

The default data type of all variables and parameters is double in Simulink. This feature will

enable simulation at an early stage of model development. Before code is generated from the

model, data types need to be specified to avoid unnecessary memory and processor usage.

Fixed-Point

Support

Fixed-point is supported by Simulink and scaling can be specified using both slope and bias.

Both the built-in integer types and integers of arbitrary size up to 128 bits can be used. The

arbitrary sized integers can be signed or unsigned and the number of bits allocated for the data

type is specified as an integer value.

Name Description

sfix(TotalBits) Signed generalized fixed-point data type

ufix(TotalBits) Unsigned generalized fixed-point data type

sfrac(TotalBits, GuardBits*) Signed fractional data type

ufrac(TotalBits, GuardBits*) Unsigned fractional data type
*: GuardBits specifies the number of bits reserved for the integer value

Table 6 - Fixed-point data type declaration

sfix() and ufix() creates a general fixed-point data type without slope or bias specified. The

fractional data types are generated with a fixed binary point. The default placing of this point

is to the very left of, or if the data type is signed, immediately to the right of the sign bit.

Using fractional data types precludes design with slope and bias.

Auto-Scaling

Simulink can auto-scale a whole model according to logged min and max values. When

logging the min and max values, Simulink performs a floating-point simulation. To get the

auto-scaling tool to affect the whole model, all blocks need to have their data type mode set to

“Specify via dialog”. If this option is not set, the block will not be scaled.

A safety margin can also be set when auto-scaling. This margin is stated in percent and

decreases the risk for overflow to occur in the scaled model.

A Comparision of Three Code Generators for Models Created in Simulink

 - 33 -

Generated files

When generating code from Real-Time Workshop Embedded Coder the following files are

created (depending on the settings used, additional files can be generated):

Model.c: Contains data definitions and entry functions. Includes the

routine model_step that performs the task, model_initialize

that initialises the program and model_terminate that causes

blocks with terminate functions to execute their termination

code.

Model.h Header file that contains type definitions and aliases of

model-specific data structures.

Model_private.h Contains model-specific macros and data declarations for

internal use

Model_data.c A conditionally generated file containing declarations for the

constant I/O blocks and the parameters data structure

Model_types.h Contains declarations for the real-time model data structure

and the parameters data structure

rtw_types.h Contains type definitions, aliases

Table 7 – Files generated from RTW-EC

Verification and validation

Simulink provides different tools to verify and validate models.

• Model Advisor

The Model Advisor checks the entire model or a subsystem for different conditions and

settings that can result in inefficient simulation or generation of code that is inefficient or

contain code inappropriate for embedded real-time systems. The results are then presented in

a report that includes suggestions of settings that can improve the model and the generated

A Comparision of Three Code Generators for Models Created in Simulink

 - 34 -

code. The Model Advisor can also be customized by creating an m-file containing defines of

custom tasks and checks.

• Model verification blocks

Simulink provides several blocks for verification of models. Verification blocks can be set to

assert when a signal leaves a specified range or limit. The block can then be set to stop

simulation if the signal goes beyond its borders.

• Requirements Management Interface

The Requirements Management Interface is a tool used to associate a Simulink model and

Stateflow charts with its requirements. The requirements can be typed in a Microsoft Word or

a DOORS document. The Requirements Management Interface can then be used to create

links between the model in Simulink and the documentation with the requirements. These

links can then be used to navigate directly from a requirement to the corresponding block and

vice versa. The requirements for each block can also be included as comments in the

generated code.

• Model Coverage

The Model Coverage tool analyses blocks in the model that directly or indirectly decides the

path of the signal. During simulation, the Model Coverage tool saves the behaviour of the

different blocks and then reports the extent to which the run exercised potential simulation

pathways through each covered block. The tool can be used to find blocks that were not

executed during the test run.

• Simulation modes

Simulink can perform simulation in both SIL and PIL mode. In SIL mode Simulink creates an

S-function wrapper that is an S-function that calls your generated C or C++ code. The S-

function can then be integrated in the model to verify that the code has been generated

correctly. In PIL mode the code is downloaded to target and simulated. Communications with

Simulink during simulation is managed through a serial cable.

A Comparision of Three Code Generators for Models Created in Simulink

 - 35 -

Scheduling and integration with RTOS

The implementation of tasks is chosen in the Solver pane of the Configuration Parameters

dialogue box. The three modes available are Auto, SingleTasking and MultiTasking.

Auto mode results in SingleTasking if the model uses a single rate and MultiTasking if it uses

multi rates.

SingleTasking mode forces the code to use a single task even if the model is a multirate

system. The execution of units with different sampling rates is managed by if-statements.

With MultiTasking mode selected, an error is reported if the model only uses a single rate.

Tasking mode Sampling rate

SingleTasking Single rate

 Multi rate

MultiTasking Multi rate

Table 8 – Tasking modes VS sampling rates

The above table shows the available combinations of tasking modes and sampling rates.

With the “Automatically handle data transfers between tasks” option checked, rate

transition blocks to avoid improper exchange of data between tasks becomes superfluous.

Simulink inserts this block hidden in the model to ensure data integrity and deterministic data

transfer.

Customising the generated code

Custom code

The Real-Time Workshop Embedded Coder option pane contains a dialogue box for custom

C or C++ code to be inserted. Custom code can be inserted in either the source file or the

header file, or the initialize function or the terminate function of the generated code. If more

flexibility is required for the code placement, Real-Time Workshop Embedded Coder

A Comparision of Three Code Generators for Models Created in Simulink

 - 36 -

includes a custom code block library which contains blocks to insert C or C++ code

fragments. The code inserted in these blocks will then be added to the code generated from

the model but not included when simulating in MIL mode.

Real-Time Workshop also provides a block called Embedded MATLAB function. In the

Embedded MATLAB function block, custom MATLAB code can be inserted. The block

provides inputs and outputs that will carry the parameters through the code. The block also

includes a debugging tool that can be used during simulation of the model.

If C code needs to be inserted, the S-function builder can be used. In the S-function builder

custom C code can be inserted. However, the code is translated into an S-function that is used

in the model. The S-function builder can also generate a TLC file that is used during code

generation of the block.

Target Language Compiler

If a more flexible way to customize the generated code is required, the Target Language

Compiler (TLC) files can be modified. The Target Language Compiler is an interpreting

language that translates Simulink models into C or C++ code. A TLC file describes how a

block in Simulink is going to be translated, so by changing the file it is possible to alter the

way code is generated from a particular block. However, changing the files is an advanced

option that requires knowledge of the TLC language.

Custom Storage Classes

“Custom storage classes” is a way to adapt signals and parameters in the model to other

modules on target. It is therefore possible to control how the generated code stores and

represents signals and parameters. A named signal or parameter can have an object with the

same name in the MATLAB workspace that describes how the code for the signal/parameter

shall look like. With “Custom Storage Classes” it is also possible to assign which memory

section variables and constants should be stored in.

Creating functions from subsystems

A subsystem within Simulink can be treated as a virtual subsystem or as an atomic subsystem.

If the treat as atomic subsystem option is not selected, Simulink treats all blocks in the

subsystem as being at the same level as the subsystem. But if the option is enabled Simulink

treats the subsystem as a unit when determining the execution order of block methods. The

treat as atomic subsystem option can also be used to create separate functions from a

A Comparision of Three Code Generators for Models Created in Simulink

 - 37 -

subsystem. If desirable, the subsystem is generated in a separate file as an ordinary function

or as a reusable function. The name of the function and file can then be chosen as wanted.

Signal properties

Variables (signals) in the code generated by Real-Time Workshop Embedded Coder are

stored by default as local variables. If a signal needs to be reached by external written code or

if it is desirable to have it declared as a pointer the storage class can be changed. The

predefined storage classes available are Auto, ExportedGlobal, ImportedExtern, or

ImportedExternPointer. Auto is the default storage class for signals that do not need to be

interfaced to external code. ExportedGlobal means that the signal is stored in a global

variable. ImportedExtern declares the signal as an extern variable and ImportedExternPointer

declares the signal as an extern pointer.

When the optimisation option “inline parameters” is used, the numerical values of model

parameters are used in the generated code, instead of their symbolic names. This means that

the parameter has been transformed into a constant and is no longer tunable and therefore not

visible to externally written code. However if “inline parameters” is used it is still possible to

change the signal property of a specific signal and prohibiting inlining.

Optimisation options

There are several options to customize and optimise the code in Real-Time Workshop

Embedded Coder. The following table shows a number of important choices that are

available.

 Description Example

Inline parameters When this option is checked parameters

within the model are inlined, making

them nontunable in simulation and

inserted as constants in the generated

code. The ‘Configuration’-button

becomes active when checking Inline

parameters allowing the user remove

parameters from inlining.

See "Example: Inline

parameters"

A Comparision of Three Code Generators for Models Created in Simulink

 - 38 -

Block reduction If possible blocks are integrated with

each other to create more efficient code.

This option affects three types of block

reduction: Accumulator Folding,

Removal of Redundant Type

Conversions, and Dead Code

Elimination.

Accumulator folding:

Simulink recognizes certain

constructs such as

accumulators, and reduces

them to a single block.

Removal of Redundant Type

Conversions: Unnecessary

type conversion blocks are

removed.

Dead code elimination: Blocks

and signals in an unused path

are removed from the

generated code.

Enable local block

outputs

When this option is selected, block

signals are declared locally in functions

instead of being declared globally.

Eliminate

superfluous

temporary

variables

(Expression

Folding)

Minimizes the computation of

intermediate results between blocks. It

also collapses block computations into

single expressions, instead of generating

separate code for each block in the

model.

See "Example: Eliminate

Superfluous Temporary

Variables (Expression

Folding)"

Inline Invariant

Signals

If a signal is invariant, Real-Time

Workshop will precompute and inline it

in the generated code.

An invariant signal is a block

output signal that does not

change during Simulink

simulation

A Comparision of Three Code Generators for Models Created in Simulink

 - 39 -

Loop Unrolling

Threshold

Determines when a vector signal should

be included in a for-loop or not.

If the Loop Unrolling

Threshold value is set to 5

then the signal have to be

wider than 5 to be included in

a for-loop. If the signal has

fewer elements, separate

statement for each element is

generated.

Remove code

from floating-

point to integer

conversions that

wraps out-of-

range values

Removes code that handles out-of-range

values. The generated code will still

work when the values are within range.

Generate reusable

code

When this option is enabled, data

structures are generated as arguments in

the model functions. The arguments can

be generated as individual arguments or

as a struct.

Table 9 - Optimisation options for RTW-EC

Optimisation examples

The following examples will demonstrate some of the effects of the different options in Real-

Time Workshop Embedded Coder.

Example: Inline parameters

This option causes Real-Time Workshop Embedded Coder to use the numerical values of

model parameters, instead of their symbolic names, in the generated code. If it is not desirable

to inline all parameters, optional settings for each variable can be set.

A Comparision of Three Code Generators for Models Created in Simulink

 - 40 -

Figure 4 - Simulink model demonstrating the option inline parameters

Listing 2 - Code generated from model in Figure 4: Inline parameters option disabled

<rtw_example1_data.c>

 16 /* Block parameters (auto storage) */

 17 Parameters_rtw_example1 rtw_example1_P = {

 18 3.0 , /* Constant_Value : '<Root>/Constant'

 19 */

 20 2.0 /* Gain_Gain : '<Root>/Gain'

 21 */

 22 };

<rtw_example1.c>

 26 /* Model step function */

 27 void rtw_example1_step(void)

 28 {

 29

 30 /* Outport: '<Root>/Out1' incorporates:

 31 * Sum: '<Root>/Sum'

 32 * Gain: '<Root>/Gain'

 33 * Constant: '<Root>/Constant'

 34 * Inport: '<Root>/In1'

 35 */

 36 rtw_example1_Y.Out1 = (rtw_example1_U.In1 +

rtw_example1_P.Constant_Value) *

 37 rtw_example1_P.Gain_Gain;

 38 }

A Comparision of Three Code Generators for Models Created in Simulink

 - 41 -

Listing 3 - Code generated from model in Figure 4: Inline parameters option enabled

Example: Eliminate Superfluous Temporary Variables (Expression
Folding)

This option causes Real-Time Workshop Embedded Coder to collapse block computations

into single expressions, instead of generating separate code and storage declarations for each

block in the model.

Figure 5 - Simulink model demonstrating the option Eliminate superfluous temporary variables

<rtw_example1.c>

 26 /* Model step function */

 27 void rtw_example1_step(void)

 28 {

 29

 30 /* Outport: '<Root>/Out1' incorporates:

 31 * Sum: '<Root>/Sum'

 32 * Gain: '<Root>/Gain'

 33 * Constant: '<Root>/Constant'

 34 * Inport: '<Root>/In1'

 35 */

 36 rtw_example1_Y.Out1 = (rtw_example1_U.In1 + 3.0) * 2.0;

 37 }

A Comparision of Three Code Generators for Models Created in Simulink

 - 42 -

Listing 4 - Code generated from model in Figure 5: Eliminate Superfluous Temporary Variables disabled

<rtw_example2.c>

 26 /* Model step function */

 27 void rtw_example2_step(void)

 28 {

 29

 30 /* local block i/o variables*/

 31 real_T rtb_Gain1;

 32 real_T rtb_Product;

 33

 34 /* Gain: '<Root>/Gain' incorporates:

 35 * Inport: '<Root>/In1'

 36 */

 37 rtb_Product = rtw_example2_U.In1 * 2.0;

 38

 39 /* Gain: '<Root>/Gain1' incorporates:

 40 * Inport: '<Root>/In2'

 41 */

 42 rtb_Gain1 = rtw_example2_U.In2 * 3.0;

 43

 44 /* Product: '<Root>/Product' */

 45 rtb_Product *= rtb_Gain1;

 46

 47 /* Outport: '<Root>/Out1' */

 48 rtw_example2_Y.Out1 = rtb_Product;

 49 }

A Comparision of Three Code Generators for Models Created in Simulink

 - 43 -

Listing 5 - Code generated from model in Figure 5: Eliminate Superfluous Temporary Variables enabled

<rtw_example2.c>

 26 /* Model step function */

 27 void rtw_example2_step(void)

 28 {

 29

 30 /* Outport: '<Root>/Out1' incorporates:

 31 * Gain: '<Root>/Gain'

 32 * Gain: '<Root>/Gain1'

 33 * Product: '<Root>/Product'

 34 * Inport: '<Root>/In1'

 35 * Inport: '<Root>/In2'

 36 */

 37 rtw_example2_Y.Out1 = rtw_example2_U.In1 * 2.0 *

(rtw_example2_U.In2 * 3.0);

 38 }

A Comparision of Three Code Generators for Models Created in Simulink

 - 44 -

Appendix III - SCADE Drive
The information in the appendix is gathered from the SCADE manuals, the help provided in

SCADE and the experiences of the writers of this report.

SCADE Drive is a Model-Based design environment developed by Esterel Technologies. The

tool is specially suited for safety-critical embedded software and includes a certified code

generator.

SCADE is a design environment independent on any other software, providing its own blocks

and tools for model design and testing. If the model is first developed in Simulink, a

conversion is necessary. This feature provides both advantages and disadvantages. One

drawback is the translation from the Simulink to the SCADE format which can involve

problems. Options and blocks that are not supported in both environments need to be

eliminated before conversion and will include extra work. On the other hand, by creating a

new model based on the one designed in Simulink, unwanted features of the model can be

removed. Simulink is a generic tool suitable for many different types of appplications, not

only embedded systems. When generating code for embedded systems, especially safety-

critical applications, some options might compromise the safety aspects. For example, blocks

that do not meet the strict requirements are not translated.

Data types

Data types supported by SCADE are:

Name Description

int Integer

real Floating point

bool Boolean

char Character

string String (not for code generation)

Table 10 – Data types supported by SCADE

A Comparision of Three Code Generators for Models Created in Simulink

 - 45 -

String type is not for code generation. To be able to simulate or generate code, the string has

to be converted to an array of characters with a limited size.

Signed and unsigned integers of size 8, 16 and 32 are supported and used when implementing

fixed-point arithmetic. 64 bit integers are not included in the standard integer library but can

be defined.

Simulink Gateway

SCADE provides a tool to import Simulink models and Stateflow charts which is called the

Simulink Gateway. The Simulink gateway can also make automatic updates if the model is

being modified in Simulink.

The Simulink Gateway maps the data types when translating from Simulink to SCADE.

Simulink Types SCADE Types

uint8, int8, uint16, int16, uint32, int32 Int

double, single Real

boolean Bool

Table 11 - The translation between data types in Simulink to SCADE

The first step in the translation process is the calculation of arity types within the model. This

operation is performed by an algorithm that propagates the type through the model in the

same direction as the dataflow. To prevent arity type errors when translating using Simulink

Gateway it is recommended that dimensions of in- and outports is specified in the Simulink

model.

S-function

When generating an S-function for use in Simulink, a wrapper is created. Blocks for data type

conversion are used if necessary to match the Simulink types.

A Comparision of Three Code Generators for Models Created in Simulink

 - 46 -

SCADE Types Simulink Types

Int Int

Real Double

Bool Boolean

Table 12 - The translation between the data types in SCADE to Simulink

Translation of String or Character will report an error since there is no equivalent in Simulink.

Fixed-point

Support

Settings for fixed-point arithmetic can be entered in three ways; Type/Range, Type/LSB or

Range/Precision. One of the first two options is used if a specific type is preferred. When

Type/Range is utilized, a data type is selected and a range entered. The optimal fixed-point

values are then calculated using these settings. If both type and binary point is predefined,

these setting are entered in Type/LSB. Optimal fixed-point values can be evaluated using

Range/Precision. The minimal integer type is selected automatically and a binary point

calculated to match entered values.

Supported integer data types are: int8, int16, int32, uint8, uint16 and uint32.

Auto-scaling

Automatic scaling of signals can be performed through use of simulation ranges or worst-case

propagation of ranges. After specifying a root node, a default integer size and a binary point,

the implementer is ready to scale the model according to ranges.

If the scaling tool fails or the user wishes to do adjustments to the scaling, values are easily

entered in the fixed-point windows of the selected block.

Generated files

When generating code from SCADE, the following files are created:

A Comparision of Three Code Generators for Models Created in Simulink

 - 47 -

nodename.c

Contains C functions produced from the LUSTRE

description. If the -split option is used; this file is

generated for each nodename unexpanded node.

nodename.h

Contains mandatory C declarations. If the -split option is

used, this file is generated for each nodename unexpanded

node.

Scade_types.h
Contains the definitions of the types created by the user in

the SCADE model.

nodename_main.h
If the -split option is used, this file is generated and

contains scalar constants if -opt_const is used.

nodename_types.c

Generated when expansion is carried out by functional

calls - or mixed functional and inline calls -and when

deferred type variables are declared in the model.

Contains C functions for conversion of deferred types.

nodename_types.h

Generated when expansion is carried out by functional

calls - or mixed functional and inline calls -and when

deferred type variables are declared in the model. The

nodename_typ.h file contains macro-instructions used to

translate deferred type conversion functions. These macro-

instructions use the functions defined in nodename_typ.c.

definitions.h

Contains macro-instructions declarations for memory

copies (_copy_mem) and comparisons (_comp_mem) and

assertions processing (_assert).

Macro_default.h

Contains default macro-instruction declarations for

functions (and for the predefined LUSTRE fby operator if

-macropredef is set). For example, for a LUSTRE file

with the following profile function, my_function (i1 :

int; i2 : bool) returns (o1 : real; o2 : int).

Table 13 – Files generated from SCADE

Depending on the settings more or less files can be generated.

A Comparision of Three Code Generators for Models Created in Simulink

 - 48 -

Verification and validation

• Model test coverage

Model test coverage works its way through the model and checks if all element of the SCADE

model has been activated. Unreachable blocks in the model are located to eliminate

generation of “dead” code.

• Design Verifier

The Design Verifier within SCADE can check if the design is according to its requirement,

and can be used on the whole model or on one node. An example can be to check if a signal

exceeds a specified value or to make sure that two properties not can be true at the same time.

The tool can also be used to check whether two models are identical according to the same

requirement or not.

• S-function

As described earlier in the section about the Simulink Gateway, SCADE provides a tool to

verify the model in Simulink.

• Requirements

Links can be created between a model in SCADE and a documentation that holds the

requirements for the model. The requirements can be typed in a DOORS or Microsoft Word

document and can then be used to navigate directly from requirement to corresponding block

and back.

Scheduling and integration with RTOS

There is no concept of real time in SCADE. Instead, counting elapsed samples with

knowledge of the sampling time is the only way of implementing time into the system. Since

no blocks can be assigned a specific sample time, different execution rates in a model is

implemented by enabling subsystems on fewer samples than the rest of the system. This

technique applicable if the longer sampling time is an integer multiple of the shorter. The

implement of conditional execution in SCADE is made with the CONDAC operator.

SCADE can generate a task from a node in the model. However, it is not possible to generate

multiple tasks automatically. The tasks need to be manually created by generating code from

A Comparision of Three Code Generators for Models Created in Simulink

 - 49 -

different nodes. The integration, exchange of data and other issues concerning the

environment the application is running on is outside the scope of SCADE. These matters are

to be developed by the user.

SCADE can generate wrappers for OSEK and MicroC RTOS’s [SCADE RTOS Guidelines].

The files will include OSEK or MicroC and SCADE declarations, an initialisation function

and a task function. The integration with other software is handled through globally declared

SCADE input and output variables. The variables are buffered to enable safe updating outside

the SCADE task.

Customising the generated code

Options during the generation of C code involve naming of variables, expansion of nodes and

blocks and the declaration of constants. All these options and a description of them are found

in the SCADE Technical Manual.

Split to multiple files

In the code generation settings in SCADE you can choose if the code should be generated to

one file or to multiple files. If the “Split to multiple files” option is enabled, SCADE will

generate one “node_name.c” and one “node_name.h” file for every node in the model. If the

option is disabled the code for every node is generated into one file.

Expansion

In the Expansion pane in the code generation settings selections can be made to combine

several nodes to one function. If the option “none” is tagged a function for every node is

generated. If the option “selection” is tagged two or more nodes can be combined to one

function, used library functions can also be combined here.

Optimisation options

Many of the functions providing optimisation of generated code are not configurable in

SCADE. Most of the optimisation functions are therefore always performed and cannot be

turned off, however the behaviour of some constants and variables can be configured. Below

are some of the functions performed automatically by SCADE.

A Comparision of Three Code Generators for Models Created in Simulink

 - 50 -

Dead Code Elimination

All input variables and intermediate signals that is not used to calculate an output is

eliminated from the generated code. The only code present in the generated code that is not

involved in the calculation of outputs is the code that corresponds to operators with no output,

imported operators and global variables.

Variable Elimination

SCADE will optimise variables that are only used once. The local variables that are not

optimised are:

• input and output parameters of a node when they are under an activation condition (if

not defined by a type expression)

• local variables defined as the parameters of the pre operator (they can themselves

become memories in case pre operator is optimised)

• local variables resulting from a case operator (since the assignment is performed in the

different cases of a switch)

• local variables resulting from an if-then-else operator (since they can be allocated in

both cases of the if-then-else test)

• local variables as assertion parameters

• local variables as probes

• local variables as the output of a purely functional node

 SCADE Technical Manual

Optimisation examples

The model used for the example below is the same as the one used when testing the “inline

parameters” option in Real-Time Workshop Embedded Coders.

A Comparision of Three Code Generators for Models Created in Simulink

 - 51 -

Listing 6 - Code generated from model in Figure 4: No optimisation

Listing 7 - Code generated from model in Figure 4: Optimisation on local variables

The model used for the example below is the same as the one used when testing the

“Eliminate Superfluous Temporary Variables (Expression Folding)” option of Real-Time

Workshop Embedded Coders.

void Node1(_C_Node1 * _C_)

{

/*#code for node Node1 */

 (_C_->_O0_Output1) = (((_C_->_I0_Input1) * 3) * 2);

/*#end code for node Node1 */

}

void Node1(_C_Node1 * _C_)

{

 _int _L1_Node1;

 _int _L2_Node1;

 _int _L4_Node1;

 _int _L3_Node1;

 _int _L5_Node1;

/*#code for node Node1 */

 _L1_Node1 = (_C_->_I0_Input1);

 _L2_Node1 = 3;

 _L4_Node1 = (_L1_Node1 * _L2_Node1);

 _L3_Node1 = 2;

 _L5_Node1 = (_L4_Node1 * _L3_Node1);

 (_C_->_O0_Output1) = _L5_Node1;

/*#end code for node Node1 */

}

A Comparision of Three Code Generators for Models Created in Simulink

 - 52 -

Listing 8 - Code generated from model in Figure 5: No optimisation

void Node2(_C_Node2 * _C_)

{

 _int _L1_Node2;

 _int _L3_Node2;

 _int _L5_Node2;

 _int _L4_Node2;

 _int _L2_Node2;

 _int _L6_Node2;

 _int _L7_Node2;

/*#code for node Node2 */

 _L1_Node2 = (_C_->_I0_Input1);

 _L3_Node2 = 2;

 _L5_Node2 = (_L1_Node2 * _L3_Node2);

 _L4_Node2 = 3;

 _L2_Node2 = (_C_->_I1_Input2);

 _L6_Node2 = (_L4_Node2 * _L2_Node2);

 _L7_Node2 = (_L5_Node2 * _L6_Node2);

 (_C_->_O0_Output1) = _L7_Node2;

/*#end code for node Node2 */

}

A Comparision of Three Code Generators for Models Created in Simulink

 - 53 -

Listing 9 - Code generated from model in Figure 5: Optimisation on local variables

void Node2(_C_Node2 * _C_)

{

/*#code for node Node2 */

 (_C_->_O0_Output1) =

 (((_C_->_I0_Input1) * 2) * (3 * (_C_->_I1_Input2)));

/*#end code for node Node2 */

}

A Comparision of Three Code Generators for Models Created in Simulink

 - 54 -

Appendix IV – TargetLink
The information in the appendix is gathered from the TargetLink manuals, the help provided

in TargetLink and the experiences of the writers of this report.

TargetLink is an automatic production code generator created by dSPACE. TargetLink is

based on Simulink from MathWorks and uses its environment for modelling the control

functionality. The code generator supports many of the blocks used in Simulink, but special

TargetLink blocks need to be used to customize and optimise the code.

TargetLinks code generator also supports most of the rules of MISRA C, but it is not DO-

178B certified. However the code generated from TargetLink can be certified later on.

“A TargetLink subsystem is a Simulink subsystem prepared for production code generation

with TargetLink”

 -TargetLink Manual: Production Code Generation Guide

Data types

The built-in data types available in TargetLink are:

TargetLink Types Description

Int8 Signed 8-bit integer

Uint8 Unsigned 8-bit integer

Int16 Signed 16-bit integer

Uint16 Unsigned 16-bit integer

Int32 Signed 32-bit integer

Uint32 Unsigned 32-bit integer

Float32 32-bit floating-point

Float64 64-bit floating-point

Bool Boolean

Table 14 – Data types supported by TargetLink

A Comparision of Three Code Generators for Models Created in Simulink

 - 55 -

Models designed from scratch in TargetLink or through Simulink with a subsequent

translation, will both be simulated using the Simulink simulation engine. When running a

model-in-the-loop simulation of a TargetLink model all signals are computed with data type

double. Outputs from the subsystem may therefore differ in data type. When generating code,

the specified data type of each block is implemented, thus affecting the outcome of a SIL and

PIL mode simulation. If the option “Cast option to TargetLink Type” is set, block outputs can

be simulated as integer signals.

Simulink to TargetLink

In the translation from Simulink to TargetLink data types are mapped as:

Simulink Types TargetLink Types

double Default

single Float32

boolean Bool

int8 Int8

uint8 Uint8

int16 Int16

uint16 Uint16

int32 Int32

uint32 Uint32

Table 15 - The translation between data types in Simulink to TargetLink

The Simulink data type double is translated to ‘default’ when converting to TargetLink.

Initially the value of default is Int16, but this data type should be chosen to match the targets

processor.

The process of mapping data types during a model conversion begins with a compiled mode,

followed by a block-by-block mode. In the first stage of the process, some dependencies

between blocks in the model are taken into account and data types of different signals may

affect each other. Data type selection through inheritance from other blocks can be evaluated

A Comparision of Three Code Generators for Models Created in Simulink

 - 56 -

in this mode. In some cases this approach results in undefined types. Therefore the block-by-

block mode becomes the next stage in the process. During this step, each block is converted

separately, without considering any connected blocks. Use of library blocks require block-by-

block mode.

Fixed-point

Support

TargetLink supports both fixed-point and floating-point calculations. Instead of entering slope

and bias, TargetLink use the terms LSB and offset. LSB specifies the binary point and the

offset is equivalent to bias.

Supported integer types for scaling are: int8, int16, int32, uint8, uint16 and uint32.

Auto-Scaling

TargetLink can auto-scale variables both via worst-case and via use of simulation values.

Ranges for use in the worst-case propagation are easily entered in the main dialogue of each

block. Limits from previous simulations and range propagations are also displayed in this

dialogue.

A safety-margin is entered either in percent or bits. If the margin is entered in bits, the slope

will have the number of bits specified added to the calculated value.

Generated files

TargetLink generates a set of files for each TargetLink subsystem that are in the model. By

default the following files are generated.

A Comparision of Three Code Generators for Models Created in Simulink

 - 57 -

Subsystem.c Contains the production code for the subsystem.

Subsystem.h Contains declarations of global variables and

functions defined in subsystem.c

Subsystem_udt.h Contains user-defined types. If no additional

types are set, this file will not be created.

tl_defines_<subsystem_ID>.h Includes TargetLink defined pre-processor

macros and log macro. (subsystem_ID: all

subsystems have an ID represented by a letter)

tl_basetypes.h and tl_types.h Contains TargetLink defined types like Int8.

Table 16 – Files generated from TargetLink

Verification and validation

• Validation checks

When loading definitions of data types, variable classes, function classes etc., from the Data

Dictionary, a validation check is performed. This validation check is performed to check the

consistency of the loaded data. The validation check can be performed as “level 3” or “level

4”. Level 3 checks if the data pool in the data dictionary complies with the data model and if

the properties of objects have valid values. Level 4 performs the same test as Level 3 but also

checks cross-dependencies between objects in the Data Dictionary. When code is generated

from the model a validation check of level 4 is performed automatically.

• Model checking – Invalid blocks, User types

“Invalid blocks” goes through the whole model searching for blocks not supported by the

TargetLink code generator.

“User types” checks if the model contains undefined data types.

• Model verification blocks

TargetLink does not have a tool to verify the model, however TargetLink fully supports the

verification blocks that are provided by Simulink. Verification blocks can be set to assert

when a signal leaves a specified range or limit. The block can then be set to stop simulation if

the signal goes beyond its borders.

A Comparision of Three Code Generators for Models Created in Simulink

 - 58 -

• MIL, SIL and PIL mode

TargetLink uses all three different simulation methods to check the model and the generated

code, Model-in-the-loop, Software-in-the-loop and Processor-in-the-loop. TargetLink can also

automatically log signals to compare the results from the different simulation modes or to

compare the result from before and after auto scaling. The differences between the MIL, SIL

and PIL modes can easily be put side by side by plotting the logged signals. This provides an

excellent way to see if parameters have been scaled properly and if the production code has

been generated correctly.

Scheduling and integration with RTOS

TargetLink is by default configured to generate single tasking, single rate code. Different

sampling rates are overrun and the system is configured to use only one rate.

With the option Enable multirate code generation checked, different sampling rates are

implemented in the code, either as different tasks or by use of if-statements. The

implementation can be done manually by inserting TargetLink Task or TargetLink Function

blocks in subsystems or left to be done automatically be the code generator. If no task or

function blocks are used, TargetLink will group blocks with identical sampling rate in a

common task.

Customising the generated code

General block options

In TargetLink every block has a pane that will open when double-clicking on the block. Every

pane contains important settings about how a block will appear in the generated code. Some

of the settings listed on the block output page are:

Class: If the default class option in TargetLink is selected, the Code Generator automatically

selects the most efficient implementation for the output variable and that it is optimized if

possible. If another class is desirable, for example if the variable is used as a function

argument or as a global variable, this can be changed here. User defined classes can also be

created if needed.

Type: Specifies the variables data type. User defined data types can be created if needed.

A Comparision of Three Code Generators for Models Created in Simulink

 - 59 -

Name: Lets you specify the name of the variable in the generated production code. Fixed

names can be edited or macros can be used.

Address: Here a valid C address for the output variable can be specified. The memory

referenced must be reserved and initialized. When generating code, TargetLink will read the

input as a pointer to the data type without any further consistency check.

The function block

If it is desirable to make a function out of a subsystem the TargetLink “function block” can be

used. The function block contains different options on how the function will appear in the

code. Some useful options are.

Step function name: Lets you specify the name of the function in the generated production

code. Fixed names can be edited or macros (naming macros) can be used.

Step function class: Specifies a function class for the step function. For example if the

function should be generated as a global function or as an extern function.

Make function reusable: Makes the function reusable.

C code file name: Generates the step function to a separate file with the name typed here.

Assigning Variables to a Memory Section

In TargetLink it is possible to allocate which memory section the variables is stored in. This

can be done by making the compiler use different memory sections for the variables. These

memory sections can allocate memory separately by passing commands to the linker. The

name of a memory section is typed in the “SectionName” property, which can be reached by

the Data Dictionary. The ANSI C standard does not support allocation of variables to memory

sections, so if generic ANSI C code is generated the “SectionName” property is going to be

ignored. TargetLink will then automatically generate the statements required (pragmas etc).

Custom code block

TargetLink provides a block called “Custom code block” where custom C code can be

inserted. The block has inputs and outputs where data can be sent in- and out of the code.

Several choices like declarations of variables, initializing, restart, termination and header code

are available. The added code is generated directly into production code without any

adjustments; however it needs to be built first. It is also possible to use the generated code for

simulation purposes only and exclude it from production code.

A Comparision of Three Code Generators for Models Created in Simulink

 - 60 -

When simulating the custom code in MIL-mode, an S-function frame is generated. The frame

will then be compiled and linked to an S-function that runs the code.

eXtensible Markup Language

TargetLink uses the eXtensible Markup Language (XML) standard to define the style and

layout of the generated code. The XML files can be edited to modify the representation of

comments and statement commands. If a more specific and detailed way is needed to

customise the appearance of the code, XSL (eXtensible Style sheet Language) files can be

changed. However this requires some knowledge about programming in the XSL language.

Optimisation options

The optimisation options within TargetLink are only high-level documented and it is therefore

hard to show how some of the choices affect the generated code. TargetLink supports

different ways to log variables and signals, but whenever a signal or variable is logged it

cannot be optimised. When producing production code, the “clean code” option shall be

tagged. This disables all logging activities of macros and variables.

TargetLink can optimise the control flow by eliminating unused if-branches and variables,

moving code into conditional branches to avoid superfluous calculations and transform loops

with constant conditions into simpler construct. To get TargetLink to perform this

optimisation the “Optimisation” option in the Data Dictionary need to be set to

“MOVABLE”.

Optimisation examples

The model used for the example below is the same as the one used when testing the “inline

parameters” option of Real-Time Workshop Embedded Coders.

A Comparision of Three Code Generators for Models Created in Simulink

 - 61 -

Listing 10 - Code generated from model in Figure 4: Optimisation level 0

Listing 11 - Code generated from model in Figure 4: Optimisation level 2

The model used for the example below is the same as the one used when testing the

“Eliminate Superfluous Temporary Variables (Expression Folding)” option of Real-Time

Workshop Embedded Coders.

Void Subsystem(Void)

{

 /* Outport: Subsystem/Out1

 # combined # Gain: Subsystem/Gain

 # combined # Sum: Subsystem/Sum */

 Sb1_Out1_ = (Int16) (((Int16) (((UInt16) Sb1_In1_) + 3)) << 1);

}

Void Subsystem(Void)

{

 /* SLLocal: Default storage class for local variables | Width: 16 */

 Int16 Sb1_Gain;

 Int16 Sb1_Sum;

 /* Sum: Subsystem/Sum */

 Sb1_Sum = (Int16) (((UInt16) Sb1_In1_) + 3);

 /* Gain: Subsystem/Gain */

 Sb1_Gain = (Int16) (Sb1_Sum << 1);

 /* Outport: Subsystem/Out1 */

 Sb1_Out1_ = Sb1_Gain;

}

A Comparision of Three Code Generators for Models Created in Simulink

 - 62 -

Listing 12 - Code generated from model in Figure 5: Optimisation level 0

Listing 13 - Code generated from model in Figure 5: Optimisation level 2

Void Subsystem(Void)

{

 /* Outport: Subsystem/out.

 # combined # Product: Subsystem/Product

 # combined # Gain: Subsystem/Gain

 # combined # Gain: Subsystem/Gain1 */

 Sa1_OutPort = ((Int16) (Sa1_InPort << 1)) * Sa1_InPort1 * 3;

}

Void Subsystem(Void)

{

 /* SLLocal: Default storage class for local variables | Width: 16 */

 Int16 Sa1_Gain;

 Int16 Sa1_Gain1;

 Int16 Sa1_Product;

 /* Gain: Subsystem/Gain */

 Sa1_Gain = (Int16) (Sa1_InPort << 1);

 /* Gain: Subsystem/Gain1 */

 Sa1_Gain1 = Sa1_InPort1 * 3;

 /* Product: Subsystem/Product */

 Sa1_Product = Sa1_Gain * Sa1_Gain1;

 /* Outport: Subsystem/out. */

 Sa1_OutPort = Sa1_Product;

}

A Comparision of Three Code Generators for Models Created in Simulink

 - 63 -

In TargetLink an ‘Optimisation level’ between 0 and 2 can be chosen. This option is only

high-level documented and includes many different optimisations. The by dSPACE

documented [p. 498 Advanced practices guide] effects this option has on the generated code

are:

Level Optimisation

0 No optimisation is performed

1 • Code structures are simplified.

• Block outputs are computed only if necessary.

• Superfluous block output variables are eliminated, for example, logical and

relational blocks are combined in single Boolean expressions. Appropriate

code comments are generated.

• Superfluous auxiliary variables are eliminated.

2 Completed optimisation, that is, the depth of analysis is increased. For example, the

number of iterations is increased.

Table 17 – Optimisation options provided by TargetLink

Menu

The menus provided by TargetLink are uncomplicated and is easy to use. TargetLink offer its

own block library and a main dialogue where all options related to TargetLink are located.

TargetLink blocks contain additional data for code generation compared to Simulink, such as

the scaling information for fixed-point variables, class etc.

Data dictionary

The data dictionary provided by dSPACE is a central data container that holds all data and

information for code generation and calibration. All the parameters within the model can be

modified directly in the data dictionary which makes it easier if a large number of variables

need to be changed. The data dictionary can also be used to share data between engineers

working together in a project. Data structures for variable declaration and formulas for fixed-

point are some of the features that can be used in the data dictionary. The data stored in the

data dictionary can then be used not only by the TargetLink model but also in the entire

development process and in dSPACEs other products.

A Comparision of Three Code Generators for Models Created in Simulink

 - 64 -

Blockset Stand-Alone

TargetLink has a blockset called “TargetLink Blockset Stand-Alone” which can be used for

free and does not require a license. The blockset includes all TargetLink blocks and requires

MATLAB/Simulink installed, however none of the functions provided by TargetLink can be

used. Models can be modified but features like scaling and code generation is not available.

Limitations

To build models in TargetLink, MathWorks Simulink is used. Blocks that are used in

Simulink are easily converted to TargetLink blocks, however not all blocks are supported.

TargetLink is designed to generate production code in C and therefore only use models

containing discrete blocks. Continuous time blocks are not supported but can be simulated in

MIL mode.

Encountered problems

When translating a large Simulink model into TargetLink, some problems may occur if the

whole model is converted in one step. To solve this problem the model can be translated in

many steps, starting with the subsystem in the deepest layer and then gradual translate one

layer at a time. The library link needs to be disabled on all subsystems to make a correct

translation.

A Comparision of Three Code Generators for Models Created in Simulink

 - 65 -

Appendix V - Standards for safety-critical systems

Safety standard DO-178B/ED-12B

The safety standard DO-178B (in Europe called ED-12B) has been developed by the Radio

Technical Commission for Aeronautics (RTCA) for the aviation industry [1]. The standard is

primarily concerned with development processes and consists of five certification levels, A,

B, C, D or E. Each level describes the consequences of a potential failure of the software:

catastrophic, hazardous-severe, major, minor, or no-effect. The different objectives for the

different levels are shown in the table bellow [2].

Objectives Applicability
by SW level

Description A B C D
Test procedures are correct 1 2 2

Test results are correct and discrepancies
explained.

1 2 2

Test coverage of high-level requirements is
achieved

1 2 2 2

Test coverage of low-level requirements is
achieved

1 2 2

Test coverage of software structure (modified
condition/decision) is achieved

1

Test coverage of software structure (decision
coverage) is achieved

1 1

Test coverage of software structure (statement
coverage) is achieved

1 1 2

Test coverage of software structure (data
coupling and control coupling) is achieved

1 1 2

1: The objective should be satisfied with independence.
2: The objective should be satisfied.

Table 18 - Verification effort table based on the level of software

A product certified to level A would have the largest potential market, but will in turn require

more preparations to reach the strict requirements. The DO-178B standard enforces good

software development practices, system design processes and describes traceable processes

for objectives such as [1]:

A Comparision of Three Code Generators for Models Created in Simulink

 - 66 -

• High-level requirements are developed

• Low-level requirements comply with high-level requirements

• Source code complies with low-level requirements

• Source code is traceable to low-level requirements

• Test coverage of high-level and low-level requirements is achieved

Safety standard IEC 61508

Safety standard IEC 61508 covers all safety-related systems that are electronic or

programmable. It sets out the requirements for ensuring that systems are designed,

implemented, operated and maintained to provide the required safety integrity level (SIL) [3].

According to the risks involved in the system, four safety integrity levels are defined, safety

integrity level 1 (SIL1) is the lowest level of safety integrity and safety integrity level 4

(SIL4) is the highest level. The developer need to establish a risk analysis and determine the

SIL.

SIL are correlated to the Probability of Failure of Demand (PFD), which is equivalent to the

unavailability of a system at the time of a process demand [4].

SIL ANSI S84.01 PFD Availability Required 1/PFD

4 NO 10-5 to 10-4 > 99.99 % 100,000 to 10,000

3 YES 10-4 to 10-3 99.90 to 99.99 % 10,000 to 1,000

2 YES 10-3 to 10-2 99.90 to 99.99 % 1,000 to 100

1 YES 10-2 to 10-1 99.90 to 99.99 % 100 to 10

Table 19 – Correlation of SIL and PFD

IEC 61508 can be used stand alone or as a basis for other standards and it includes guidelines

for requirements, analysis, design, tests, implementation, documentation, validation and

product maintenance.

Certifying a code generator to the IEC 61508 standard is both expensive and time consuming;

however, it might enable developers to cut down on the volume of verification activities. By

not certifying a code generator to the IEC 61508 standard, new updates can be released

A Comparision of Three Code Generators for Models Created in Simulink

 - 67 -

frequently. If any modifications are done to a certified code generator, the whole certification

process needs to be done all over again.

Safety code standard MISRA C

The commonly used language C was in the beginning considered unsuitable for safety-critical

related systems [5]. In 1998 MISRA (Motor Industry Software Reliability Association)

produced MISRA C that is a set of rules and guidelines for programming in C, this to make

the language more suitable for safety-critical systems. MISRA C contains 121 required and 20

advisory rules.

MISRA C has become the dominant, international coding guidelines for the use of C in

critical systems, and is accepted by the IEC 61508 standard.

Referenser

[1] Rose, Greg. (Last modified 2003). Safety-Critical software. (Electronic). Accessible: <

http://www.lynuxworks.com/products/whitepapers/safety-critical.php3> (2006-06-08)

[2] Smartworks. Conducting Verification & Validation following DO178B guidelines.

(Electronic). Accessible: <http://www.smartworks.us/datasheets/whitepaper3.pdf> p.3 (2006-

06-08)

[3] OACG. What is IEC 61508?. (Electronic). Accessible: <

http://www.oacg.co.uk/iec61508.html> (2006-06-09)

[4] DYADEM. (Last modified 2006). Introduction to safety integrity levels. (Electronic).

Accessible:

<http://www.dyadem.com/engineering/risk_management/engineering_services/sil/index.htm>

(2006-06-09)

[5] MISRA. (Last modified 2006-03-27). Introduction to MISRA C. (Electronic). Accessible:

< http://www.misra-c2.com/> (2006-06-09)

A Comparision of Three Code Generators for Models Created in Simulink

 - 68 -

Appendix VI – The ABS-model
To compare code generated from the three tools a model of an ABS-system has been

provided. This model has been developed by Volvo Technologies that is a partner within the

CEDES project.

The ABS model is still under development and functions such as a fully functional brake

pedal, a drive line, steering and other parts are not yet implemented. The brake signal is very

simple and can only be set to on or off. When braking, the car will brake from initial speed,

without any feedback from the road or vehicle and without clutch, steering wheel and

gearbox. The force is equal on all the four wheels, resulting in a straight forward movement of

the vehicle. The ABS controller uses a PI controller that has two sets of parameters. The

parameters that the PI controller will use depend on the slip.

A simulation of the system has the following scenario. A vehicle is driving with all four

wheels straight forward on dry asphalt with friction set to 1. After one second the brake-signal

will go from 0 to 1 which means that the brake-pedal is pushed to its maximum. The speed of

the wheels and the slip (the relative difference between wheel speed and vehicle speed) is

calculated and provided to the PI controller. After three seconds the asphalt will change from

dry to wet by setting the friction to 0.7.

A Comparision of Three Code Generators for Models Created in Simulink

 - 69 -

Appendix VII - Model Block Support
In the comparison of tools for automatic code generation from Simulink models an important aspect is the support for model blocks. A basis for

this analysis has been the blocks support diagram provided in Real-Time Workshop and Real-Time Workshop Embedded Coder. TargetLink

compliance to this set of blocks has been evaluated through studies of specifications in the TargetLink user manuals and tests using the

conversion tool. The conversion tests are performed to verify automatic translation and to find out if equivalent are blocks are available. All three

code generators have imitated support for Simulink models. Some restrictions are due to basic properties of real-time systems, others are related

to safety-critical aspects.

A Comparision of Three Code Generators for Models Created in Simulink

 - 70 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

Additional Math and Discrete:

Additional Discrete Fixed-Point State-Space
N1

N1 Fixed-Point

State-Space
-

 Transfer Fcn Direct Form II N1, N2 - -

 Transfer Fcn Direct Form II Time Varying N1, N2 - -

 Unit Delay Enabled N1, N2 - -

 Unit Delay Enabled External IC N1, N2 - -

 Unit Delay Enabled Resettable N1, N2 - -

 Unit Delay Enabled Resettable External IC N1, N2 - -

 Unit Delay External IC N1, N2 - -

 Unit Delay Resettable N1, N2 - -

Unit Delay Resettable External IC

N1, N2

N1 Unit Delay

Resettable

External IC

-

 Unit Delay With Preview Enabled N1, N2 - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 71 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Unit Delay With Preview Enabled Resettable N1, N2 - -

Unit Delay With Preview Enabled Resettable

External RV
N1, N2 - -

 Unit Delay With Preview Resettable N1, N2 - -

 Unit Delay With Preview Resettable External RV N1, N2 - -

Additional Math and Discrete:

Increment/Decrement Decrement Real World
N1 - -

 Decrement Stored Integer N1 - -

 Decrement Time To Zero X - -

 Decrement To Zero N1 - -

 Increment Real World N1 - -

 Increment Stored Integer N1 - -

Continuous Derivative N3, N4 - N1 Derivate

 Integrator N3, N4 - -

 State-Space N3, N4 - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 72 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Transfer Fcn N3, N4 - -

 Transport Delay N3, N4 - -

 Variable Time Delay N3, N4 - -

 Variable Transport Delay N3, N4 - -

 Zero-Pole N3, N4 - -

Discontinuities Backlash N2 N1 Backlash X

 Coulomb & Viscous Friction N1 - X

 Dead Zone X N1 Dead Zone X

 Dead Zone Dynamic N1 - -

Hit Crossing

N4 -
N1,N2 Hit

Crossing

 Quantizer X - X

Rate Limiter

N5 X
N1,N2 Rate

Limiter

 Rate Limiter Dynamic N1, N5 - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 73 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Relay X X X

 Saturation X X X

 Saturation Dynamic N1 - -

 Wrap To Zero N1 - -

Discrete Difference N1 - -

Discrete Derivative

N2, N6 -
N1 Discrete

Derivative

Discrete Filter

N2
N1, N2 Discrete

Filter
N1 Discrete Filter

Discrete State-Space

N2
N1, N2 Discrete

State-Space
-

Discrete Transfer Fcn

N2
N1 Discrete

Transfer Fcn

N1 Discrete

Transfer Fcn

 Discrete Zero-Pole N2 - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 74 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

Discrete-Time Integrator

N2, N6

N1, N2, N3, N4,

N5, N6

Discrete-Time

Integrator

N1, N2, N3

Discrete-Time

Integrator

 First-Order Hold N4 - -

 Integer Delay N2 - -

 Memory X - -

 Transfer Fcn First Order N1 - -

 Transfer Fcn Lead or Lag N1 - -

 Transfer Fcn Real Zero N1 - -

 Unit Delay N2 X X

 Weighted Moving Average X - -

Zero-Order Hold

X X
N1 Zero-Order

Hold

Logic and Bit Operations Bit Clear X N1 Bit Clear -

 Bit Set X N1 Bit Set -

A Comparision of Three Code Generators for Models Created in Simulink

 - 75 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

Bitwise Operator

X X
N1, N2 Bitwise

Operator

Combinatorial Logic

X -
N1 Combinatorial

Logic

 Compare to Constant X - -

 Compare to Zero X - -

 Detect Change N2 - -

 Detect Decrease N2 - -

 Detect Fall Negative N2 - -

 Detect Fall Nonpositive N2 - -

 Detect Increase N2 - -

 Detect Rise Nonnegative N2 - -

 Detect Rise Positive N2 - -

 Extract Bits X - -

 Interval Test X - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 76 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Interval Test Dynamic X - -

Logical Operator

X X
N1 Logical

Operator

 Relational Operator X X X

Shift Arithmetic

X
N1 Shift

Arithmetic
-

Lookup Tables Cosine N1 - -

 Direct Lookup Table (n-D) N2 X -

 Interpolation (n-D) X X -

Lookup Table

X
N1 Lookup

Table
N1 Lookup Table

Lookup Table (2–D)

X
N1 Lookup

Table (2–D)

N1 Lookup Table

(2–D)

 Lookup Table (n-D) X - -

 Lookup Table Dynamic X - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 77 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

PreLookup Index Search

X
N1 PreLookup

Index Search
-

 Sine N1 - -

Math Operations Abs X X X

 Algebraic Constraint - - -

 Assignment N2 N1 Assignment -

 Bias X - -

 Complex to Magnitude-Angle X - -

 Complex to Real-Imag X - -

 Dot Product X - -

 Gain X N1 Gain X

 Magnitude-Angle to Complex X - -

 Math Function (10^u) X X X

 Math Function (conj) X - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 78 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Math Function (exp) X X X

 Math Function (hermitian) X - -

 Math Function (hypot) X X X

 Math Function (log) X X X

 Math Function (log10) X X X

 Math Function (magnitude^2) X - X

 Math Function (mod) X X X

 Math Function (pow) X X X

 Math Function (reciprocal) X X X

 Math Function (rem) X X X

 Math Function (square) X X X

 Math Function (sqrt) X X X

 Math Function (transpose) X - -

 MinMax X X N1 MinMax

A Comparision of Three Code Generators for Models Created in Simulink

 - 79 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 MinMax Running Resettable X - -

 Polynomial X - -

Product

N2
N1, N2, N3

Product
N1, N2 Product

 Real-Imag to Complex X - -

 Reshape X - -

Rounding Function

X
N1 Rounding

Function
X

 Sign X X X

 Sine Wave Function X - -

 Slider Gain X - X

 Sum X X N1, N2 Sum

Trigonometric Function

N7

N1, N2, N3

Trigonometric

Function

X

 Unary Minus X - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 80 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Weighted Sample Time Math X - -

Model Verification Assertion X X -

 Check Discrete Gradient X X -

 Check Dynamic Gap X X -

 Check Dynamic Lower Bound X X -

 Check Dynamic Range X X -

 Check Dynamic Upper Bound X X -

 Check Input Resolution X X -

 Check Static Gap X X -

 Check Static Lower Bound X X -

 Check Static Range X X -

 Check Static Upper Bound X X -

Ports & Subsystems
Atomic Subsystem

X
N1 Atomic

Subsystem

N1 Atomic

Subsystem

A Comparision of Three Code Generators for Models Created in Simulink

 - 81 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

Code Reuse Subsystem

X
N1 Code Reuse

Subsystem
-

 Configurable Subsystem X X -

Enabled Subsystem

X
N1 enabled

subsystem

N1, N2 Enabled

Subsystem

Enabled and Triggered Subsystem

X -

N1 Enabled and

Triggered

Subsystem

 For Iterator Subsystem X X -

 Function-Call Generator X X -

Function-Call Subsystem

X

N1, N2

Function-Call

subsystem

-

 If X N1 If N1 If

If Action Subsystem

X
N1, N2 If Action

Subsystem

N1, N2 If Action

Subsystem

 Model X - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 82 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Subsystem X X N1 Subsystem

 Switch Case X N1 Switch Case N1 Switch Case

Switch Case Action Subsystem

X

N1, N2 Switch

Case Action

Subsystem

N1, N2 Switch

Case Action

Subsystem

Triggered Subsystem

X
N1 Triggered

subsystem

N1, N2 Triggered

Subsystem

While Iterator Subsystem

X

N1 While

Iterator

Subsystem

-

Signal Attributes Data Type Conversion X X X

 Data Type Conversion Inherited X - -

 Data Type Duplicate X - -

 Data Type Propogation X - -

 Data Type Scaling Strip X - -

 IC N4 - X

A Comparision of Three Code Generators for Models Created in Simulink

 - 83 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Probe X - -

 Rate Transition N2, N5 X -

 Signal Conversion X - -

 Signal Specification X - -

 Weighted Sample Time X - -

 Width X - N1 Width

Signal Routing Bus Assignment X - -

 Bus Creator X N1 Bus Creator N1 Bus Creator

 Bus Selector X X N1 Bus Selector

Data Store Memory

X
N1, N2 Data

Store Memory
-

 Data Store Read X X -

 Data Store Write X X -

 Demux X N1 Demux N1, N2 Demux

A Comparision of Three Code Generators for Models Created in Simulink

 - 84 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Environment Controller X - -

 From X N1 From N1 From

 Goto X N1 Goto N1 Goto

 Goto Tag Visibility X X -

 Index Vector X N1 Index Vector -

 Manual Switch N4 - -

 Merge X N1, N2 Merge N1, N2 Merge

Multiport Switch

N2 X
N1 Multiport

Switch

 Mux X X N1 Mux

 Selector X N1 Selector N1 Selector

 Switch N2 X X

Sinks Display N8 N1 Display -

Floating Scope

N8
N1 Floating

Scope
-

A Comparision of Three Code Generators for Models Created in Simulink

 - 85 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Output (Out1) X X N1, N2 Output

 Scope N8 N1 Scope -

 Stop Simulation - - -

 Terminator X X X

 To File N4 N1 To File -

To Workspace

N8
N1 To

Workspace
-

 XY Graph N8 N1 XY Graph -

Sources Band-Limited White Noise N5 - -

 Chirp Signal N4 - -

 Clock N4 - -

 Constant X X N1 Constant

 Counter Free-Running N4 - -

 Counter Limited N1 - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 86 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Digital Clock N4 - -

 From File N8 - -

 From Workspace N8 - -

 Ground X X N1 Ground

 Inport (In1) X X N1 Inport

 Pulse Generator N5, N9 - -

 Ramp N4 - -

 Random Number X - -

 Repeating Sequence N10 - -

 Repeating Sequence Interpolated N1, N5 - -

 Repeating Sequence Stair N1 - -

 Signal Builder N4 - -

 Signal Generator N4 - -

 Sine Wave N6, N9 - -

A Comparision of Three Code Generators for Models Created in Simulink

 - 87 -

Sublibrary Block
Real-Time Workshop
Embedded Coder

TargetLink SCADE Drive

 Step N4 - -

 Uniform Random Number X - -

User-Defined Embedded MATLAB Function X ? -

 Fcn X N1, N2 Fcn N1 Fcn

 MATLAB Fcn N11 - -

 S-Function N12 N1 S-Function -

S-Function Builder

X
N1 S-Function

Builder
-

Table 20 – Supported blocks

A Comparision of Three Code Generators for Models Created in Simulink

 - 88 -

Real-Time Workshop Embedded coder notes

Symbol Note

X Real-Time Workshop support.

N1

Real-Time Workshop does not explicitly group primitive blocks that constitute a nonatomic masked subsystem block in the

generated code. This flexibility allows for more optimal code generation. In certain cases, you can achieve grouping by

configuring the masked subsystem block to execute as an atomic unit by selecting the Treat as atomic unit option.

N2 Generated code relies on memcpy or memset (string.h) under certain conditions.

N3
Consider using the Simulink Model Discretizer to map continuous blocks into discrete equivalents that support code

generation. To start the Model Discretizer, click Tools > Control Design.

N4 Not recommended for production code.

N5 Cannot use inside a triggered subsystem hierarchy.

N6 Depends on absolute time when used inside a triggered subsystem hierarchy.

N7

The three functions — asinh, acosh, and atanh — are not supported by all compilers. If you use a compiler that does

not support these functions, Real-Time Workshop issues a warning message for the block and the generated code fails to

link.

N8 Ignored for code generation.

N9
Does not refer to absolute time when configured for sample-based operation. Depends on absolute time when in time-

based operation.

N10 Consider using the Repeating Sequence Stair or Repeating Sequence Interpolated block instead.

A Comparision of Three Code Generators for Models Created in Simulink

 - 89 -

Symbol Note

N11 Consider using the Embedded MATLAB block instead.

N12

Real-Time Workshop does not explicitly group primitive blocks that constitute a nonatomic masked subsystem block in the

generated code. This flexibility allows for more optimal code generation. In certain cases, you can achieve grouping by

configuring the masked subsystem block to execute as an atomic unit by selecting the Treat as atomic unit option.

Table 21 – RTW-EC notes

A Comparision of Three Code Generators for Models Created in Simulink

 - 90 -

TargetLink notes

Symbol Note

X TargetLink support.

N1 Function-Call Subsystem Only supports ‘inherit’ of the States when enabling property.

N2 Function-Call Subsystem Output block setting Output when disabled needs to be set to ‘held’.

N1 Triggered Subsystem The Show output port option is not supported at root level of the TargetLink subsystem.

N1 Enabled Subsystem
The output port of an Enable block at root level of a TargetLink subsystem will always emit a signal equal to 1 in MIL

simulation mode. In SIL and PIL mode the signal is set to the correct value.

N1 Fixed-Point State-Space No special state-space block for fixed-point data. Uses Discrete State-Space Block which handles fixed-point-values.

N1 Backlash Hardcoded implementation in a Custom Code block.

N1 Dead Zone Hardcoded implementation in a Custom Code block.

A Comparision of Three Code Generators for Models Created in Simulink

 - 91 -

Symbol Note

N1 Discrete filter The data types of input and output must be of the same. Either integers or floating-point.

N2 Discrete filter The variable SLFilterFunctionReturn is not evaluated.

N1 Discrete State-Space The data types of input and output must be of the same. Either integers or floating-point.

N2 Discrete State-Space The size of the input, state and output matrices are not implicitly set. These parameters have to be set manually.

N1 Discrete Transfer Fcn The data types of input and output must be of the same. Either integers or floating-point.

N1 Discrete-Time Integrator Does not support Show state port.

N2 Discrete-Time Integrator Does not support the level value of the External reset property. This property will be mapped to either-edge.

N3 Discrete-Time Integrator Does not support the Accumulation values of the Integrator method.

N4 Discrete-Time Integrator Does not support Gain value.

N5 Discrete-Time Integrator Does not support vectorised signals.

N6 Discrete-Time Integrator Model update will not evaluate the limit output flag.

A Comparision of Three Code Generators for Models Created in Simulink

 - 92 -

Symbol Note

N1 Unit Delay Resettable

External IC

The block will not be replaced during a conversion, but has a counterpart called Unit Delay Reset Enabled in TargetLink.

N1 Bit Clear
The block will not be replaced during a conversion, but has counterparts for Uint8, Uint16 and Uint32 in TargetLink
Sample Blocks-Bitwise Operators in TargetLink.

N1 Bit Set
The block will not be replaced during a conversion, but has counterparts for Uint8, Uint16 and Uint32 in TargetLink
Sample Blocks-Bitwise Operators in TargetLink.

N1 Shift Arithmetic Does not support binary point shifting.

N1 Lookup Table Does not support floating-point types with equidistant tables.

N1 Lookup Table (2–D) Does not support floating-point types with equidistant tables.

N1 PreLookup Index Search
Index and fraction vary between TargetLink and Simulink but the output from the Interpolation (n-D) block is always the

same as Simulink.

A Comparision of Three Code Generators for Models Created in Simulink

 - 93 -

Symbol Note

N1 Assignment Only supports identical types and scaled elements for vectors.

N2 Assignment
Simulation behaviour may differ from Simulink if the block is part of a loop, if the output elements are not initialised before

each iteration or if not all output elements have been accessed.

N1 Gain To multiply with a matrix use the Discrete State-space block

N1 Product Does not support multiplication of two arbitrarily scaled 32-bit integers. Instead use power-of-two scaling.

N2 Product Does not support more then two inputs.

N3 Product Does not support the ‘//’ operation. The ‘/’ operation is only supported for signals with a width of one.

N1 Rounding Function Hardcoded implementation in a Custom Code block.

N1, N2, N3 Trigonometric

Function

The fixed-point implementation of atan function uses the constant 1/(LSB(input)^2). If this value can not be represented

correctly by a 32-bir integer an error will be reported during code generation.

N2 Trigonometric Function Does not support 32-bit integer as input for atan2 if implementing fixed-point.

N3 Trigonometric Function Does not support unsigned input or output for atan2 if implementing fixed-point.

A Comparision of Three Code Generators for Models Created in Simulink

 - 94 -

Symbol Note

N1 Atomic Subsystem

The input to an atomic subsystem can not be complex if it is specified as a function argument. This input setting also

restricts the signal to consist of only data, rather then both data and event signals. These limitations apply to bus inputs as

well.

N1 Code Reuse Subsystem To create a code reuse subsystem in TargetLink a Function block is placed at topmost level of that subsystem.

N1 If See If Action Subsystem.

N1 If Action Subsystem An action port at topmost level of a TargetLink subsystem can not be triggered from outside this system.

N2 If Action Subsystem An action port outside a TargetLink subsystem can not be triggered from inside the TargetLink system.

N1 Switch Case See Switch Case Action Subsystem.

N1 Switch Case Action

Subsystem

An action port at topmost level of a TargetLink subsystem can not be triggered from outside this system.

N2 Switch Case Action

Subsystem

An action port outside a TargetLink subsystem can not be triggered from inside the TargetLink system.

A Comparision of Three Code Generators for Models Created in Simulink

 - 95 -

Symbol Note

N1 While Iterator Subsystem The block can not have an external source for its iteration condition if it resides in the TargetLink root system.

N1 Bus Creator Does not support the nonvirtual bus option of the Output.

N1 Data Store Memory
The block has to be placed inside the TargetLink subsystem to work together with the Data Store Read and Data Store

Write blocks.

N2 Data Store Memory Does not support the variable to be defined as a function return value, a reference parameter or a value parameter.

N1 Demux Cannot inherit its signal assignment from its successor.

N1 From
From and Goto connections can not cross boundaries of atomic subsystems. With a TargetLink Function, Task or ISR

blocks contained in a subsystem will make it atomic regardless of the option Treat as atomic subsystem.

N1 Goto
From and Goto connections can not cross boundaries of atomic subsystems. With a TargetLink Function, Task or ISR

blocks contained in a subsystem will make it atomic regardless of the option Treat as atomic subsystem.

N1 Index Vector When converting from Simulink to TargetLink this block becomes a Multiport Switch block with a single input.

A Comparision of Three Code Generators for Models Created in Simulink

 - 96 -

Symbol Note

N1 Merge
Does not support inputs of unequal port widths. Thus the Allow unequal port widths checkbox in the Simulink blocks is

not supported.

N2 Merge
The simulation sequence is different from Simulink which can cause deviating simulation results. It can be prevented by

controlling the sequence using enable signals.

N1 Selector If Source of element indices is set to External all inputs need to be of the same data type and scaling.

N1 Display Supported but irrelevant for production code, thus ignored by the code generator.

N1 Floating Scope Supported but irrelevant for production code, thus ignored by the code generator.

N1 Scope Supported but irrelevant for production code, thus ignored by the code generator.

N1 To File Supported but irrelevant for production code, thus ignored by the code generator.

N1 To Workspace Supported but irrelevant for production code, thus ignored by the code generator.

A Comparision of Three Code Generators for Models Created in Simulink

 - 97 -

Symbol Note

N1 XY Graph The XY Graph block is not supported but it can be implemented using the Simulink Signal & Scope Manager.

N1 From File Supported but irrelevant for production code, thus ignored by the code generator.

N1 From Workspace Supported but irrelevant for production code, thus ignored by the code generator.

N1 Fcn Does not support overflow checking.

N2 Fcn Only outputs a scalar. For vector signals us the Math block.

N1 S-Function S-Functions are implemented using the custom-code block which also works similar to the S-Function Builder block.

N1 S-Function Builder
The corresponding block is the custom-code block. It will not be translated during conversion but serves the same

purpose.

Table 22 - Notes

A Comparision of Three Code Generators for Models Created in Simulink

 - 98 -

SCADE Drive notes

Symbol Note

X SCADE support.

N1 Derivate The translator calculates a clock that may be different from Simulink. Thus simulation results may be different.

N1 Hit Crossing Show Output Port is always set to “on”.

N2 Hit Crossing
When Hit crossing direction is set to either the behaviour is an OR between rising and falling. In Simulink this setting

serves as “almost equal”.

N1 Rate Limiter Only supported if Initial condition set to “0”.

N2 Rate Limiter Sample time mode should be set to “inherited” to ensure faithful translation.

N1 Discrete Derivative Only supported if Initial condition for previous weighted input K*u/Ts is set to “0.0” and Gain value is set to “1.0”.

N1 Discrete Filter Hard-coded

A Comparision of Three Code Generators for Models Created in Simulink

 - 99 -

Symbol Note

N1 Discrete Transfer Fcn Hard-coded

N1 Discrete-Time Integrator
Only supported if Use initial condition as initial and reset value for is set to “State and Output” and Gain value is set to

“1.0”.

N2 Discrete-Time Integrator Does not support Show state port or Limit output.

N3 Discrete-Time Integrator Does not support Lower saturation limit set to “Inf” and Upper saturation limit set to “Inf” or “-Inf”.

N1 Lookup Table Hard-coded

N1 Lookup Table (2–D) Hard-coded

N1 Zero-Order Hold Conditional activation with the SCADE block condact.

N1 Bitwise Operator Only supports Operator “AND”, “OR”, “XOR” and “NOT”.

N2 Bitwise Operator Only supported if Use bit mask … checked and Treat mask as is set to “Stored Integer”

N1 Combinatorial Logic Hard-coded

A Comparision of Three Code Generators for Models Created in Simulink

 - 100 -

Symbol Note

N1 Logical Operator Hard-coded except if Operator is set “NOT”.

N1 MinMax Hard-coded if more than one input. If only one input, the block is translated to an empty block.

N1 Product
Hard-coded if Number of inputs is set to other than “/”, “*” or “1”. Inputs=”/” outputs the inverse of the input. “*” or “1”

outputs the input.

N2 Product Does not support Saturate on integer overflow.

N1 Sum
Hard-coded if Number of inputs is set to other than “-”, “+” or “1”. Inputs=”-” outputs the negative of the input. “+” or “1”

outputs the input.

N2 Sum Does not support Saturate on integer overflow.

N1 Atomic Subsystem Hard-coded

N1 If Action Subsystem Only supported if States when execution is resumed is set to “held”.

N2 If Action Subsystem Hard-coded

A Comparision of Three Code Generators for Models Created in Simulink

 - 101 -

Symbol Note

N1 Enabled Subsystem Only supported if States when execution is resumed is set to “held”.

N2 Enabled Subsystem Hard-coded

N1 Enabled and Triggered

Subsystem

See Enabled Subsystem and Triggered Subsystem

N1 If Hard-coded

N1 Inport Hard-coded

N1 Output Hard-coded

N2 Output Only supported if Output when disabled is set to “held”

N1 Subsystem Hard-coded

N1 Switch Case Hard-coded

A Comparision of Three Code Generators for Models Created in Simulink

 - 102 -

Symbol Note

N1 Switch Case Action

Subsystem

Only supported if States when execution is resumed is set to “held”.

N2 Switch Case Action

Subsystem

Hard-coded

N1 Triggered Subsystem Does not support Trigger type set to “function-call”

N2 Triggered Subsystem Hard-coded

N1 Width Hard-coded

N1 Bus Creator Hard-coded

N1 Bus Selector Hard-coded

N1 Demux Hard-coded

N2 Demux Arity type of output port can not be determined through backward analysis

A Comparision of Three Code Generators for Models Created in Simulink

 - 103 -

Symbol Note

N1 From Hard-coded

N1 Goto Hard-coded

N1 Merge Hard-coded

N2 Merge Does not support Allow unequal port widths

N1 Multiport Switch Hard-coded

N1 Mux Hard-coded

N1 Selector Hard-coded

N1 Constant Hard-coded

A Comparision of Three Code Generators for Models Created in Simulink

 - 104 -

Symbol Note

N1 Ground By default translated to a block that output “false”. Integer, real and constant as output is supported to manual selection.

N1 Fcn Hard-coded

Table 23 – SCADE Drive notes

A Comparision of Three Code Generators for Models Created in Simulink

 - 105 -

Appendix VIII – Metrics

A Comparision of Three Code Generators for Models Created in Simulink

 - 106 -

STMOB Code mobility

STCDN Comment of code ratio

STBME COCOMO Embedded programmer months

STTDE COCOMO Embedded total months

STDEV Estimated development time

STPRT Estimated porting time

STHAL Halstead prediction of STTOT

STOPN Halstead Distinct Operands

STOPT Halstead Distinct Operators

STECT Number of External Variables

STFNC Number of Function Definitions

STSCT Number of Static Variables

STBMO COCOMO Organic Programmer Months

STTDO COCOMO Organic Total Months

STEFF Program Effort

STVOL Program Volume

STBUG Residual Bugs (token-based estimate)

STBMS COCOMO Semi-detached Programmer Months

STTDS COCOMO Semi-Detached Total Months

STSHN Shannon Information Content

STTOT Total Number of Tokens

STVAR Number of Identifiers

STTLN Total Preprocessed Source Lines

STTPP Total Unpreprocessed Source Lines

STZIP Zipf Prediction of STTOT

STCYC Cyclomatic Complexity

STMIF Maximum nesting of control structures

STPTH Estimated static path count

STMCC Myer’s Interval

STSUB Number of function calls

STFCO Estimated function coupling

STDIF Halstead’s program difficulty

STXLN Number of executable lines

STAKI Akiyama's Criterion

STKNT Knot count

STKDN Knot density

STBAK Number of backward jumps

STLIN Number of maintainable code lines

STELF Number of dangling else-if

STGTO Number of goto

STLCT Number of local variables declared

STPDN Path Density

STPBG Path-based residual bug estimate

STUNV Number of unused and unreused variables

A Comparision of Three Code Generators for Models Created in Simulink

 - 107 -

A complete explanation of all metrics can be found in the QA C manual1.

Unscaled

File-based

RTW-EC STMOB STCDN STBME STTDE STDEV STPRT STFCO STHAL STOPN STOPT STECT STFNC STSCT STBMO STTDO STDIF STEFF STVOL STBUG STBMS STTDS STSHN STTOT STVAR STTLN STTPP STZIP

rtwtypes.h 99,67 1,086 0,435 1,916 3,82 0,01 0 993 122 30 0 0 0 0,378 1,727 6,78 22907 3378 1 0,418 1,842 3504 466 77 53 172 851

computersystem.c 99,79 0,704 0,454 1,941 4,81 0,01 0 544 69 26 0 4 0 0,392 1,751 11,12 28863 2595 1 0,434 1,867 1869 395 41 78 178 487

computersystem.h 99,27 1,16 0,214 1,525 0,85 0,01 0 247 33 19 0 0 0 0,203 1,363 5,33 5109 958 0 0,215 1,459 818 168 33 22 95 235

computersystem_private.h 100 1,336 0,071 1,073 0,16 0 0 136 25 7 0 0 0 0,077 0,946 2,82 974 345 0 0,077 1,019 411 69 24 0 38 129

computersystem_types.h 100 2,66 0,041 0,899 0,04 0 0 22 2 7 0 0 0 0,048 0,787 5,15 212 41 0 0,046 0,851 59 13 2 1 24 25

rtlib.h 100 0 0,006 0,492 0,48 0 0 48 7 9 0 0 0 0,009 0,421 10,09 2907 288 0 0,008 0,46 149 72 7 0 5 54

TargetLink

tl_types.h 100 7,132 0,031 0,822 0,02 0 0 12 1 5 0 0 0 0,037 0,717 5,44 141 26 0 0,035 0,777 29 10 1 0 19 14

computersystem.c 99,81 3,61 1,074 2,558 10,67 0,02 0 639 79 29 0 2 0 0,833 2,332 18,55 64016 3452 2 0,97 2,474 2223 511 34 142 365 568

computersystem.h 95,31 9,837 0,208 1,513 0,13 0,01 0 67 11 9 7 0 0 0,198 1,352 4,04 786 194 0 0,21 1,447 206 45 11 8 93 71

tl_basetypes.h 100 2,514 0,049 0,954 0,27 0 0 97 11 15 0 0 0 0,056 0,837 5,76 1599 277 0 0,055 0,904 306 59 11 10 28 100

tl_defines_b.h 100 7,454 0,045 0,927 0,05 0 0 13 3 4 0 0 0 0,052 0,813 5,97 285 48 0 0,05 0,878 40 17 2 0 26 18

SCADE

scade_types.h 100 11,02 0,051 0,967 0 0 0 5 1 3 0 0 0 0,058 0,849 2,1 21 10 0 0,057 0,917 14 5 1 0 29 8

computersystem.c 89,14 0,145 0,519 2,026 18,32 1,99 0 663 86 24 30 3 0 0,441 1,831 19,99 1E+05 5500 2 0,492 1,95 2280 811 47 167 199 581

computersystem.h 97,01 1,467 0,126 1,287 0,25 0,01 0 139 19 15 0 0 0 0,127 1,142 4,18 1509 361 0 0,131 1,227 452 71 18 15 61 140

definitions.h 100 2,749 0,051 0,967 0,36 0 0 91 13 12 0 0 0 0,058 0,849 6,36 2156 339 0 0,057 0,917 289 73 12 2 29 95

1 Programming Reseach Quality Assurance C Technical Manual

A Comparision of Three Code Generators for Models Created in Simulink

 - 108 -

Table 24 – File-based metrics for unscaled model

Function-based

Real-Time Workshop Embedded Coder STAKI STCYC STMIF STPTH STKNT STKDN STMCC STBAK STLIN STELF STXLN STSUB STGTO STLCT STPDN STPBG STUNV

computersystem.c computersystem_initialize 2 2 1 2 0 0 0 0 14 0 4 0 0 0 0,5 0 0

computersystem.c computersystem_step 8 8 2 54 0 0 9 0 118 1 41 0 0 9 1,32 2 0

computersystem.c computersystem_terminate 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

TargetLink

computersystem.c computersystem 19 19 2 34992 0 0 0 0 232 0 77 0 0 14 454,4 5 0

SCADE

computersystem.c computersystem_init 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0

computersystem.c computersystem 19 19 1 1E+05 0 0 0 0 161 0 143 0 0 0 1031 5 0

Table 25 – Function-based metrics for unscaled model

Scaled

File-based

RTW-EC STMOB STCDN STBME STTDE STDEV STPRT STFCO STHAL STOPN STOPT STECT STFNC STSCT STBMO STTDO STDIF STEFF STVOL STBUG STBMS STTDS STSHN STTOT STVAR STTLN STTPP STZIP

rtwtypes.h 99,67 1,134 0,423 1,899 3,73 0,01 0 947 118 28 0 0 0 0,369 1,711 6,93 22408 3235 1 0,407 1,825 3324 450 73 49 168 812

computersystem.c 99,75 0,622 0,528 2,038 8,49 0,02 721 87 32 0 5 0 0,448 1,842 13,44 50959 3792 1 0,5 1,962 2530 550 48 93 202 637

computersystem.h 99,17 1,444 0,241 1,585 0,81 0,01 0 247 33 19 0 0 0 0,225 1,419 5,21 4868 935 0 0,24 1,518 818 164 33 22 105 235

computersystem_private.h 99,84 0,346 0,123 1,279 1,92 0 0 552 77 17 0 0 0 0,125 1,135 5,18 11508 2222 1 0,128 1,219 1843 339 68 1 60 481

computersystem_types.h 100 2,667 0,041 0,899 0,04 0 0 22 2 7 0 0 0 0,048 0,787 5,15 212 41 0 0,046 0,851 59 13 2 1 24 25

rtlib.h 100 0 0,006 0,492 0,48 0 0 48 7 9 0 0 0 0,009 0,421 10,09 2907 288 0 0,008 0,46 149 72 7 0 5 54

TargetLink

tl_types.h 100 7,132 0,031 0,822 0,02 0 0 12 1 5 0 0 0 0,037 0,717 5,44 141 26 0 0,035 0,777 29 10 1 0 19 14

computersystem.c 99,73 4,048 1,039 2,531 15,7 0,04 0 728 88 32 0 2 0 0,809 2,307 21,38 94203 4407 2 0,941 2,447 2561 638 37 114 355 644

A Comparision of Three Code Generators for Models Created in Simulink

 - 109 -

computersystem.h 95,31 10,858 0,208 1,513 0,13 0,01 0 67 11 9 7 0 0 0,198 1,352 4,04 786 194 0 0,21 1,447 206 45 11 8 93 71

sat2.h 100 0 0,021 0,731 1,04 0 0 62 10 9 0 0 0 0,027 0,635 12,05 6243 518 0 0,025 0,689 192 122 10 0 14 67

tl_basetypes.h 100 2,514 0,049 0,954 0,27 0 0 97 11 15 0 0 0 0,056 0,837 5,76 1599 277 0 0,055 0,904 306 59 11 10 28 100

tl_defines_b.h 100 7,454 0,045 0,927 0,05 0 0 13 3 4 0 0 0 0,052 0,813 5,97 285 48 0 0,05 0,878 40 17 2 0 26 18

SCADE

scade_types.h 100 2,865 0,087 1,145 0,07 0 0 36 8 5 2 0 0 0,092 1,012 3,45 396 115 0 0,093 1,089 108 31 8 6 45 41

computersystem.c 64,98 0,473 1,297 2,717 12,19 4,27 48 1040 138 15 56 3 0 0,982 2,483 9,12 73152 8019 2 1,157 2,631 3536 1105 124 301 427 858

computersystem.h 96,92 1,974 0,128 1,295 0,2 0,01 0 134 18 15 0 0 0 0,129 1,15 3,73 1206 323 0 0,133 1,235 430 64 18 15 62 134

computersystem_extern.h 100 1,73 0,076 1,094 0,2 0 0 85 19 3 19 0 0 0,082 0,965 3,63 1213 334 0 0,082 1,04 240 75 19 15 40 81

config_types.h 100 0 0,009 0,56 0,03 0 0 31 9 2 0 0 0 0,013 0,482 2,43 168 69 0 0,012 0,525 83 20 7 0 7 33

definitions.h 100 5,11 0,047 0,941 0,35 0 0 67 9 11 0 0 0 0,054 0,825 7,38 2074 281 0 0,053 0,891 206 65 9 2 27 71

macro_default.h 71,33 1,658 0,672 2,202 8,61 2,47 0 249 39 12 0 0 0 0,553 1,996 15,34 51684 3369 1 0,627 2,123 798 594 39 15 247 230

macro_libimplementation_user.h 100 0 0,018 0,689 0 0 0 0 0 0 0 0 0 0,023 0,597 0 0 0 0 0,021 0,649 0 0 0 0 12 0

Table 26 - File-based metrics for scaled model

Function-based

RTW-EC STAKI STCYC STMIF STPTH STKNT STKDN STMCC STBAK STLIN STELF STXLN STSUB STGTO STLCT STPDN STPBG STUNV
computersystem.c computersystem_initialize 2 2 1 2 0 0 0 0 9 0 3 0 0 0 0,67 0 0
computersystem.c computersystem_step 9 8 2 54 0 0 9 0 132 1 45 1 0 8 1,2 2 0
computersystem.c computersystem_terminate 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
computersystem.c div_s16s32 2 2 1 2 0 0 4 0 12 0 8 0 0 2 0,25 0 0

TargetLink
computersystem.c computersystem 13 13 2 1296 0 0 3 0 218 0 61 0 0 13 21,25 3 0

SCADE
computersystem.c computersystem_init 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0
computersystem.c computersystem 69 19 1 262144 0 0 0 0 384 0 247 50 0 28 1061,31 5 0

Table 27 – Function-based metrics for scaled model

A Comparision of Three Code Generators for Models Created in Simulink

 - 110 -

A Comparision of Three Code Generators for Models Created in Simulink

 - 111 -

Appendix IX – MISRA C compliance
The tables below are copies of the compliance list provided by the software providers.

MISRA C: 1998
RULE Number

Rule
Class

Possible Simulink
violations

Addressing violations with
model style Comments

Simulink
Compliance

Possible

1 Required None Code is per the standard. Yes

2 Advisory None Other languages are not used. Yes
3 Advisory None Assembly language is not

generated.
Yes

4 Advisory Divide By zero case and
math equations resulting
in overflow.

Simulink and Stateflow
provide diagnostics to detect
run-time errors in model. The
diagnostics are part of the
Configuration Parameters
dialogue. When the
diagnostics are set to "error",
errors are detected and
reported (upon model
simulation) . It is advisable to
simulate the model before
code generation to catch run-
time errors. Some of the
Diagnostics provided are
 - Data Overflow
 - Array bounds exceeded
 - Inf or Nan Block output
 (detects divide by zero)

Users can explicitly model run-
time checks. For e.g. special
'Protected Divide' block can be
modelled to check for divide by
zero.

Yes

5 Required None Nothing out of the ordinary is
used.

Yes

6 Required None Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 112 -

7 Required None Not used. Yes

8 Required None MISRA 2004 has removed this
rule.

Yes

9 Required None Yes
10 Advisory None Yes

11 Required Signals/parameters/states
can violate the rule if
labelled with more than 31
character

Use Configuration Set
parameters to control
identifiers
- Set the maximum identifier
length to 31.
- Use model names less than
17 chars.
 - Allow Mangling in the
Symbol string and avoid
model name in the symbol
string

User is responsible for
checking compiler/linker for 31
character support. RTW does
not control the length of user-
defined identifiers. Please see
Rule 11 assumptions at the
bottom of the spreadsheet.

Yes.

12 Advisory User-specified identifiers
are not checked for reuse.
For e.g a subsytem
function name speciifed
by the user can be same
as a 'ExportedGlobal'
signal name

Do not reuse names in
different name spaces. User
can track all usage the same
way it would be done with
manual methods. Scripts can
also be written to help.

This requires that name unique
control is turned on.

Yes

13 Advisory None None Both RTW and SF redefine the
base types using "rtwtypes.h".

Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 113 -

14 Required Plain char used for storing
character values

None RTW uses plain char for storing
character values. MISRA C
2004 states that character
strings need not be declared as
signed/unsigned char

No

15 Advisory None Yes

16 Required None No usage of bit representation. Yes
17 Required None Yes
18 Advisory "L" for long is not

supported. Assume
applies only to base10
constants.

Do not define data that is
"long"

MISRA 2004 has removed this
rule.

Yes

19 Required None Yes
20 Required None RTW uses external function

declarations. SF Coder uses
function declarations just
before the function definition
(body). MISRA 2004 has
removed this rule.

Yes

21 Required None Assume that inner scope/outer
scope refer to block statements
within functions. It is assumed
that this rule does not apply to
global variables with the same
names as local variables. If
assumption is not correct, then
rule is violated.

Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 114 -

22 Advisory None RTW has "Local Blocks Output"
option that provides function
definition of objects. In
Stateflow, use graphical
functions and "Temporary"
Data for defining non-persistent
chart data

Yes

23 Advisory None By default, RTW treats non-
function scope vatiables as
globals with extern
declarations. Use Custom
storage classes to specify 'File'
scope on signals and
parameters.

Yes

24 Required None Yes
25 Required None Yes
26 Required None Yes
27 Advisory None Yes
28 Advisory None It is not used. MISRA 2004 has

removed this rule.
Yes

29 Required None Yes
30 Required None Initialization takes place either

at object definition or via an
initialization function. Users
can optionally not genrate
explicit zero initialization of
data

Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 115 -

31 Required None Stateflow will initialize each cell
individually therefore avoiding
any compiler ambiguity.
Simulink matrices, 2-D, and n-
D tables are implemented as 1-
D arrays and are initialized as
1-D arrays.

Yes

32 Required None Enumerated lists are currently
not supported.

Yes

33 Required None User needs to avoid calling
functions with coupled side
effects.

 Yes

34 Required None Yes
35 Required None Yes
36 Advisory None Yes

37 Required Fixed-point math
operations can introduce
bit-shifts and bitwise-AND
on signed integers.
Simulink BITWISE
operator block does not
allow for signed INTs as
inputs.

Do not use BITWISE
operators on signed integers
in Stateflow.
To avoid bit-shifts in fixed-
point math operations,
uncheck the option " Shift
right on signed integer as
arithmetic shift" in
Configuration Paramaters ->
Hardware Implementation .
To avoid bit-wise AND (&),
round integers to floor
instead of zero.

Some fixed-point operations
can have bit-wise operation
irrespective of the model
settings and correct modeling
style suggested in the adjacent
column.

No

38 Required Shifts too far are possible
based upon the scaling
selected by the user.

Break equations into
components that do not
require large shifts

User needs to practice good
fixed point math rules while
modeling.

Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 116 -

39 Required Violation can occur based
upon model style.

User needs to not use unary
minus operation on signed
expressions in modeling.

Violation can occur based upon
model style.

Yes

40 Advisory None sizeof is not used. Yes
41 Advisory None This rule is not dependent upon

the code generator. It is the
user responsibility to
understand the complier and
microprocessor selected.

Yes

42 Required None Yes
43 Required None Yes
44 Advisory Math equations involving

mixed data types.
Not easily done RTW will cast expressions

whenever appropriate.
However, extra casts may
appear in some cases. MISRA
2004 has removed this rule.

No

45 Required Yes Yes

46 Required The usage of a single
data store write in two
different atomic
subsystems will cause a
problem.

Avoid side effects associated
with functions that may not
be executed in order
expected during modeling. If
using global data with
reusable functions, set code
reuse error diagnostic to
'Error'

Generally not an issue.
However, it is possible to
model in such a way to violate
the intent of the rule.

Yes

47 Advisory None. Break Stateflow mixed
operator action statements
into separate equations using
temporary variables.

Stateflow will depend upon C
operator precedence with
correct code. RTW uses
parenthesis when different
operators are present.

Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 117 -

48 Advisory None RTW and SF do not analyze
type of inputs for mixed
precision math. Fixed point is
ok

Yes

49 Advisory None Yes

50 Required Simulink Blocks which
test for equality do not
check for floating point
variables.

Cast floating point to integer
prior to equality testing.

Both RTW and SF will attempt
to test for equality on floating
point variables based upon
user models.
For non-finite number support,
RTW will generate rtIsInf() and
rtIsNaN() functions. These
functions compare two floating
point variables. To achieve
MISRA compliance, un-check
"non-finite support" in model's
configuration parameters
dialogue.

Yes

51 Advisory Subtracting a lager
unsigned constant from a
smaller unsigned
constant.

Do not model using a
difference between two
unsigned constants unless
the result will be positive.

Stateflow optimization will not
permit this to occur. Wrap
around will be determined
correctly by code generator.

Yes

52 Required None Assume that usage of
parameters or constants in
predicate equations to turn
code segments is not included
in the rule.

Yes

53 Required None Yes
54 Required None Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 118 -

55 Advisory None Only use structured patterns
that are goto free

Labels in SF are due to
GOTOs. MISRA 2004 has
removed this rule.

Yes

56 Required None Only use structured patterns
that are goto free.

Unstructured Stateflow
diagrams will produce goto.

Yes

57 Required None Yes
58 Required None MISRA 2004 has removed this

rule.
Yes

59 Required None Yes

60 Advisory An else statement is not
generated for a IF block
when "show else" switch
is turned OFF.

In Simulink, set show else
switch must be ON in IF
block. In Stateflow, user can
graphically add in extra else
clause.

Code generator optimizes else
statements if they are empty or
conditionally not executed.

Yes.

61 Required None Further review needed Yes

62 Required None Yes.
63 Advisory None Simulink switch block reports

error if boolean is used for
switch input

Yes

64 Required None Yes

65 Required None Avoid floating point counters
in StateFlow loops

 Yes

66 Advisory None Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 119 -

67 Advisory None Do not model the loop index
modification in the for loop.
Control with style

 Yes

68 Required None Yes
69 Required None Yes

70 Required None Use directed events or
graphical functions. Do not
use broadcast.

 Yes

71 Required None RTW Prototypes in a header
file. SF prototypes are located
next to function unless
exported. Assumes rms
scheduler not included

Yes

72 Required None Yes
73 Required None Yes
74 Required None Yes
75 Required None Either void or a specific type is

always used.
Yes

76 Required None Yes
77 Required None Yes
78 Required None Yes

79 Required None MISRA 2004 has removed this
rule.

Yes

80 Required None MISRA 2004 has removed this
rule.

Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 120 -

81 Advisory None Not an issue since pass by
reference is not support except
for output of subsystems in
reusable subsystems.

Yes

82 Advisory None All functions will have a primary
single exit at the end of the
function. Of course, if branches
are required that represent
termination, then a return will
be present at each branch as
permitted in MISRA rule 83.

Yes

83 Required None All branches have proper
returns

Yes

84 Required None MISRA 2004 has removed this
rule.

Yes

85 Advisory None Yes
86 Advisory None Yes
87 Required None Yes
88 Required None Yes
89 Required None Yes
90 Required None Yes
91 Required None None Usage is generally to limit

scope of define statement.
There is no attempt to reuse or
overwrite defines.

Yes

92 Advisory None User is responsible for
checking #undef in custom
code

No

A Comparision of Three Code Generators for Models Created in Simulink

 - 121 -

93 Advisory Fixed- point Arithmetic
involving non-native
integer sizes on a target
can result in function-like
macros. For e.g
operations on a 24bit
integer in a 16-bit target

Use native integer sizes RTW-EC uses functions
instead of function-like macros
for fixed point arithmetic

Yes

94 Required None Yes
95 Required None Yes
96 Required None Yes
97 Advisory None Yes
98 Required None Yes
99 Required None Yes

100 Required None
101 Advisory None Yes
102 Advisory None Yes
103 Advisory None Yes

104 Required None MISRA 2004 has removed this
rule.

Yes

105 Required None MISRA 2004 has removed this
rule.

Yes

106 Required None Yes

107 Required None MISRA 2004 has removed this
rule.

Yes

108 Required None Yes
109 Required None Configuration options. Select

Local Block Outputs, etc
 Yes

110 Required None Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 122 -

111 Required None Stateflow can use bit for states.
They are unsigned int.

Yes

112 Required None Yes

113 Required None MISRA 2004 has removed this
rule.

Yes

114 Required Possible to use reserved
words for
signals/parameters and
other identifiers

Avoid reserved words to label
signals, parameters, states,
functions and other identifiers
in the model.

Reserved words such as "float"
are detected but library names
such as "sprintf" can be used
as signal names.

Yes

115 Required Possible to use library
names such as "sprintf"
for signals/parameters
and other identifiers

Avoid library names to label
signals, parameters, states,
functions and other identifiers
in the model.

RTW does not use library
names for temporary variables
or model functions.

Yes

116 Required None User is responsible for
checking compiler libraries and
other third-party libraries

Yes

117 Required No User can model specific
checks for library function
calls that are "unknown".

Possible to call c libraries
without checks.

Yes

118 Required None Dynamic allocation is not used. Yes
119 Required None Yes
120 Required None Yes
121 Required None setlocale not used. MISRA

2004 has removed this rule.
Yes

122 Required None Yes
123 Required None Yes
124 Required stdio.h is included if

ert_main.c or if MAT-file
logging is selected.

Do not select generate main
option or .mat file for RTW-
EC.

RTW-EC Generate main option
will include stdio.h for printf and
flush. Also occurs if .mat file is
generated.

Yes

A Comparision of Three Code Generators for Models Created in Simulink

 - 123 -

125 Required None Yes
126 Required None Library functions abort, exit,

getenv and system not used.
Yes

127 Required None time handling not used. Yes

Table 28 – RTW-EC compliance with the rules of MISRA C

A Comparision of Three Code Generators for Models Created in Simulink

 - 124 -

Rules SCADE Compliance

Rule1.1[required] Derivable compliance

Rule1.2[required] Full compliance

Rule1.3[required] Not Applicable

Rule1.4[required] Not Applicable

Rule1.5[advisory] Not Applicable

Rule2.1[required] Full compliance

Rule2.2[required] Full compliance

Rule2.3[required] Configurable compliance

Rule2.4[advisory] Full compliance

Rule3.1[required] Full compliance

Rule3.2[required] Full compliance

Rule3.3[advisory] Not Applicable

Rule3.4[required] Full compliance

Rule3.5[required] Full compliance

Rule3.6[required] Not Applicable

Rule4.1[required] Full compliance

Rule4.2[required] Full compliance

Rule5.1[required] Configurable compliance

Rule5.2[required] Full compliance

Rule5.3[required] Derivable compliance

Rule5.4[required] Full compliance

Rule5.5[advisory] Derivable compliance

Rule5.6[advisory] Derivable compliance

Rule5.7[advisory] Full compliance

Rule6.1[required] Derivable compliance

Rule6.2[required] Full compliance

Rule6.3[advisory] Full compliance

Rule6.4[required] Full compliance

Rule6.5[required] Full compliance

Rule7.1[required] Full compliance

A Comparision of Three Code Generators for Models Created in Simulink

 - 125 -

Rule8.1[required] Full compliance

Rule8.2[required] Full compliance

Rule8.3[required] Full compliance

Rule8.4[required] Full compliance

Rule8.5[required] Full compliance

Rule8.6[required] Full compliance

Rule8.7[required] Full compliance

Rule8.8[required] Derivable compliance

Rule8.9[required] Full compliance

Rule8.10[required] Configurable compliance

Rule8.11[required] Configurable compliance

Rule8.12[required] Full compliance

Rule9.1[required] Derivable compliance

Rule9.2[required] Full compliance

Rule9.3[required] Full compliance

Rule10.1[required] Configurable compliance

Rule10.2[required] Configurable compliance

Rule10.3[required] Full compliance

Rule10.4[required] Full compliance

Rule10.5[required] Full compliance

Rule10.6[required] Configurable compliance

Rule11.1[required] Full compliance

Rule11.2[required] Full compliance

Rule11.3[advisory] Full compliance

Rule11.4[advisory] Derivable compliance

Rule11.5[required] Full compliance

Rule12.1[advisory] Derivable compliance

Rule12.2[required] Full compliance

Rule12.3[required] Full compliance

Rule12.4[required] Derivable compliance

Rule12.5[required] Derivable compliance

A Comparision of Three Code Generators for Models Created in Simulink

 - 126 -

Rule12.6[advisory] Configurable compliance

Rule12.7[required] Derivable compliance

Rule12.8[required] Full compliance

Rule12.9[required] Derivable compliance

Rule12.10[required] Full compliance

Rule12.11[advisory] Full compliance

Rule12.12[required] Full compliance

Rule12.13[advisory] Full compliance

Rule13.1[required] Full compliance

Rule13.2[advisory] Full compliance

Rule13.3[required] Derivable compliance

Rule13.4[required] Full compliance

Rule13.5[required] Full compliance

Rule13.6[required] Full compliance

Rule13.7[required] Derivable compliance

Rule14.1[required] No compliance

Rule14.2[required] No compliance

Rule14.3[required] Full compliance

Rule14.4[required] Full compliance

Rule14.5[required] Full compliance

Rule14.6[required] Full compliance

Rule14.7[required] Configurable compliance

Rule14.8[required] Derivable compliance

Rule14.9[required] Derivable compliance

Rule14.10[required] Full compliance

Rule15.1[required] Full compliance

Rule15.2[required] Full compliance

Rule15.3[required] Full compliance

Rule15.4[required] Derivable compliance

Rule15.5[required] Full compliance

Rule16.1[required] Full compliance

A Comparision of Three Code Generators for Models Created in Simulink

 - 127 -

Rule16.2[required] Full compliance

Rule16.3[required] Full compliance

Rule16.4[required] Full compliance

Rule16.5[required] Full compliance

Rule16.6[required] Full compliance

Rule16.7[advisory] Derivable compliance

Rule16.8[required] Full compliance

Rule16.9[required] Full compliance

Rule16.10[required] Full compliance

Rule17.1[required] Full compliance

Rule17.2[required] Full compliance

Rule17.3[required] Full compliance

Rule17.4[required] Full compliance

Rule17.5[advisory] Full compliance

Rule17.6[required] Full compliance

Rule18.1[required] Full compliance

Rule18.2[required] Full compliance

Rule18.3[required] Full compliance

Rule18.4[required] Full compliance

Rule19.1[advisory] Full compliance

Rule19.2[advisory] Full compliance

Rule19.3[required] Full compliance

Rule19.4[required] Full compliance

Rule19.5[required] Full compliance

Rule19.6[required] Full compliance

Rule19.7[advisory] Derivable compliance

Rule19.8[required] Full compliance

Rule19.9[required] Full compliance

Rule19.10[required] Derivable compliance

Rule19.11[required] Full compliance

Rule19.12[required] Full compliance

A Comparision of Three Code Generators for Models Created in Simulink

 - 128 -

Rule19.13[advisory] Full compliance

Rule19.14[required] Full compliance

Rule19.15[required] Configurable compliance

Rule19.16[required] Full compliance

Rule19.17[required] Full compliance

Rule20.1[required] Derivable compliance

Rule20.2[required] Derivable compliance

Rule20.3[required] Derivable compliance

Rule20.4[required] Full compliance

Rule20.5[required] Full compliance

Rule20.6[required] Full compliance

Rule20.7[required] Full compliance

Rule20.8[required] Full compliance

Rule20.9[required] Full compliance

Rule20.10[required] Full compliance

Rule20.11[required] Full compliance

Rule20.12[required] Full compliance

Rule21.1[required] Derivable compliance

Table 29 - SCADE compliance with the rules of MISRA C

A Comparision of Three Code Generators for Models Created in Simulink

 - 129 -

A Comparision of Three Code Generators for Models Created in Simulink

 - 130 -

A Comparision of Three Code Generators for Models Created in Simulink

 - 131 -

Table 30 – TargetLink compliance with the rules of MISRA C

A Comparision of Three Code Generators for Models Created in Simulink

 - 132 -

Full Compliance The rule is always met.

Derivable Compliance In order to fully comply with the rule, certain
restrictions at the modellevel have to be observed.

Configurable Compliance Using some code generator options can configure
the generated code. Selecting or cleaning a certain
option makes the generated code compliant with the
rule.

Partial Compliance The rule states several requirements, some of which
are fulfilled and some of which are not.

No Compliance The generated code may deviate from the rule.

Not Applicable Does not depend on the SCADE code generator.
This is a compiler issue for instance.

Table 31 – Explanation of the different levels of compliance.

