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Functional Bregman Divergence and Bayesian
Estimation of Distributions
Béla A. Frigyik, Santosh Srivastava, and Maya R. Gupta

Abstract—A class of distortions termed functional Bregman di-
vergences is defined, which includes squared error and relative en-
tropy. A functional Bregman divergence acts on functions or dis-
tributions, and generalizes the standard Bregman divergence for
vectors and a previous pointwise Bregman divergence that was de-
fined for functions. A recent result showed that the mean minimizes
the expected Bregman divergence. The new functional definition
enables the extension of this result to the continuous case to show
that the mean minimizes the expected functional Bregman diver-
gence over a set of functions or distributions. It is shown how this
theorem applies to the Bayesian estimation of distributions. Esti-
mation of the uniform distribution from independent and identi-
cally drawn samples is presented as a case study.

Index Terms—Bayesian estimation, Bregman divergence, con-
vexity, Fréchet derivative, uniform distribution.

B REGMAN divergences are a useful set of distortion func-
tions that include squared error, relative entropy, logistic

loss, Mahalanobis distance, and the Itakura–Saito function.
Bregman divergences are popular in statistical estimation and
information theory. Analysis using the concept of Bregman di-
vergences has played a key role in recent advances in statistical
learning [1]–[10], clustering [11], [12], inverse problems [13],
maximum entropy estimation [14], and the applicability of the
data processing theorem [15]. Recently, it was discovered that
the mean is the minimizer of the expected Bregman divergence
for a set of -dimensional points [11], [16].

In this paper, we define a functional Bregman divergence that
applies to functions and distributions, and we show that this new
definition is equivalent to Bregman divergence applied to vec-
tors. The functional definition generalizes a pointwise Bregman
divergence that has been previously defined for measurable
functions [7], [17], and thus extends the class of distortion
functions that are Bregman divergences; see Section I-A2 for
an example. Most importantly, the functional definition enables
one to solve functional minimization problems using standard
methods from the calculus of variations; we extend the recent
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result on the expectation of vector Bregman divergence [11],
[16] to show that the mean minimizes the expected Bregman
divergence for a set of functions or distributions. We show how
this theorem links to Bayesian estimation of distributions. For
distributions from the exponential family distributions, many
popular divergences, such as relative entropy, can be expressed
as a (different) Bregman divergence on the exponential distri-
bution parameters. The functional Bregman definition enables
stronger results and a more general application.

In Section I, we state a functional definition of the Bregman
divergence and give examples for total squared difference, rela-
tive entropy, and squared bias. In later subsections, the relation-
ship between the functional definition and previous Bregman
definitions is established, and properties are noted. Then, in
Section II, we present the main theorem: that the expectation of
a set of functions minimizes the expected Bregman divergence.
We discuss the application of this theorem to Bayesian estima-
tion, and as a case study, compare different estimates for the
uniform distribution given independent and identically drawn
samples. Proofs are in the Appendix. Readers who are not fa-
miliar with functional derivatives may find helpful our short in-
troduction to functional derivatives [18] or the text by Gelfand
and Fomin [19].

I. FUNCTIONAL BREGMAN DIVERGENCE

Let be a measure space, where is a Borel mea-
sure and is a positive integer. Let be a real functional over
the normed space for . Recall that the
bounded linear functional is the Fréchet derivative of

at if

(1)

for all , with as [19].
Then, given an appropriate functional , a functional Bregman
divergence can be defined.

Definition I.1 (Functional Definition of Bregman Diver-
gence): Let be a strictly convex, twice-con-
tinuously Fréchet-differentiable functional. The Bregman
divergence is defined for all
admissible as

(2)

where is the Fréchet derivative of at .

Here, we have used the Fréchet derivative, but the definition
(and results in this paper) can be easily extended using other
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definitions of functional derivatives; a sample extension is given
in Section I-A3.

A. Examples

Different choices of the functional lead to different
Bregman divergences. Illustrative examples are given for
squared error, squared bias, and relative entropy. Functionals
for other Bregman divergences can be derived based on these
examples, from the example functions for the discrete case
given in [16, Table 1], and from the fact that is a strictly
convex functional if it has the form where

, is strictly convex, and is in some well-defined
vector space of functions [20].

1) Total Squared Difference: Let , where
, and let . Then

Because

as in

which is a continuous linear functional in . To show that is
strictly convex, we show that is strongly positive. When the
second variation and the third variation exist, they are
described by

(3)

where as . The quadratic func-
tional defined on normed linear space is
strongly positive if there exists a constant such that

for all . By definition of
the second Fréchet derivative

Then, is actually independent of and strongly positive
because

for all , which implies that is strictly convex and

2) Squared Bias: By Definition I.1, squared bias is a
Bregman divergence; this we have not previously seen noted
in the literature despite the importance of minimizing bias in
estimation [21].

Let , where . In this case

(4)

Note that is a continuous linear functional on
and , so that

Thus, from (4) and the definition of the Fréchet derivative

By the definition of the second Fréchet derivative

and is independent of .
Then, is strongly positive on the convex cone of

positive functions because

for , and thus, is in fact strictly convex on
the cone. The Bregman divergence is thus

3) Relative Entropy of Simple Functions: Denote by the
collection of all integrable simple functions on the measure
space , that is, the set of functions that can be written
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as a finite linear combination of indicator functions such that if
, can be expressed

where is the indicator function of the set , is a
collection of mutually disjoint sets of finite measure, and

. We adopt the convention that is the set on which
is zero, and therefore, if .
Consider the normed vector space and let

be the subset (not necessarily a vector subspace) of nonnegative
functions in this normed space

subject to

If , then

(5)

because . Define the functional on

(6)

The functional is not Fréchet-differentiable at because, in
general, it cannot be guaranteed that is nonnegative on
the set where for all perturbing functions in the under-
lying normed vector space with norm smaller
than any prescribed . However, a generalized Gâteaux
derivative can be defined if we limit the perturbing function

to a vector subspace. To that end, let be the subspace of
defined by

subject to

It is straightforward to show that is a vector space. We define
the generalized Gâteaux derivative of at to be the linear
operator if

(7)

Note that is not linear in general, but it is on the
vector space . In general, if is the entire underlying vector
space, then (7) is the Fréchet derivative, and if is the span
of only one element from the underlying vector space, then
(7) is the Gâteaux derivative. Here, we have generalized the
Gâteaux derivative for the present case that is a subspace of
the underlying vector space.

It remains to be shown that given the functional (6), the
derivative (7) exists and yields a Bregman divergence corre-
sponding to the usual notion of relative entropy. Consider the
possible solution

(8)

which coupled with (6) does yield relative entropy. It remains
to be shown only that (8) satisfies (7). Note that

(9)

where is the set on which is not zero.
Because , there are such that

on . Let be such that , then .
Our goal is to show that the expression

(10)

is nonnegative and that it is bounded above by a bound that goes
to as . We start by bounding the integrand from
above using the inequality

Then, because

Because is integrable, and the right-hand side goes
to as .

Next, to show that (10) is nonnegative, we have to prove that
the integral (9) is not negative. To do so, we normalize the mea-
sure and apply Jensen’s inequality. Take the first term of the
integrand of (9)

where the normalized measure is a probability

measure and is a convex function on . By
Jensen’s inequality and then changing the measure back to
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where we used the fact that for all . By
combining these two latest results, we find that

so, equivalently, (9) is always nonnegative. This fact also con-
firms that the resulting relative entropy is always non-
negative, because (9) is if one sets .

Last, one must show that the functional defined in (6) is
strictly convex. We will show this by showing that the second
variation of is positive definite, which implies strict con-
vexity. Let and . Using the Taylor
expansion of , one can express

where goes to as because

Therefore

and

where is the set on which . Thus
is strongly positive.

B. Relationship to Other Bregman Divergence Definitions

Two propositions establish the relationship of the functional
Bregman divergence to other Bregman divergence definitions.

Proposition I.2 (Functional Bregman Divergence General-
izes Vector Bregman Divergence): The functional definition (2)
is a generalization of the standard vector Bregman divergence

(11)

where , and is strictly convex and twice
differentiable.

Jones and Byrne describe a general class of divergences be-
tween functions using a pointwise formulation [7]. Csiszár spe-
cialized the pointwise formulation to a class of divergences he

termed Bregman distances , where given a -finite measure
space , and nonnegative measurable functions
and , equals

(12)

The function is constrained to be differ-
entiable and strictly convex, and the limits and

must exist, but not necessarily be finite. The func-
tion plays a role similar to the functional in the functional
Bregman divergence; however, acts on the range of the func-
tions and , whereas acts on the functions and .

Proposition I.3 (Functional Definition Generalizes Pointwise
Definition): Given a pointwise Bregman divergence as per (12),
an equivalent functional Bregman divergence can be defined as
per (2) if the measure is finite. However, given a functional
Bregman divergence , there is not necessarily an equiv-
alent pointwise Bregman divergence.

C. Properties of the Functional Bregman Divergence

The Bregman divergence for random variables has some well-
known properties, as reviewed in [11, App. A]. Here, we note
that the same properties hold for the functional Bregman diver-
gence (2). We give complete proofs in [18].

1) Nonnegativity: The functional Bregman divergence is
nonnegative: for all admissible inputs.

2) Convexity: The Bregman divergence is always
convex with respect to .

3) Linearity: The functional Bregman divergence is linear
such that

4) Equivalence Classes: Partition the set of admissible func-
tionals into classes such that and belong to
the same class if for all .
For brevity, we will denote simply by . Let

denote that and belong to the same class,
then is an equivalence relation in that it satisfies the prop-
erties of reflexivity , symmetry (if ,
then ), and transitivity (if and

, then ). Further, if , then
they differ only by an affine transformation.

5) Linear Separation: The locus of admissible functions
that are equidistant from two fixed functions

in terms of functional Bregman divergence
form a hyperplane.

6) Dual Divergence: Given a pair where
and is a strictly convex twice-continuously Fréchet-dif-
ferentiable functional, then the function–functional pair

is the Legendre transform of [19], if

(13)

(14)
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where is a strictly convex twice-continuously Fréchet-
differentiable functional, and , where

.
Given Legendre transformation pairs and

,

7) Generalized Pythagorean Inequality: For any admis-
sible

II. MINIMUM EXPECTED BREGMAN DIVERGENCE

Consider two sets of functions (or distributions), and .
Let be a random function with realization . Suppose
there exists a probability distribution over the set , such
that is the probability of . For example, consider
the set of Gaussian distributions, and given samples drawn in-
dependently and identically from a randomly selected Gaussian
distribution , the data imply a posterior probability
for each possible generating realization of a Gaussian distribu-
tion . The goal is to find the function that minimizes
the expected Bregman divergence between the random func-
tion and any function . The following theorem shows
that if the set of possible minimizers includes , then

minimizes the expectation of any Bregman diver-
gence. Note the theorem requires slightly stronger conditions on

than the definition of the Bregman divergence I.1 requires.

Theorem II.1 (Minimizer of the Expected Bregman Di-
vergence): Let be strongly positive and let

be a three-times continuously Fréchet-differ-
entiable functional on . Let be a set of functions that
lie on a manifold , and have associated measure such
that integration is well defined. Suppose there is a probability
distribution defined over the set . Let be a set of func-
tions that includes if it exists. Suppose the function

minimizes the expected Bregman divergence between the
random function and any function such that

Then, if exists, it is given by

(15)

A. Bayesian Estimation

Theorem II.1 can be applied to a set of distributions to find
the Bayesian estimate of a distribution given a posterior or like-
lihood. For parametric distributions parameterized by ,
a probability measure , and some risk function ,

, the Bayes estimator is defined [22] as

(16)

That is, the Bayes estimator minimizes some expected risk in
terms of the parameters. It follows from recent results [16] that

if the risk is a Bregman divergence, where is the
random variable whose realization is ; this property has been
previously noted [8], [10].

The principle of Bayesian estimation can be applied to the
distributions themselves rather than to the parameters:

(17)

where is a probability measure on the distributions
, is a measure for the manifold , and is either the

space of all distributions or a subset of the space of all distri-
butions, such as the set . When the set includes the dis-
tribution and the risk function in (17) is a func-
tional Bregman divergence, then Theorem II.1 establishes that

.
For example, in recent work, two of the authors derived the

mean class posterior distribution for each class for a Bayesian
quadratic discriminant analysis classifier, and showed that the
classification results were superior to parameter-based Bayesian
quadratic discriminant analysis [23].

Of particular interest for estimation problems are the Bregman
divergence examples given in Section I-A: total squared differ-
ence (mean squared error) is a popular risk function in regres-
sion [21]; minimizing relative entropy leads to useful theorems
for large deviations and other statistical subfields [24] and ana-
lyzing bias is a common approach to characterizing and under-
standing statistical learning algorithms [21].

B. Case Study: Estimating a Scaled Uniform Distribution

As an illustration of the theorem, we present and compare
different estimates of a scaled uniform distribution given inde-
pendent and identically drawn samples. Let the set of uniform
distributions over for be denoted by . Given in-
dependent and identically distributed samples
drawn from an unknown uniform distribution , the gener-
ating distribution is to be estimated. The risk function is taken
to be squared error or total squared error depending on context.

1) Bayesian Parameter Estimate: Depending on the choice
of the probability measure , the integral (16) may not be fi-
nite; for example, using the likelihood of with Lebesgue mea-
sure the integral is not finite. A standard solution is to use a
gamma prior on and Lebesgue measure. Let be a random
parameter with realization , let the gamma distribution have
parameters and , and denote the maximum of the data as

. Then, a Bayesian estimate is
formulated [22, pp. 240, 285]

(18)
The integrals can be expressed in terms of the chi-squared
random variable with degrees of freedom

(19)
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Note that (16) presupposes that the best solution is also a uni-
form distribution.

2) Bayesian Uniform Distribution Estimate: If one restricts
the minimizer of (17) to be a uniform distribution, then (17)
is solved with . Because the set of uniform distribu-
tions does not generally include its mean, Theorem II.1 does
not apply, and thus different Bregman divergences may give
different minimizers for (17). Let be the likelihood of the
data (no prior is assumed over the set ), and use the Fisher in-
formation metric [25]–[27] for . Then, the solution to (17)
is the uniform distribution on . Using Lebesgue
measure instead gives a similar result: . We
were unable to find these estimates in the literature, and so their
derivations are presented in the Appendix.

3) Unrestricted Bayesian Distribution Estimate: When the
only restriction placed on the minimizer in (17) is that be a
distribution, then one can apply Theorem II.1 and solve directly
for the expected distribution . Let be the likelihood
of the data (no prior is assumed over the set ), and use the
Fisher information metric for . Solving (15), noting that the
uniform probability of is if and zero oth-
erwise, and the likelihood of the drawn points is
if and zero otherwise, then

(20)

III. FURTHER DISCUSSION AND OPEN QUESTIONS

We have defined a general Bregman divergence for functions
and distributions that can provide a foundation for results in sta-
tistics, information theory, and signal processing. Theorem II.1
is important for these fields because it ties Bregman divergences
to expectation. As shown in Section II-A, Theorem II.1 can be
directly applied to distributions to show that Bayesian distribu-
tion estimation simplifies to expectation when the risk function
is a Bregman divergence and the minimizing distribution is un-
restricted.

It is common in Bayesian estimation to interpret the prior
as representing some actual prior knowledge, but in fact prior
knowledge often is not available or is difficult to quantify. An-
other approach is to use a prior to capture coarse information
from the data that may be used to stabilize the estimation, as
we have done in [9]. In practice, priors are sometimes chosen in
Bayesian estimation to tame the tail of likelihood distributions
so that expectations will exist when they might otherwise be in-
finite [22]. This mathematically convenient use of priors adds
estimation bias that may be unwarranted by prior knowledge.
An alternative to mathematically convenient priors is to formu-
late the estimation problem as a minimization of an expected
Bregman divergence between the unknown distribution and the
estimated distribution, and restrict the set of distributions that
can be the minimizer to be a set for which the Bayesian integral
exists. Open questions are how such restrictions trade off bias

for reduced variance, and how to find or define an “optimal” re-
stricted set of distributions for this estimation approach.

Finally, there are some results for the standard vector
Bregman divergence that have not been extended here. It has
been shown that a standard vector Bregman divergence must be
the risk function in order for the mean to be the minimizer of an
expected risk [16, Th. 3 and 4]. The proof of that result relies
heavily on the discrete nature of the underlying vectors, and it
remains an open question as to whether a similar result holds
for the functional Bregman divergence. Another result that has
been shown for the vector case but remains an open question
in the functional case is convergence in probability [16, Th. 2].
Last, we have not considered possible axiomatic derivations of
the functional Bregman divergence, as can be furnished for the
standard Bregman divergence (see, for example, [7]).

APPENDIX

PROOFS

A. Proof of Proposition I.2

We give a constructive proof that for a there is a corre-
sponding functional Bregman divergence with a spe-
cific choice of , where and

. Here, denotes the Dirac measure such that all
mass is concentrated at , and is a collection of

distinct points in .
For any , let denote the th dimension of

, let , and define
. Then, the difference is

Let be short hand for , and use the Taylor expansion for
functions of several variables to yield

Therefore

where and . Thus, from
(3), the functional Bregman divergence definition (2) for is
equivalent to the standard vector Bregman divergence

(21)

B. Proof of Proposition I.3

First, we give a constructive proof of the first part of the
proposition by showing that given a , there is an equiv-
alent functional divergence . Then, the second part of the
proposition is shown by example: we prove that the squared bias
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functional Bregman divergence given in Section I-A2 is a func-
tional Bregman divergence that cannot be defined as a pointwise
Bregman divergence.

Note that the integral to calculate is not always finite.
To ensure finite , we explicitly constrain and

to be finite. From the assumption that is strictly
convex, must be continuous on . Recall from the as-
sumptions that the measure is finite, and that the function is
differentiable on .

Given a , define the continuously differentiable function

Specify as

Note that if ,

Because is continuous on , whenever
, so the above integrals always make sense.

It remains to be shown that completes the equivalence
when . For ,

where we used the fact that

because by assumption in the definition of .
On the other hand, if , then , and if

, then

Suppose such that . Then, there is a
measurable set such that its complement is of measure and

uniformly on . There is some such that for any
, for all . Without loss of generality,

assume that there is some such that for all ,
. Because is continuously differentiable, there is

a such that subject to
, and by the mean value theorem

for almost all . Then

except on a set of measure . The fact that almost ev-
erywhere implies that almost everywhere,
and by Lebesgue’s dominated convergence theorem, the corre-
sponding integral goes to . As a result, the Fréchet derivative
of is

(22)

Thus, the functional Bregman divergence is equivalent to the
given pointwise .

We additionally note that the assumptions that
and that the measure is finite are necessary for this proof.
Counterexamples can be constructed if or
such that the Fréchet derivative of does not obey (22). This
concludes the first part of the proof.

To show that the squared bias functional Bregman divergence
given in Section I-A2 is an example of a functional Bregman di-
vergence that cannot be defined as a pointwise Bregman diver-
gence, we prove that the converse statement leads to a contra-
diction.

Suppose and are measure spaces where
is a nonzero -finite measure and that there is a differentiable

function such that

(23)

where . Let , which can be finite
or infinite, and let be any real number. Then

Because is -finite, there is a measurable set such that
. Let denote the complement of in . Then

Also

However
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so one can conclude that

(24)
Apply (23) for to yield

Because , , so it must be that ,
and (24) becomes

The first equation implies that . The second equa-
tion determines the function completely

Then, (23) becomes

Consider any two disjoint measurable sets and with
finite nonzero measure. Define and . Then,

and . Equation (23) becomes

(25)

This implies the following contradiction:

(26)

but

(27)

C. Proof of Theorem II.1

Recall that for a functional to have an extremum (min-
imum) at , it is necessary that

and

for and for all admissible functions . A sufficient
condition for a functional to have a minimum for
is that the first variation must vanish for , and
its second variation must be strongly positive for

.
Let

(28)

where (28) follows by substituting the definition of Bregman
divergence (2). Consider the increment

(29)

(30)

where (30) follows from substituting (28) into (29). Using the
definition of the differential of a functional given in (1), the first
integrand in (30) can be written as

(31)

Take the second integrand of (30), and subtract and add
,

(32)

where follows from the linearity of the third term, and
follows from the linearity of the first term. Substitute (31) and
(32) into (30),

Note that the term is of order , that is,

for some constant . There-
fore

where

(33)

For fixed , is a bounded linear functional in the
second argument, so the integration and the functional can be
interchanged in (33), which becomes

Using the functional optimality conditions, has an ex-
tremum for if

(34)

Set in (34) and use the assumption
that the quadratic functional is strongly positive,
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which implies that the above functional can be zero if and only
if , that is

(35)

(36)

where the last line holds if the expectation exists (i.e., if the
measure is well defined and the expectation is finite). Because a
Bregman divergence is not necessarily convex in its second ar-
gument, it is not yet established that the above unique extremum
is a minimum. To see that (36) is in fact a minimum of , from
the functional optimality conditions, it is enough to show that

is strongly positive. To show this, for ,
consider

(37)
where follows from using integral (33), from subtracting
and adding , from the fact that the varia-
tion of the second variation of is the third variation of [28],
and from the linearity of the first term and cancellation of
the third and fifth terms. Note that in (37) for fixed , the term

is of order , while the first and the last
terms are of order . Therefore

where

(38)

Substitute and and interchange integration and the
continuous functional in the first integral of (38), then

(39)

(40)

where (39) follows from (35), and (40) follows from the strong
positivity of . Therefore, from (40) and the func-
tional optimality conditions, is the minimum.

D. Derivation of the Bayesian Distribution-Based Uniform
Estimate Restricted to a Uniform Minimizer

Let for all and for all
. Assume at first that ; then the total squared

difference between and is

where the last line does not require the assumption that .
In this case, the integral (17) is over the one-dimensional

manifold of uniform distributions ; a Riemannian metric
can be formed by using the differential arc element to convert
Lebesgue measure on the set to a measure on the set of
parameters such that (17) is reformulated in terms of the
parameters for ease of calculation:

(41)

where is the likelihood of the data points being drawn
from a uniform distribution , and the estimated distribution

is uniform on . The differential arc element can be

calculated by expanding in terms of the Haar orthonormal

basis , which forms a complete orthonormal basis
for the interval , and then the required norm is equiv-
alent to the norm of the basis coefficients of the orthonormal
expansion

(42)

For estimation problems, the measure determined by the
Fisher information metric may be more appropriate than
Lebesgue measure [25]–[27]. Then

(43)

where is the Fisher information matrix. For the one-dimen-
sional manifold formed by the set of scaled uniform distri-
butions , the Fisher information matrix is

so that the differential element is .
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We solve (17) using the Lebesgue measure (42); the solu-
tion with the Fisher differential element follows the same logic.
Then, (41) is equivalent to

The minimum is found by setting the first derivative to zero

To establish that is in fact a minimum, note that

Thus, the restricted Bayesian estimate is the uniform distribu-
tion over .

ACKNOWLEDGMENT

The authors would like to thank I. Dhillon, C. Ellerman, L.
Jones, and G. Shorack for helpful discussions.

REFERENCES

[1] B. Taskar, S. Lacoste-Julien, and M. I. Jordan, “Structured prediction,
dual extragradient and Bregman projections,” J. Mach. Learn. Res., vol.
7, pp. 1627–1653, 2006.

[2] N. Murata, T. Takenouchi, T. Kanamori, and S. Eguchi, “Information
geometry of U-Boost and Bregman divergence,” Neural Comput., vol.
16, pp. 1437–1481, 2004.

[3] M. Collins, R. E. Schapire, and Y. Singer, “Logistic regression, Ad-
aBoost and Bregman distances,” Mach. Learn., vol. 48, pp. 253–285,
2002.

[4] J. Kivinen and M. Warmuth, “Relative loss bounds for multidimen-
sional regression problems,” Mach. Learn., vol. 45, no. 3, pp. 301–329,
2001.

[5] J. Lafferty, “Additive models, boosting, and inference for generalized
divergences,” in Proc. Conf. Learn. Theory, 1999, pp. 125–133.

[6] S. D. Pietra, V. D. Pietra, and J. Lafferty, “Duality and auxiliary func-
tions for Bregman distances,” Carnegie Mellon Univ., Pittsburgh, PA,
Tech. Rep. CMU-CS-01-109R, 2001.

[7] L. K. Jones and C. L. Byrne, “General entropy criteria for inverse prob-
lems, with applications to data compression, pattern classification, and
cluster analysis,” IEEE Trans. Inf. Theory, vol. 36, no. 1, pp. 23–30,
Jan. 1990.

[8] M. R. Gupta, S. Srivastava, and L. Cazzanti, “Optimal estimation for
nearest neighbor classifiers,” Dept. Electr. Eng., Univ. Washington,
Seattle, WA, Tech. Rep. 2006-0006, 2006 [Online]. Available: idl.ee.
washington.edu

[9] S. Srivastava, M. R. Gupta, and B. A. Frigyik, “Bayesian quadratic
discriminant analysis,” J. Mach. Learn. Res., vol. 8, pp. 1287–1314,
2007.

[10] A. Banerjee, “An analysis of logistic models: Exponential family
connections and online performance,” in Proc. SIAM Int. Conf. Data
Mining, 2007.

[11] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
Bregman divergences,” J. Mach. Learn. Res., vol. 6, pp. 1705–1749,
2005.

[12] R. Nock and F. Nielsen, “On weighting clustering,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 28, no. 8, pp. 1223–1235, Aug. 2006.

[13] G. LeBesenerais, J. Bercher, and G. Demoment, “A new look at entropy
for solving linear inverse problems,” IEEE Trans. Inf. Theory, vol. 45,
no. 5, pp. 1565–1577, Jul. 1999.

[14] Y. Altun and A. Smola, “Unifying divergence minimization and statis-
tical inference via convex duality,” in Proc. Conf. Learn. Theory, 2006,
pp. 139–153.

[15] M. C. Pardo and I. Vajda, “About distances of discrete distributions
satisfying the data processing theorem of information theory,” IEEE
Trans. Inf. Theory, vol. 43, no. 4, pp. 1288–1293, Jul. 1997.

[16] A. Banerjee, X. Guo, and H. Wang, “On the optimality of conditional
expectation as a Bregman predictor,” IEEE Trans. Inf. Theory, vol. 51,
no. 7, pp. 2664–2669, Jul. 2005.

[17] I. Csiszár, “Generalized projections for nonnegative functions,” Acta
Mathematica Hungarica, vol. 68, pp. 161–185, 1995.

[18] B. A. Frigyik, S. Srivastava, and M. R. Gupta, “An introduction to func-
tional derivatives,” Dept. Electr. Eng., Univ. Washington, Seattle, WA,
Tech. Rep. 2008-0001 [Online]. Available: idl.ee.washington.edu/pub-
lications.php

[19] I. M. Gelfand and S. V. Fomin, Calculus of Variations. New York:
Dover, 2000.

[20] T. Rockafellar, “Integrals which are convex functionals,” Pacific J.
Math., vol. 24, no. 3, pp. 525–539, 1968.

[21] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. New York: Springer-Verlag, 2001.

[22] E. L. Lehmann and G. Casella, Theory of Point Estimation. New
York: Springer-Verlag, 1998.

[23] S. Srivastava and M. R. Gupta, “Distribution-based Bayesian minimum
expected risk for discriminant analysis,” in Proc. IEEE Int. Symp. Inf.
Theory, 2006, pp. 2294–2298.

[24] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[25] R. E. Kass, “The geometry of asymptotic inference,” Statist. Sci., vol.
4, no. 3, pp. 188–234, 1989.

[26] S. Amari and H. Nagaoka, Methods of Information Geometry. New
York: Oxford Univ. Press, 2000.

[27] G. Lebanon, “Axiomatic geometry of conditional models,” IEEE Trans.
Inf. Theory, vol. 51, no. 4, pp. 1283–1294, Apr. 2005.

[28] C. H. Edwards, Advanced Calculus of Several Variables. New York:
Dover, 1995.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 16:51 from IEEE Xplore.  Restrictions apply.


